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A B S T R A C T   

Hepatocellular carcinoma (HCC) is a major global cause of carcinoma-related fatality. The inhibition of tubulin 
polymerization holds significant potential in the development of cancer drugs. In our study, we synthesized a 
novel pyrrolidine-2,5-dione derivative (compound 8) that exhibited potent anti-HCC activity (IC50 value of 
2.082 μM) against human HCC HepG2 cells. Moreover, compound 8 significantly suppressed the HepG2 cell 
multiplication, and triggered G2/M phase arrest of HepG2 cells and their apoptosis. Further mechanistic in-
vestigations revealed that compound 8 suppressed tubulin polymerization by directly binding to the colchicine 
binding site of β-tubulin. Additionally, compound 8 significantly inhibited tumor growth with low toxicity in 
nude HepG2 tumor-bearing mice, achieving an approximate inhibition rate of 45.73 %. Therefore, compound 8 
represents a promising pharmaceutical candidate for HCC management.   

1. Introduction 

Apart from being a primary contributor to mortality, cancer presents 
a significant challenge to extending life expectancy worldwide. Hepa-
tocellular carcinoma (HCC) stands out as one of the most prevalent 
cancers globally, posing a substantial healthcare burden. Primary he-
patic cancer ranks as the sixth most frequently diagnosed cancer and the 
third leading cause of carcinoma-related deaths worldwide (Sung et al., 
2021). Due to late-stage diagnoses, the 5-year survival rate for HCC is 
less than 5 % among patients with unresectable conditions (Sun and 
Sarna, 2008). This underscores the need for innovative and resource 
efficient solutions, as transplantation is often not feasible. Given these 
circumstances, it becomes imperative to identify novel anticancer agents 
to enhance treatment response and survival in HCC patients. Microtu-
bules as chief cytoskeletal components, play crucial roles in various 
cellular processes, including intracellular trafficking, structural support, 
DNA segregation (Goodson and Jonasson, 2018), spindle formation, 
apoptosis, and intracellular transportation (Guggilapu et al., 2017). 
Consequently, microtubules have long been considered a promising 
target for the development of anticancer agents (Ho et al., 2019). 

Colchicine-binding site inhibitors are particularly advantageous due to 
their substantial bioavailability. In the past decade, numerous tubulin 
polymerization inhibitors have been discovered as potent anticancer 
agents (Ghawanmeh et al., 2018). Currently, inhibitors such as 
AVE8062, BNC-105p, CA-4P, and CKD-516 are undergoing clinical trials 
for anti-carcinoma (Li et al., 2018). 

In recent years, pyrrolidine-2,5-dione has emerged as a promising 
scaffold with potent antitumor activity for the development of anti-
cancer agents in medicinal chemistry. As illustrated in Fig. 1, 
pyrrolidine-2,5-dione derivative 1 exhibited excellent antiproliferative 
activity (IC50 = 0.78 µM) against MCF7 cells by inhibiting the anti-
apoptotic protein Bcl-2 (Tilekar et al., 2020). Pyrrolidine-2,5-dione de-
rivative 2 displayed high cytotoxicity against human breast 
adenocarcinoma cell lines by inducing ROS production for a potent 
anticancer effect (Han et al., 2016). Pyrrolidine-2,5-dione derivative 3 
demonstrated antiproliferative effects (IC50 = 1.58 µM) against cervical 
carcinoma HeLa cells (Milosevic et al., 2017). Pyrrolidine-2,5-dione 
derivative 4 exhibited anti-proliferative activity against non-small cell 
lung cancer, leukemia, and renal carcinoma cells (Luzina and Popov, 
2014). 
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Building on our prior research (Fu et al., 2018), we identified the 
tertiary amide moiety as a promising scaffold for designing tubulin 
polymerization inhibitors. Consequently, we designed and synthesized a 
novel pyrrolidine-2,5-dione derivative (compound 8) containing a ter-
tiary amide moiety. Our findings indicate that compound 8 significantly 
suppressed HepG2 cell proliferation and induced G2/M phase arrest in 
HepG2 cells. Furthermore, compound 8 upregulated apoptosis in HepG2 
cells. Through immunofluorescence, EBI assays, and molecular docking, 
we demonstrated that compound 8 suppressed tubulin polymerization 
by directly binding to the colchicine binding site of β-tubulin. Impor-
tantly, compound 8 exhibited potent efficacy in combating hepatoma in 
vivo. Thus, compound 8 represents a promising drug candidate for 
managing HCC. 

