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KEYWORDS Abstract Phenol and its derivatives are considered as dangerous pollutants due to these harmful
Nickel oxide; effects on health and the environment. Treatment of the waters charged by these compounds by
Phenol; adsorption remains very important. For these reasons, this study was designed to prepare nickel
Adsorption; oxide by precipitation method in order to remove these pollutants from aquatic environments.
Kinetic; Indeed, structural and textural properties of this solid have been determined by various physico-
Thermodynamic; chemical methods (X-ray diffraction, Fourier transform in the infrared, N2 adsorption/desorption
Adsorption mechanism (BET), ATD / ATG thermal analysis and scanning electron microscopy (SEM)). In addition, sev-

eral adsorption tests were carried out in order to show the effectiveness of this solid for the elimi-
nation of phenol in aqueous solution and to determine the physicochemical parameters which affect
adsorption. Our results have shown 5.29 mg-g~' of adsorption capacity with 98% of yield. Further-
more, it was shown that adsorption process was endothermic. For the kinetic study, it was demon-
strated that phenol adsorption on NiO follows the pseudo-second-order and the Langmuir model
better adaptable for the isotherm of desorption. Moreover, thermodynamic study shows positive
values of AS ° (266.6 JK~"-mol~") suggesting a randomness increase of the solid/liquid interface.
AH ° (60.41 kJ-mol~") was also positive confirming the endothermic nature of the adsorption pro-
cesses. However, AG ° (kJ-mol~") was negative suggesting the spontaneity of the phenol adsorption.
In summary, this work suggests that phenol adsorption on NiO was linked to the chemical adsor-
bate/adsorbent interactions.
© 2020 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

* Corresponding author. Phenol and its derivatives belong to the family of the volatile
E-mail address: dehmaniy@gmail.com (Y. Dehmani). organic compounds, it is a pollutant that is widespread in
Peer review under responsibility of King Saud University. many industrial effluents, such as the oil refining, the manufac-

ture of leather and textile, the Steel Foundry and the manufac-
turing of olive oil (Slim et al., 2013). The strong ability of
phenol to penetrate the skin and mucosal barriers and its
effects on the nervous and cardiovascular system make him a
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very dangerous pollutant for human health (Ali et al., 2019;
Abbasi, 2019).

Several studies conducted on the effect of phenol concen-
trated on the skin can cause severe skin lesions (Mandal and
Das, 2019a). There are cases of poisoning death. Indeed, the
accidental or intentional ingestion of a quantity of phenols
(5-500 mg) is linked, frequently, with infants deaths. However,
adult death can be caused following the ingestion of 1-32 g (H.
Li et al., 2019; Jiang et al., 2002).

The presence of phenol in wastewater represents an impor-
tant issue, related to toxicity to aquatic life and at concentra-
tions of the order of the ppb (part per billion), enough to
infuse the water smell and taste particularly unpleasant
(Abbasi, 2019; Jiang et al., 2002). In addition, biological treat-
ment of phenol at concentrations higher than 200 mg-L™! is
not possible due to the bactericidal effect of this compound.
Without effect, predictable environmental concentration
amounts to 7.73 g-L~!. This substance attacks mainly to the
liver, kidneys, lungs and vascular system. No study could
demonstrate its carcinogenic potential (Liitke et al., 2019;
Liu et al., 2019).

Therefore, it is necessary to eliminate phenols from indus-
trial wastewater before their release into the environment in
which the flora and fauna are the main targets of these indus-
trial effluents (Zif- et al., 2020). The elimination of phenol
from the affluent represents a challenge for the scientific com-
munities. Numerous techniques have been used to eliminate
these toxic compounds prior to their release into the environ-
ment, with great interest for these pollutants recovery methods
(Jin et al., 2014). In particular, catalytic oxidation, biological
degradation, electrochemical oxidation, liquid-liquid extrac-
tion and membrane filtration (Liitke et al., 2019; Z. Li et al.,
2019).

Among all of these methods of treatment, the adsorption of
phenols on solid media such as activated carbon, clay and oxi-
des of transition metals allows their removal in the water with-
out the addition of chemicals (Awad et al., 2019; Giraldo and
Moreno-Pirajan, 2014; Jiang et al., 2002, 2002, 2020; Ouallal
et al., 2019; Yu et al., 2017).