2. Materials and methods 

2.1. Reagents, antibodies, and drugs 

DMEM (10–013-CV), FBS (35–010-CV), PBS (21–040-CV), 0.25 % 
trypsin-EDTA (25–053-CI), and penicillin–streptomycin mixture buffer 
(30–002-CI) were supplied by Corning Life Sciences (NY, USA). Assay 
kits for cell cycle (C1052) and apoptosis (C1062L) were products of 
Beyotime Biotechnology (Shanghai, China). Hoechst 33258 (B2883) and 
Cell Counting Kit-8 (CCK-8, BN15201) were supplied by Biorigin (Bei-
jing, China). DMSO (purity = 99 %, V900090) and enhanced chem-
iluminescence (ECL, RPN2232) were separately procured from Sigma 
(MO, USA) and GE Healthcare (USA). CDCl3 was purchased from 
InnoChem, China. The β-Actin (sc-47778) antibody was obtained from 
Santa Cruz Biotechnology (USA). PARP (9532 T), Caspase-7 (9494S), 
Caspase-9 (9504 T), and cleaved Caspase-8 (8592 T) were products of 
Cell Signaling Technology (MA, USA). β-Tubulin (BN20622) and DAPI 
(BN20295) were purchased from Biorigin (Beijing, China). EBI (HY- 
34477) and colchicine (HY-16569) were obtained from MedChemEx-
press Company (NJ, USA). Ki67 rabbit monoclonal antibody (AF1738) 
and TUNEL (C1098) were products of Beyotime Biotechnology 
(Shanghai, China). 

2.2. Cell culture 

The human hepatoma cell line HepG2 was obtained from the 
American Type Culture Collection (Manassas, VA). The cells were 
cultured in DMEM containing 10 % FBS and 1 % penicillin/streptomycin 
at 37 ◦C and 5 % CO2. 

2.3. General procedure for the synthesis of compound 6 

A 15-mL N,N-dimethylformamide solution containing 1-(chlor-
omethyl)-4-methoxybenzene 5 (12 mmol) and pyridine (10 mmol) was 
reacted with 3,4,5-trimethoxyaniline (10 mmol) at 60 ◦C. After 9 h of 

agitation, water and dichloromethane were added to dilute the reaction 
mixture. The organic layer was washed with water and dried with 
anhydrous magnesium sulfate. The system was then concentrated to 
yield crude product 6 without purification. 

2.4. General procedure for the synthesis of compound 7 

Crude product 6 (5 mmol) was added to a 10 mL acetone solution 
containing chloroacetyl chloride (7 mmol) and potassium carbonate 
(3.5 mmol) at ambient temperature. After 5 h of agitation, the mixture 
was filtered, and the system was concentrated to provide crude product 
7 without purification. Compounds 6 and 7 were previously reported by 
(Fu et al., 2018). 

2.5. General procedure for the synthesis of compound 8 

A solution of crude product 7 (2 mmol) was mixed with potassium 
hydroxide (2 mmol) and pyrrolidine-2,5-dione (2.5 mmol) in acetoni-
trile (8 mL). After 8 h of reflux agitation, the system was washed with 
brine and water, dried with anhydrous magnesium sulfate, filtered and 
concentrated. The residue was purified by column chromatography 
(petroleum:ethyl acetate = 9:1) to obtain the target compound 8. The 
NMR and MS data supporting the structure of compound 8 are listed in 
the Supporting Information. 

2.5.1. 2-(2,5-Dioxopyrrolidin-1-yl)-N-(4-methoxybenzyl)-N-(3,4,5- 
trimethoxyphenyl) acetamide (compound 8) 

Yield: 47.2 %, white solid, m.p: 164–166 ◦C. 1H NMR (400 MHz, 
CDCl3) δ 7.04 (d, J = 8.6 Hz, 2H), 6.74 (d, J = 8.6 Hz, 2H), 6.19 (s, 2H), 
4.69 (s, 2H), 3.98 (s, 2H), 3.77 (s, 3H), 3.71 (s, 3H), 3.67 (s, 6H), 2.72 (s, 
4H). 13C NMR (100 MHz, CDCl3) δ 175.75, 164.03, 158.14, 152.73, 
137.06, 134.88, 129.48, 128.02, 112.76, 104.74, 59.93, 55.23, 54.27, 
51.90, 39.29, 27.28. HRMS (ESI): [M + H]+ calcd. for C23H27N2O7: 
443.1813, found: 443.1787. 