Nickel oxide NiO is a functional material very important
due to its electrical, structural, optical and catalytic properties.
The latter has been used in several areas, namely the field of
batteries (Mandal and Das, 2019a), the field of electrochemical
capacitors (Rogozea et al., 2017), optical materials and in the
field of catalysis (Mehraban et al., 2007).

The structural and textural material properties depend on
the method of preparation of the latter, precursors and agent
of precipitation. This oxide were widely used by various
researchers in the adsorption of pollutants due to these
promising properties in adsorption of propionic acid (El-
Qanni et al., 2017), Cr (VI) (Behnajady and Bimeghdar,
2014), lead and cadmium (Mahmood et al., 2011; Li et al.,
2016; Sheela and Nayaka, 2012), and malachite green dye
(Abukhadra et al., 2019). The yield and capacity of this solid
in the elimination of these pollutants and the absence of stud-
ies in the literature on adsorption of phenol on nickel oxide
and the weak capacity of adsorption of phenol on several
adsorbents mentioned in several works (Ba Mohammed
et al., 2019; Cheng et al., 2015; Li et al., 2012; Mandal and
Das, 2019b) have led us to test this solid in the elimination
of phenol in aquatic environments.

In this work, we report the preparation of Nickel Oxide,
and its use in the removal of phenol from aquatic environ-
ments. A structural and textural study by N, adsorption/des-
orption, Fourier Transform Infrared, X-ray diffraction, and
scanning electron microscope was carried out. Phenol removal
potential was evaluated under various working conditions
(temperature, adsorbent mass, initial concentration, stirring
speed and pH), kinetic and thermodynamic process study were
carried out to determine the nature of the process. The interac-
tion between the solid and the liquid was studied by the char-
acterization after the adsorption of phenol. The most
important part of this article is the study of the influence of
the parameters of the nickel oxide particles and the calcination
temperature on the adsorbed quantity.

2. Experimental

2.1. Preparation of the adsorbent

A mass of nickel nitrate dihydrate (Ni(NOs),, 6 H,O) was dis-
solved in a volume of distilled water. To this mixture we
added, drop by drop (7 ml/min) 20 ml, a molar solution of
ammonia (NH40OH). The resulting mixture was heated under
constant stirring at 40 °C for 1 h and then filtered under vac-
uum. The resulting solid is washed several times with distilled
water and dried overnight in an oven at 100 °C. The dried
powder was charred at 200, 300, 400 and 500 °C for 3 h
(Dehbi et al., 2019).

2.2. Characterization of oxide

DRX: Diffraction of X-rays (DRX) diagrams were obtained
using a diffractometer X — PERT MPD — PRO-powder for
X-rays with a Monochromator to diffracted beam and CuKa
radiation f (A = 1.5406 A). The voltage was 45 kV and the
intensity was 40 mA. The angle 20 was scanned between 4°
and 30°, and the counting time was 2.0 s at each corner step
(0.02°).

FTIR: the Fourier transform infrared (FTIR) was carried
out using a device (Shimadzu, JASCO 4100). In the range of
400 cm™' to 4000 cm ™.

SEM: the observation with the electron microscopy scan-
ning (SEM) has the advantage to allow us to visualize surfaces.
scanning electron microscope (SEM) images were obtained by
a Brand EIF Quanta 200 device of a spectroscopy x-ray X
(EDX).

BET: the textural property of solid was determined by the
Adsorption/Desorption of N, in the temperature — 196 °C.
In the calculations of the textural parameters using the BET
(Bruner, Emet and T eller) method. The N, adsorption mea-
surements were made using a Micromeritics ASAP 2010.

2.3. Determination of pH of the zero charge point pHzcp

The pH of zero charge point of nickel oxide is determined by
following the consumption of important ions potential H™
and OH™ (i.d.p) by the various sites of the surface. Indeed,
we used the potentiometric method of volumetric titration. a
titration cell is filled with 100 ml of electrolyte NaCl concentra-
tion 107*M and a mass of 625 mg of solid. Before starting the
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titration procedure, it is essential to let set for one night to
avoid the influence of the aging of the solid on the pH of the
solution. The titling is as follows: 0.5 ml of HCI (0.5 M) is
added to the solution of NaCl, then added 50 ul piecemeal
of titrant concentration NaOH(0.2 M)in the cell by measuring
the pH for each volume added. Blank titration is done in the
same way as in the presence of the solid with the same concen-
tration of electrolyte.