2.6. MTT assay 

After preparing HepG2 cells as single-cell suspensions, they were 
adjusted to a density of 3.5 × 104 cells/mL and plated onto a 96-well 
microplate, with 100 µL per well. Compound 8 was administered at 
various doses (0, 0.5, 1, 2, 4, and 8 µM). At 12, 24, and 48 h after drug 
treatment, MTT (10 µL) was added to each well, followed by a 3-hour 
incubation of the microplate at 37 ◦C under light-shielded conditions. 
Then, the MTT solution was discarded, and each well was treated with 
DMSO (150 µL). A microplate reader (PerkinElmer EnSpire, USA) was 
used to measure the 490-nm absorbance (Chen et al., 2020). 

2.7. Flow cytometry for apoptosis analysis 

HepG2 cells (4 × 105 cells/well) were seeded onto a 6-well micro-
plate at an appropriate density and allowed to adhere. Different con-
centrations of compound 8 were added to subject the cells to an 
additional 48-h incubation. HepG2 cells were then transferred to an EP 
tube and centrifuged for 5 min at 1000 rcf and 4 ◦C. The cells were 
resuspended in PBS solution and centrifuged again under the same 
conditions for 5 min. After discarding the supernatant, each sample tube 
was treated with 1 × binding buffer (200 µL), Annexin V-FITC (2 µL), 
and propidium iodide (PI, 2 µL). The mixture was gently mixed and 
incubated for 15 min at room temperature in the absence of light, fol-
lowed by flow cytometric analysis (BD FACSCantoII, USA) of the cell 
apoptotic rate using FlowJo software (Ouyang et al., 2023). 

2.8. Flow cytometry for cell cycle analysis 

HepG2 cells (4 × 105 cells/well) were plated onto a 6-well micro-
plate and allowed to attach. After 12 h of cell starvation, compound 8 

Fig. 1. Pyrrolidine-2,5-dione derivatives with antiproliferative activity.  
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was diluted to a concentration of 2 µM and applied for 48 h. The next 
step involved collecting cells into a 2 mL EP tube and centrifuging for 5 
min at 1000 rcf and 4 ◦C. After resuspending cells in 70 % anhydrous 
alcohol, the tube was placed overnight in a –20 ◦C freezer for fixation. 
Following fixation, the tube was again centrifuged for 5 min under the 
same conditions, followed by discarding the supernatant. The prepara-
tion of PI staining solution was carried out following the relevant pro-
tocol. Each sample was prepared with staining buffer (0.5 mL), 20 × PI 
staining solution (25 µL), and 50 × RNase A (10 µL). Cells in each tube 
were stained with the staining solution (0.5 mL), which was mixed 
slowly and thoroughly and then incubated for 30 min at 37 ◦C in the 
absence of light. Finally, the role of compound 8 in the HepG2 cell cycle 
was examined by flow cytometry (Tian et al., 2023). 

2.9. Immunofluorescence assay 

After seeding onto a laser confocal dish, HepG2 cells were treated 
with 3 µM compound 8 for 24 h and then washed with PBS three times. 
The next step involved a 10-minute fixation of cells in 4 % para-
formaldehyde, followed by three washes in PBS. Permeabilization was 
achieved using Triton X-100 (0.5 %) at room temperature for 20 min, 
followed by three washes in PBS. Cells were blocked for 1 h at 37 ◦C with 
1 % BSA in PBS to reduce nonspecific background staining. Overnight 
incubation at 4 ◦C was carried out by adding 200 µL (1:400) of β-tubulin 
primary antibody solution to each dish, followed by three washes of cells 
in PBS for approximately 5 min each time. Next, a 1:200 dilution of 
DyLight 549-conjugated rabbit anti-goat secondary antibody (200 µL) 
was added to each dish, and a 60-minute incubation at 37 ◦C in the 
absence of light was performed. Finally, each dish was treated with 10 
µg/mL DAPI staining solution (200 µL) and incubated for 10 min at room 
temperature in the absence of light to stain the nuclei. A laser confocal 
scanning microscope (Olympus FV1000, JPN) was used to observe and 
photograph the cells. 