2.4. Adsorption experiments

The adsorption experiments were carried out at constant tem-
peratures (T = 30, 40, 50, 60 °C). With stirring at 300 rpm for
an adsorption period, a phenol solution (20 ml concentration
defined 5*¥107*M) connects to a mass of 0.1 g of NiO. The
pH of the solutions in adsorption is adjusted to the needs of
the experiences by NaOH or HCI. At the end of the reaction,
the mixtures were filtered through a 0.45 um Millipore filters
are filtered, and analyzed by UV/visible. This a residual con-
centration was determined based on a calibration of the spec-
trometer UV unit curve / Visible at A = 270 nm (Shimadzu
UV-1240). The following equation was used to determine the
quantity adsorbed.

G -G

Madsorbant

4, X Vol (1)

Qt is the adsorption capacity (mg / g), CO is the initial con-
centration of phenol (mg / L), it is the residual concentration
of phenol (mg / L), m is the mass of adsorbents used (g) and
V is the volume of the solution (L) (Dabrowski et al., 2005).

Adsorption experiments were performed at least three times
to examine the repeatability of the results and for verification
of experimental data.

2.5. Isotherms and kinetics of adsorption

The study based on the time of adsorption of a compound on
an adsorbent allows us to examine the influence of contact on
its retention time and determine the kinetic law of reaction. In
this view, two models have been used to describe the mecha-
nism of the kinetics of adsorption of phenol on Nickel oxide,
the pseudo-premier order (Eq. (2)) and the pseudo-second-
order (Eq. (3)) (Li et al., 2012). The adsorption process takes
place in several stages, including outreach, broadcasting intra-
particulaire and effective adsorption on the surface. The intra-
particular diffusion model (Eq. (4)) is used to adjust the
experimental data in order to reveal the step speed control in
the process of adsorption of phenol. Creating an isotherm of
phenol on solid adsorption requires the determination of the
amount adsorbed from the concentration in the solution to
the balance at a selected temperature. The adsorption isotherm
has been adjusted by the model of Freundlich and Langmuir
model (Santos et al., 2019; Nthunya et al., 2019; Pakuta
et al., 2007). The nonlinear equations of these models are
grouped in Table 1:

The constants and variables indexed in Table 1 are, qe
which represents the ability of adsorption at equilibrium
(mg-g~"); q, is the ability of adsorption at anytime (mg-g~');
and K, is the constant of kinetics of the first order of Lager-
gren (min~!); K, is a constant kinetics of second-order of
Lagergren (g-min~'-mg~"). Kid is the rate constantly of the

Table 1 Isothermal modules of adsorption.
Kinetic models
Pseudo first order Ln(q, — q,) = Ln(q,) — kit )
Pseudo second order qL = q:‘b + qu 3)
Weber and Morris q, = kit + C; (4)
Isotherms models

y i 0,K1.Ce
Langmuir = ﬁ (5)
Freundlich q. = KpC/" 6)
Error Functions
Standard deviation: Aq (%)

intergranular diffusion equation (mg-g”'min~'?); and C
is a constant related to the thickness of the layer limit
(g'mg~'-min~"), it is the concentration of the solution at equi-
librium (mg-L™"); qe is the adsorption capacity of adsorbents
for balance (mg-g~'); q, is the theoretical ability of adsorption
saturated with adsorbents (mg-g~') and K, Kp respectively
are the constants of Langmuir, Freundlich, and n corresponds
to the intensity of adsorption between 1 and 0 (Ba Mohammed
et al., 2019).

2.6. Adsorption thermodynamics

The values of the equilibrium constants K? of the phenol
adsorption on the NiO were determined by the isothermal
model constants (KL or KF). These values were used to calcu-
late the thermodynamic parameters, AG° and AH° using the
following equations (8).

o 1000 K *moleculair weigth of adsorbatex [absorbate]’
. y

K

K? = 1000 K + 94.11 % 1

AG’ = —RTIn(K?) (8)
(200)
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Fig. 1  Nickel oxide diffractogram.
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In these equations, AG® is the change in Gibbs free energy
(kJ-mol™!); AH® is the change in enthalpy (kJ-mol™'); AS® is
the change of enthalpy (J-K~'-mol™"); where K? is the thermo-
dynamic equilibrium constant without dimension. K is the
constant of the best adjusted isothermal model, vy is the
activity coefficient and [adsorbate]® is the standard concentra-
tion of the adsorbate which, by definition, is 1 mol L!
(8.314 J mol K1) (Lima et al., 2019a; Lima et al., 2019b).