2.10. N, N’-ethylenebis (iodoacetamide) competition assay 

After inoculation onto a 6-well microplate, HepG2 cells were incu-
bated for 2 h with compound 8 or colchicine. Thereafter, N, N’- ethyl-
enebis (iodoacetamide) was used to treat the cells for 1.5 h, followed by 
gathering of cells for western blot assessment. 

2.11. Molecular docking 

The 3D structure of tubulin was downloaded from the PDB repository 
(https://www.rcsb.org/). The PDB code of tubulin is 1SA0, and the 
resolution is 3.58 Å. Molecular docking between compound 8 and 
tubulin was performed using Autodocking tools (The Scripps Research 
Institute, California, United States). Molecular docking results of com-
pound 8 were analyzed using Discovery Studio software (Beijing Tekbosi 
Technology Co., LTD, Beijing, China) and PyMoL software (Schrödinger, 
New York, United States). Various binding models, including hydrogen 
bonds, pi-sigma effects, carbon-hydrogen bonds, pi-donor hydrogen 
bonds, and van der Waals interactions, were examined in this work. 

2.12. Western blotting 

HepG2 cells were seeded onto a 6-well microplate, treated with the 
respective pharmaceuticals, and then collected with lysis buffer into 1.5- 
mL EP tubes. The samples were heated at 99 ◦C for 10 min (Hu et al., 
2015). Cell lysates containing equal amounts of protein were separated 
by SDS-PAGE and transferred onto PVDF membranes (Merck Millipore) 
using electrophoresis (Bio-Red, USA). The membranes were blocked 
with 5 % skim milk for 1.5 h and then incubated overnight at 4 ◦C with 
primary antibodies. After three rounds of washing, the membranes were 
incubated with secondary antibody for 4 h at room temperature. Finally, 
exposure analysis was performed. 

2.13. HepG2 tumor-bearing nude mice xenograft model 

Male nude BALB/c mice aged 4–5 weeks were subcutaneously 
inoculated with DMEM (200 µL) containing 2 × 106 HepG2 cells at the 
right posterior dorsal area. Once their tumor volumes reached 50–100 
mm3, the mice were randomized into three groups. The experimental 
group received a daily intraperitoneal injection of compound 8 at 60 
mg/kg, the control mice received the solvent by intraperitoneal 
administration once daily, and the positive group received 0.2 mg/kg of 
colchicine by intraperitoneal injection three times per week. The mice 
were regularly weighed, and their tumor volumes were estimated using 
the formula: tumor volume = (length × width2)/2. The murine experi-
mental protocol adhered to the guidelines for the use and care of animals 
approved by the Ethics Committee of Beijing University of Chinese 
Medicine. 

2.14. Immunohistochemistry analysis 

Immunohistochemical staining was conducted as per a previous 
procedure (Jin et al., 2017). Briefly, major organs or tumor tissues were 
fixed in 4 % paraformaldehyde, paraffin-embedded, stained with he-
matoxylin and eosin (H&E), and then subjected to immunohistochem-
ical analysis for the indicated proteins. 

2.15. Statistics 

The data are presented as the mean ± SEM. Intergroup differences 
were assessed using the two-tailed Student’s t test, while comparisons 
among multiple groups were carried out by bivariate analysis of vari-
ance with Bonferroni post hoc correction in Prism 8 (GraphPad). Sta-
tistical significance was considered at P < 0.05. 

3. Results 

3.1. Chemistry 

The synthetic route of a novel pyrrolidine-2,5-dione derivative 8 is 
illustrated in Scheme 1. 1-(Chloromethyl)-4-methoxybenzene 5 and 
3,4,5-trimethoxyaniline underwent a nucleophilic substitution reaction 
in the presence of pyridine to produce secondary amine 6. In the 

Scheme 1. Reagents and conditions. (a) Pyridine, 3,4,5-trimethoxyaniline, N, N-dimethylformamide, 60 ◦C. (b) Chloroacetyl chloride, K2CO3, acetone, room 
temperature. (c) Pyrrolidine-2,5-dione, KOH, acetonitrile, reflux. 
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Fig. 2. Compound 8 inhibited the growth of human hepatocellular carcinoma HepG2 cells. (A) Cells were subjected to MTT viability assay after treatment with 
compound 8 for 12, 24, and 48 h. (B) Flow cytometric analysis of the effect of compound 8 on cell cycle distribution. (C) Flow cytometric analysis of the effect of 
compound 8 on apoptosis. (D) Immunoblotting analysis of apoptosis-associated protein levels in HepG2 cells treated for 24 h with or without compound 8. *P < 0.05, 
**P < 0.01, ***P < 0.001. 
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presence of potassium carbonate, chloroacetyl chloride reacted with 
secondary amine 6 via acylation to yield tertiary amide 7. Pyrrolidine- 
2,5-dione was then reacted with tertiary amide 7 in the presence of 
potassium hydroxide to obtain target analog 8. The chemical structures 
of 6 ~ 8 were characterized using NMR and MS methods, and all spectral 
data are provided in the Supporting Information. 

3.2. Pharmacological activity 

3.2.1. Compound 8 inhibited the proliferation of human hepatocellular 
carcinoma HepG2 cells 

The anti-proliferative ability of compound 8 against human HCC 
HepG2 cells was assessed through the MTT assay, revealing that com-
pound 8 significantly reduced HepG2 cell viability in a dose- and time- 
dependent manner. The IC50 value of compound 8 in HepG2 cells for 48 

h was 2.082 µM (Fig. 2A). 

3.2.2. Compound 8 induced G2/M phase arrest in human hepatocellular 
carcinoma HepG2 cells 

Cell cycle dysregulation is a hallmark of proliferative disorders, and 
induction of cell cycle arrest is a key mechanism for inhibiting tumor cell 
proliferation by various classes of drugs (Mills et al., 2018, Matthews 
et al., 2022). Flow cytometry analysis of HepG2 cells treated with 2 µM 
compound 8 for 48 h showed that compound 8 induced G2/M phase 
arrest in human HCC cells (Fig. 2B). 

3.2.3. Compound 8 induced apoptosis in human hepatocellular carcinoma 
HepG2 cells 

Flow cytometry analysis revealed that the apoptosis rate increased 
gradually with the concentration of compound 8 administration, and the 

Fig. 3. Depolymerizing effect of compound 8 on the microtubule network. (A) β-tubulin staining by immunofluorescence assay. Scale bar, 20 µm. (B) EBI 
competition assay in HepG2 cells. *P < 0.05. 
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apoptosis rates of HepG2 cells treated with 2 or 4 µM compound 8 for 48 
h were 20.27 %±1.55 % and 50.57 %±1.18 %, respectively (Fig. 2C). 
Furthermore, immunoblotting results indicated that compound 8 
administration increased the protein levels of cleaved caspase− 7, − 8, 
− 9, and − PARP in HepG2 cells (Fig. 2D). In summary, compound 8 was 
capable of inducing apoptosis in human HCC cells. 

3.2.4. Compound 8 inhibited tubulin polymerization in human 
hepatocellular carcinoma HepG2 cells 

Microtubules are built from noncovalent tubulin heterodimers (α- 
and β-tubulin) during a process involving polymerization and depoly-
merization (Perez, 2009). Owing to their crucial function in key cellular 
processes, particularly in mitosis, microtubules are a fascinating target 
for antineoplastic design (Jordan and Kamath, 2007). To investigate the 
effect of compound 8 on microtubules, β-tubulin staining was performed 
for immunofluorescence assessment. The results showed that unlike the 
representative cytoskeletal architecture of untreated cells, whose mi-
crotubules were dense and expanded throughout the cytoplasm, the cells 
treated with compound 8 for 24 h exhibited depolymerized microtu-
bules. Suggestively, compound 8 inhibited the establishment of a 
cellular microtubule network through disruption of normal microtubule 
architecture in HepG2 cells, which proved that compound 8 inhibited 

β-tubulin polymerization in HepG2 cells (Fig. 3A). 
The capacity of small molecules to bind to β-tubulin at colchicine 

binding sites is often evaluated via the N,N’-ethylenebis (iodoaceta-
mide) (EBI) assay. It was discovered that the addition of compound 8 
prevented EBI: β-tubulin adduct formation, leading to an adduct band 
reduction. These results indicated that compound 8 was capable of 
binding to β-tubulin’s colchicine binding site directly (Fig. 3B), implying 
its potential as an innovative inhibitor of tubulin polymerization tar-
geting the colchicine binding site. 