3. Result and discussions
3.1. X-ray diffraction
The diffractogram of the Nickel oxide (Fig. 1) shows peaks of

diffraction at 20 = 37.2°, 43.3, 62.9°, 75.4°, and 79.4° could be
assigned to crystalline plans (1 11),(200),(220),(311)and

sharpness and intensity of the peaks show the good crystalline
nature of the prepared sample. No pics due to the or Ni(OH),
were found from XRD, indicating that neither Ni(OH), was
completely broken down into NiO at 500 °C pendant 3 h,
(Behnajady and Bimeghdar, 2014; Saleh et al., 2019).

3.2. Fourier transform infrared

The spectrum corresponding to the charred NiO sample
(Fig. 2) shows bands located at 833, 747, 496,470, 440 and
423 cm™! characterizing NiO. We note also the presence of a
strip to 1388 cm ™' assigned to the vibration of CO, adsorbed
form and which comes from the ambient air. On the same
spectrum, we note the presence of a band to 1640 and
3440 cm~' these bands correspond to the vibration of the
hydroxyl of the water (Khaleed et al., 2017;Lu and
Kawamoto, 2013).

3.3. Adsorption and desorption of N2 BET

To estimate the surface microstructures NiO, isotherms of
adsorption / desorption of nitrogen were carried out, and the
distribution of pore size, respectively, is shown in (Fig. 3).
According to the ITUPAC, the isotherm can be classified as type
IV and behavior of hysteresis H4. The structural results are
grouped in Table 2 (Alali et al.,, 2017; Emamdoust and
Farjami Shayesteh, 2018).

3.4. Scanning electron microscopy SEM

Nickel oxide SEM analysis was conducted to obtain informa-
tion on their morphologies. From a visual observation from

Table 2 Textural properties of NiO.

(2 2 2). All the reflections can be indexed in phase cubic cen- (Sr?lg.fafel)area 2(/;1;1.1115) E{e)imeter of the pore
tered (fcc) with a constant in the network (a): 4.175 A (space £ £
group Fm 3 h m [2 2 5]) (Khaleed et al., 2017), which is con- 3.9310 0.012476 126.9463
sistent with standard data (card JCPDS No. 47-1049). The
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Fig. 3  Adsorption/Desorption of N2 on NiO.
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Fig. 4, we can highlight the following: the pure surface of NiO
Nanopowders consist of grains of irregular shape merged with
each other. The SEM image shows that its surface is made of
lamellar fibers with distinct sticks, Spectra EDX (Fig. 4) con-
firmed the presence of NiO elements. The atomic percentage
of elements composition Ni and O is respectively equal to
43.3% and 56.7% (Kumar et al., 2018; Yang et al., 2018).

3.5. pH of the zero charge point pHzcp

The determination of the pH of the zero charge point is very
important in the adsorption process that gives us information
on the nature of the dominant sites on the solid surface. The
results showed that the variation of pH was dependent to the
volume of added NaOH (Fig. 5).
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The pHpzc or pH of the point of zero charge corresponds
to the pH value for which the net charge of the surface of
the NiO is zero. This parameter is very important in adsorp-
tion phenomena, especially when electrostatic forces are
involved in the mechanisms. The pH of point load zero
(pHpen) oxide NiO is 7.84, this value shows that the surface
is positive in the case of pH < 7.84 and negative in the case
of pH > 7.84. In this work, adsorption of phenol was more
pronounced in the case of positive charges in the
pH < pHpen (7.84) of solid.

3.6. Adsorption of phenol

3.6.1. Kinetics of adsorption

The kinetics of adsorption of phenol on the nickel oxide at dif-
ferent temperatures is shown in Fig. 6. Adsorption was very
fast when the contact duration does not exceed 3 h for all
working temperatures. Indeed, the amounts of adsorption

6 * T=30°C e T=40°C

for oxide were 3.58, 4.50, and 5.29 mg~g’l for 30, 40, and
50 °C respectively. So we can conclude that the adsorbed
amount increased with manner dependent on the tempera-
ture’s increase. This may suggest that the process is endother-
mic (Makrigianni et al., 2015; Luo et al., 2015). This quantity
adsorbed and the removal efficiency of this pollutant is very
important in comparison with other works of literature
(Ioannou and Simitzis, 2009; Abdelkreem, 2013; Kong et al.,
2020), this property is essentially dependent on the structural
and textural properties of this solid.

The experimental data are used by several ways to deter-
mine the model of the kinetics of adsorption of phenol on
Nickel oxide. In the case of liquid/solid contact, several models
have been proposed by Kannan et al, (equ2) and Ho and Coll
(equ3) and broadcast intraparticulaire (equd4) model can be
applied to explore the progress of adsorption (Sheela and
Nayaka, 2012). Modeling of experimental data by linear forms
of kinetic models is presented in Fig. 7 (Hank et al., 2014).

T=50°C

.......... PR T
I T * .

T
100

T
150

T T T
200 250 300

t(min)

Fig. 6 Kinetics of adsorption of phenol on NiO.

* 30°C x 40°C

T T i T T T i T I T T T
0 50 100 150 200 250 30
t (min)

50 °C
70

60 -

t/qt(min.g/mg)
8 8 &8 8

-
o
|

T T T L
0 50 100 150 200 250 300
t (min)

Fig. 7 Modeling of the kinetics of adsorption of phenol.
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According to Table 3, the correlation coefficients calculated
from modeling the adsorption kinetics of phenol on nickel
oxide are very close to unity for the pseudo-second-order
kinetic model than the pseudo-First order model and the the-
oretical adsorption capacities are closer to those obtained
experimentally for the model pseudo-second order. This indi-
cates that the experimental results of adsorption of phenol
on the adsorbent are well described by the second-order kinetic
model. The low values of the kinetic constant k, showed that
the adsorption was rapid (Pirmoradi et al., 2017).

Fig. 8 shows the variation of qt in function t'/2. In this Fig-
ure, it should be noted that the adsorption process is divided
into two stages, indicating that the complex adsorption process
is controlled by several mechanisms. The original intercept val-
ues C are not equal to zero according to the values of Table 4,
which shows that the step of controlling the adsorption rate is
not only the spread of the pores but also the dissemination of
the outer layer.

We can conclude that this model has two steps in the
adsorption of phenol on the oxide NiO, the first step has been
attributed to the interactions of the molecules of phenol with

Table 3 Kinetic parameters for adsorption of phenol on NiO.

the sites available on the surface of NiO, while the second stage
is penetration gradually of the adsorbent in the pores of the
adsorbents in which broadcasting intraparticule becomes
slower due to her weaken concentration (Bhatnagar et al.,
2010; Gergel and Gergel, 2007).

The values of kiq, C and R? are given in Table 4. Indeed,
intraparticular diffusion model showed a better representation
of the data when compared with the pseudo-first-order model.
the R? values of the intraparticular distribution model were
lower, suggesting that the removal of phenol from an aqueous
solution should be closely related to the initial phenol
concentration.

3.6.2. Calculation of activation energy

The adsorption activation energy of phenol on NiO can be cal-
culated from the kinetics data, performed at working temper-
atures. Knowing the values of the second-order rate constants
gives a possibility of calculating Ea using the linearization of
the following Arrhenius relation:

E,
RT

Lnk, = LnA —

T °C qads (mg-g~ ") Lagergren pseudo First order Ho and Col pseudo second-order
K(mn'") qe(mgg!) R Aq(%) Ky (gmg 'min"")  Qe(mgg!) R’ Aq(%)
30 3.58 0.031 3.575 0.98 0,6751 0.010 4.027 0.999 0.844
40 4.50 0.039 4.424 0.98 0.6004 0.011 4.903 0.995 0.496
50 5.29 12.244 4.724 0.818 0.5879 0.015 5.591 0.996 0.316
54 6 7 -
30°C 40°C S0°6
4
‘Tm |
533
£
T
2
14
o977 770 T 77T T
0 2 4 6 8 10121416 0 2 4 6 8 10121416 0 2 4 6 8 10 12 14 16
t""?(min) t""?(min) t""?*(min)
Fig. 8 Intraparticular diffusion model of phenol on NiO.
Table 4 Parameters of the intraparticle scattering model.
T (°C) Step 1 Step 1
K,d (mg-g "min~") Cl R? Kod (mg-g~"min~") C, R?
30 0.3475 0.11 0.9955 0.6668 2.74 0.7846
40 0.43 0.28 0.981 0.085 3.40 0.7846
50 0.58 0.51 0.989 0.078 429 0.786
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with: k2 (gmg~"min~"): constant speed of the pseudo-second-
order; A (min~"): pre-exponential factor or frequency factor;
Ea (kJ-mol™!): activation energy; R (8,314 Joule-mole™ . K )
perfect gas constant; T (K): adsorption temperature.