3.2.5. Molecular docking studies of compound 8 
Based on the potent inhibitory effects against tubulin polymerization 

in Fig. 3, we further investigated the binding models of compound 8 
with tubulin (PDB: 1SA0). All results of the molecular docking studies 
are shown in Fig. 4. The surface map and 3D interaction diagram indi-
cated that compound 8 is located in the active pocket of tubulin (Fig. 4A 
and 4B). Two carbonyl groups of the pyrrolidine-2,5-dione fragment in 
compound 8 formed two hydrogen bonds with residues SER178 and 
GLN11 in tubulin (Fig. 4C). The 4-methoxy phenyl ring of compound 8 
formed a pi-sigma effect with ALA12 and formed a pi-donor hydrogen 
bond with SER140. compound 8 formed carbon hydrogen bonds with 
residues THR179, ASN206, GLY142, SER140 and ASP69. It also 

Fig. 4. Binding models of compound 8 with tubulin (PDB: 1SA0). (A) Surface map of compound 8 in tubulin. (B) Compound 8 is located in the active pocket of 
tubulin. (C) Hydrogen bonds of compound 8 with surrounding residues in tubulin. (D) Detailed 2D binding models of compound 8 with residues in tubulin. 
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Fig. 5. Compound 8 significantly suppressed tumor growth with low toxicity in HepG2 tumor-bearing nude mice. (A) The effect of compound 8 on tumor 
growth in nude HepG2 tumor-bearing mice. (B) The effect of compound 8 on the murine body mass. (C) The effect of compound 8 on murine tumor weight. (D) H&E 
staining was performed to examine how compound 8 influenced the murine heart, lungs, liver, kidneys and spleen. (E) Tumor tissues (treated with or without 
compound 8) from nude HepG2 tumor-bearing mice were subjected to TUNEL and immunohistochemical staining. Scale bars = 50 µm. *P < 0.05, **P < 0.01, ***P 
< 0.001. 
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generated van der Waals interactions with residues GLU183, TYR224, 
VAL177, LEU227, ILE171, GLY143, ASN101, GLY144, ALA99, THR145, 
GLY146, GLY10 and GLY13 in tubulin (Fig. 4D). The above results of 
molecular docking studies between compound 8 and tubulin could 
provide a basis for structural optimization to discover more potent 
tubulin polymerization inhibitors. 

3.2.6. Anti-hepatoma efficacy of compound 8 in vivo 
To investigate the antitumor impact of compound 8 in vivo, we uti-

lized human hepatocellular carcinoma HepG2 cells to establish a 
xenograft tumor model in nude mice. As depicted in Fig. 5A and 5C, the 
administration of 60 mg/kg of compound 8 markedly inhibited tumor 
growth in the nude mice. Upon completion of the treatment, adminis-
tration of compound 8 led to an approximately 45.73 % reduction in 
tumor volume in the mice compared to the control group. There was no 
significant change in the body mass of the mice after compound 8 
administration (Fig. 5B). The assessment of tissue cell necrosis was 
performed through H&E staining (Azevedo Tosta et al., 2019). As sug-
gested by the results of H&E staining of the heart, lungs, liver, kidneys 
and spleen, compound 8 displayed no marked toxicity (Fig. 5D). 

3.2.7. Effects of compound 8 on necrosis, proliferation, and apoptosis in 
tumor tissues of nude mice 

Compared with the control group, the tumor tissues of the compound 
8-administered group of nude mice showed more obvious necrosis, and 
cell membrane rupture and cell crumpling were observed in many cells 
from the section staining results (Fig. 5E). Ki67 is a marker closely 
related to proliferation. Immunohistochemical analysis showed a 
decreased number of cells positively stained for Ki67 in the compound 8 
treatment group compared to the control group, suggesting that com-
pound 8 inhibited cell proliferation in the tumor tissues. TUNEL staining 
results indicated that compound 8 treatment promoted apoptosis in the 
tumor tissues of nude HepG2 tumor-bearing mice (Fig. 5E). 