Fig. 9 shows obtaining a right according to the Arrhenius
relationship. The energy of activation deducted from the slope
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, .
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Fig. 9 Variation of Ln (k») according to 1/T(K ™).

104

30°C

—_
o
B4
£
=
=
<3
2
*
*
0 T T T T T J
0 200 400 600 800 1000
Ce(mglL)
“1  50°C
8 4
* *
— *
o
B 5
£
=
=3
4
2 *
*
0 T T T T T d
0 200 400 600 800 1000
Ce(mg/L)

Fig. 10

of this line is Ea = 34.77 kJ-mole~'. This last value indicates
that the adsorption process and fast with a low potential
energy constraint

3.6.3. Phenol adsorption isotherm

The adsorption isotherm models are shown in Fig. 10. the val-
ues of the squared correlation coefficients obtained show that
they are higher in the case of the Langmuir model (Table 5),
and therefore in that of phenol. The adsorption on NiO is done
on energetically homogeneous sites probably forming a mono-
layer, which reinforces the validity of the Langmuir model
based on the absence of interactions between entities adsorbed
on sites of a similar nature. An important remark on the values
of Kr and Ky an increase as a function of the temperature
which confirms the endothermic nature of the adsorption
phenomenon

3.6.4. Thermodynamic study of adsorption of phenol

Adsorption is a phenomenon that can be endothermic or
exothermic by absorbent material and the nature of the
adsorbed molecules. The study of the effect of temperature
on adsorption has been performed to determine the thermody-
namic settings such as the free energy change (AG °), the vari-
ation of enthalpy (AH®) and the variation of entropy (AS °).
Eq. (8) was used for this analysis, By tracing the equation of
Van’t Hoff, In (KS) in terms of 1/T (Fig. 11), it determines
the values of the previous sizes that are listed in Table 6

104

40°C
84
6
)
=
£
= 4
<)
24
*
0 T T T T T )
0 200 400 600 800 1000
10 - Ce(mglL)
60°C
84
_
O 6
2
[<]
£
=
<3

T T T T 1
0 200 400 600 800 1000

Ce(mg/L)

Isotherm adsorption of phenol on NiO at different temperatures with nonlinear regression of Langmuir and Freundlich models.
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Table 5 The model parameters for adsorption of phenol on NiO.

T (°C) Langmuir

Freundlich

R? Kp (L-mg™h

Qp (mgg ") R?

Kp (mgg™") 1/n

30 0.962 0.02

40 0.985 0.045
50 0.95 0.059
60 0.96 0.2113 8.52

6.558
7.557
8.519

0.73 1.41 0.22
0.797 1.84 0.185
0.616 2.448 0.189
0.77 3.80 0.13

10,0

T T T
3,10 3,245 3,20 3,25 3,30

1000*1/T(K™1)

Fig. 11  Variation of Ln (Kg) in terms of 1/T.

Table 6 Thermodynamic parameters for adsorption of phenol
on NiO.

TEC) AS° (K “mol™!) AH° (kImol)) AG° (kJ-mol™')
30 266.6 60.41 22019
40 ~22.85
50 ~25.51
60 —28.17

(Gupta and Balomajumder, 2015). The adsorption isotherm of
phenol on nickel oxide is written by the Langumiur model so
the equilibrium constant is equal to:

Kg = 1000 * Ky *94.11 1

Negative values for the free energy AG indicate the feasibil-
ity of the process of adsorption and its spontaneous nature.
This can also be noted from the Table, that the increase in tem-
perature is accompanied by a decrease in the values of free
energy and an increase in the capacity of adsorption. We can
say that a rise in temperature leads to a spacing between par-
ticles of oxide, and therefore a greater diffusion of molecules of
phenol or the redistribution of energy between the phenol and
Nickel oxide (Marques et al., 2015).

Positive values of enthalpy AH for the retention of the phe-
nol process confirm the endothermic process nature, while pos-
itive values of entropy AS reflect the good affinity of phenol to
the oxide (Mandal and Das, 2019a; Al-Malack and Dauda,
2017).

3.6.5. Initial concentration effect

Fig. 12 shows the evolution of the adsorbed quantity of phenol
by nickel oxide according to the contact time with different ini-
tial concentrations (1073, 5% 1074 107 M). it was seen that
the quantity of adsorbent attached to the material increases
with concentration. In fact, the increase in concentration
induced the elevation of the driving force of the concentration
gradient, thus increasing the spread of the particles in solution
across the surface of the adsorbent (Ardejani et al., 2008). The
results of elimination of the phenol on the Nickel oxide shows
an important efficiency, with returns exceeding 95%, these
results offer a promising future in the use of this solid in the
treatment of waste water of the tanneries and in the depopula-
tion of the rejections oil mills.

3.6.6. Effect of pH on the adsorption of phenol

The increase in the pH slightly diminishes the ability of
adsorption of phenol. Indeed adsorption to balance capabili-
ties are respectively 4.49 mg-g ~ ! for a pH = 3, 5, and 1,
45 mg-g~' mg for a pH = 10, 7, this can be explained by
the fact that to the basic state (pH > pHpcn), the dominant
load in the surface of the adsorbent is negative which reduces
the adsorption of the phenolates carrying the same load (Hank
et al., 2014; Wang et al., 2015). The acidic state, the positive
charge is dominant on the surface of the adsorbent and thus
a significantly high electrostatic attraction between the positive
charges of the surface of the adsorbent and the negative
charges of the phenolates formed which promotes the adsorp-
tion (Abdelwahab and Amin, 2013; Liitke et al., 2019).

3.6.7. Effect of the mass of adsorbent

These curves (Fig.14) show that the adsorbed quantity
decreases with mass (Fig. 13). Indeed, for a mass of 0.1 g,

*  10*M x 5%0*M *x 10°M
—% % * * *
o
g’ g kS * *
5

100 150 200 250 300
t(min)

Fig. 12 Initial concentration effect.
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Fig. 14 The mass effect of adsorbent on the adsorption of
phenol.

the adsorbed amount of phenol is of the order of 3.76 mg-g~ ",

while for a mass of 1 g is 0.1247 mg-g~". These results can be
explained by the fact that the adsorption sites are more acces-
sible to the weak masses of nickel oxide (Mandal and Das,
2019a).

3.6.8. Stirring speed effect

According to the Fig. 15, it can be observed that the adsorbed
quantity varies according to the stirring speed until it reaches
optimum speed.

3.6.9. Effect of calcination temperature

Of after the Fig. 16 it can be seen that the quantity adsorbed by
the solid calcined at 200 °C is higher in comparison to the
other quantities adsorbed by other solid calcined at 300 °C,
400 °C, and 500 °C. These results can be explained by the
structural and textural effect on the solids. in short, the calci-
nation temperature increases the crystallinity of solid increases
interiane a diminution of the specific surface

4
*

o

o 3 *

E *

o

2 . . . . r . T . . \
200 400 600 800 1000
stirring speed (rpm)
Fig. 15  Effect of the stirring speed.

Diagrams of rays X of Nio (Fig. 17) have indicated that
they have a cubic structure. All the reflections can be indexed
in phase NiO centered cubic (fcc) with a constant in the net-
work (a): 4.175 A (space group Fm 3 h m [2 2 5]) (Khaleed
et al., 2017). Note that we can attract the existence of peaks
or (OH), in the solid calcined at 200 °C. from the Scherrer rela-
tion (N) we can determine the particle diameter of the solids.
The average grain sizes (d) of the films were evaluated
(Behnajady and Bimeghdar, 2014).