4. Discussion 

Apart from being a primary cause of fatality, cancer is also a critical 
obstacle to prolonging life expectancy in every global nation. Hepato-
cellular carcinoma is one of the most common cancers worldwide and 
has become a main global healthcare challenge (Vogel et al., 2022). It is 
imperative to accelerate the development of anti-liver cancer drugs in 
the clinic. For the past few years, due to desirable anticancer effects, 
pyrrolidine-2,5-dione has become a potential scaffold to develop anti-
cancer agents in medicinal chemistry (Tilekar et al., 2020). In this 
research, we synthesized a novel pyrrolidine-2,5-dione derivative 
(compound 8), which was found to have promising anti-hepatocellular 
carcinoma activity. Therefore, we investigated the anti-hepatocellular 
carcinoma effects of compound 8 and explored its potential mechanism. 

Microtubules are built from noncovalent tubulin heterodimers (α- 
and β-tubulin) during a process involving polymerization and depoly-
merization (Perez, 2009). Owing to their crucial function in key cellular 
processes, particularly in mitosis, microtubules are a fascinating target 
for antineoplastic design (Jordan and Kamath, 2007). The past 10 years 
have seen discovery of plentiful tubulin polymerization inhibitors as 
powerful anticancer agents (Ghawanmeh et al., 2018). Currently, in-
hibitors such as AVE8062, BNC-105p, CA-4P and CKD-516 have been 
under clinical anti-carcinoma trials (Li et al., 2018). Plenty of microtu-
bule inhibitors have been successfully applied to infer microtubule 
functionality, which is accomplished by binding to tubulin subunits 
(Wang et al., 2021, Muhlethaler et al., 2022, Deng et al., 2023). Multiple 
studies have demonstrated the pivotal role of microtubules in the 
regulation of mitotic spindles. Disruption of their function can often 
result in the obstruction of cell mitosis and its arrest, subsequently 
inducing apoptosis (Field et al., 2014, Barreca et al., 2020). The com-
pound millepachine and its derivatives suppressed tubulin polymeriza-
tion and invoked G2/M phase arrest of cells (Yang et al., 2018). The 

novel nature microtubule inhibitor ivalin invoked G2/M arrest in cell 
cycle and, subsequently, induced apoptosis in human HCC SMMC-7721 
cells. Moreover, implication of microtubules in apoptosis mediated by 
Ivalin was noted (Liu et al., 2019). As a microtubule depolymerizer, 
tivantinib impacted the microtubule dynamics via a mechanism, 
invoked a G2/M phase arrest and facilitated apoptosis through both 
extrinsic and intrinsic pathways. It displayed a preference for resisting 
carcinoma growth with pro-apoptotic and anti-proliferative effects 
(Xiang et al., 2015). A novel resveratrol analog, by binding to its cellular 
target tubulin, inhibited tubulin polymerization and disturbed micro-
tubule dynamics during the mitotic process. This led to G2/M phase 
arrest in the cell cycle and ultimately resulted in cell death via the 
intrinsic pathway of apoptosis (Thomas et al., 2016). In this study, 
compound 8 was a newly synthesized compound, and its impact on 
microtubule dynamics remains unknown. We demonstrated that com-
pound 8 located into the active pocket of tubulin by molecular docking 
experiments, which prompted that compound 8 may be a novel anti- 
microtubule agent. To sum up, compound 8 exerted anti-HCC effect 
through inducing cell cycle arrest at G2/M phase and increasing 
apoptosis of HCC cells, which was mediated by directly targeting β-tu-
bulin’s colchicine binding site to suppress tubulin polymerization. 

5. Conclusion 

In brief, a novel pyrrolidine-2,5-dione derivative 8 was designed, 
synthesized, and evaluated for anti-hepatocellular carcinoma effects. 
Compound 8 significantly suppressed the HepG2 cell multiplication 
according to the MTT assay, and triggered G2/M phase arrest and 
apoptosis in HepG2 cells via flow cytometry. Moreover, compound 8 
suppressed tubulin polymerization through directly binding to β-tubu-
lin’s colchicine binding site. Additionally, compound 8 was potently 
efficacious in fighting hepatoma in vivo. Therefore, compound 8 repre-
sents a promising pharmaceutical candidate for the management of 
HCC. 
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