0.94% )
" cos(0) * B

A, 8 and B are the wavelength of x-rays (1.54 (A), the corner of
Bragg diffraction and the width of stripe to half the maximum
of (0-0-2) maximum respectively around 38.6 and 43.28°. The
average size of grain of our samples is 15.53, 16.41, 26.32,
35.5 nm respectively for annealed samples at 200 °C, 300 °C,
400 °C and 500 °C, which indicates that the size of the particles
increases with the increase of annealing. We conclude that the
quantity adsorbed is poor according to the diameter of particle
more calcination temperature increases, the larger the diameter
of particle increases more the quantity adsorbed is reduced. the
results of this effect on the quantity adsorbed and the efficiency
of elimination of this solid can justify the mechanism for fixing
phenol molecules on the solid

3.6.10. Mechanism of adsorption of phenol

a. Etude par FTIR

In order to understand the mechanism of phenol adsorp-
tion on nickel oxide, solid FTIR analyses were performed
before and after contact with the phenol solution. The compar-
ison of the NiO FTIR spectra before and after the phenol
adsorption (Fig. 18) shows no appearance and disappearance
of the bands in the virgin solid spectrum. The fact observed
is the change in the intensity of certain absorption bands.
Indeed, the bands characterizing the vibration of the OH
hydroxyl groups (3436, 1633 and 1338 cm™") show a significant
decrease in intensity as a function of the reaction time, this
decrease in the OH bands shows that the fixation of phenol
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ce do this in a way of catalyzed fission of the OH group of the
hydroxyl and an adsorbed phenoxy radical (Jiang et al., 2020).

the surface of the adsorbent and negative charges of pheno-
lates formed (1).

OH + H,0 . ®>0' + H_;O+

This indicates that the phenol molecules interact with the oxy-
gen of the oxide groups and OH phenol groups, indicating that
the phenolate ions were adsorbed on the NiO particles by weak
bonds, by chemical interaction which is in agreement with the
works of Seyedehsara and these collaborators (Mosallanejad
et al., 2016).

b. XRD study

Fig. 19 shows the XRD profiles of Nickel Oxide before
and after the adsorption of phenol. It can be noted that
there is a disappearance of the main lines of the adsorbent
12.87, 25.89 and 33.07° with the conservation of the main
lines after heat treatment of solid after the adsorption is
observed the crystal structure of oxide before contact. It
can be concluded that the fixation of the phenol molecule
on nickel oxide is done at specific sites. The structural
change of nickel oxide after the adsorption of phenol con-
firms that there are specific interactions between the adsor-
bate and the adsorbent.

Several mechanisms such as hydrophobic interaction, the
hydrogen bond, and electrostatic interaction may be involved
in the adsorption of phenol (Kong et al., 2020). In our case
we can talk about three stages of the reaction of adsorption.
First, we know that the State acid, the positive charge is dom-
inant on the surface of the adsorbent and thus a significantly
high electrostatic attraction between the positive charges of

NiO
4,5 NiO NiO after 180min of contact

NiO after 30min of contact

NiO calcined after adsorption
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Fig. 19  NiO diffractograms before and after adsorption.

On the other hand, dissociated phenolic anions tend to
interact with cations on the external surface of the oxide by
interaction. The characterization data by infrared to transform
Fourier after adsorption showed a signficative decrease in the
intensities of the hydroxyl carterise bands which confirms the
clearance between OH and a phenoxy (phenolate) by the
hydrogenated layer. in addition, the results of the effect of
the calcination temperature on the adsorption quantity show
a significant increase with the decrease in temperature (effect
of solid OH). The KF values (Freundlich constant) (Table 3)
are increased when the temperature increases from 30 °C to
60 °C, in addition, the value AH = 60.41 Kj / mole indicating
that the phenol adsorption processes involve a reaction
endothermic and chemical in nature. We can conclude from
the results of the structural characterizations (DRX, FTIR)
and experimental data of isothermal adsorption kinetics that
the mechanism proposed in this system of adsorption of phe-
nol on nickel oxide is i, chemical teractions between NiO
and phenol.

4. Conclusion

In conclusion, the nickel oxide prepared by the precipitation
method showed an efficiency for the recovery of phenol. The
adsorption was very fast with a time not exceeding 3 h and
an increase in the amount adsorbed with temperature, kineti-
cally follows the pseudo-second-order model, with an activa-
tion energy of 34.77 kj-mol~'. The isothermal adsorption of
phenol on NiO was written by the Langmuir model. The ther-
modynamic results confirmed spontaneous and favorable
adsorption of phenol in NiO. The results of the structural
characterizations DRX, FTIR before and after the adsorption
and the experimental data of the isotherm and the adsorption
kinetics showed that the mechanism proposed in this system of
adsorption of phenol on nickel oxide is chemical.
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