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Abstract The robust principal component analysis-multivariate adaptive regression splines (r-

PCA-MARS) has been applied and verified for analysis of the quantitative determination of Amer-

ican Petroleum Institute (�API) gravity values in crude oils. Seven principal component (PC) scores

using 95.00% variance by principal component analysis (PCA) were applied as inputs in the MARS

model. The calibration and prediction sets were obtained using duplex algorithm for the construc-

tion of the model and the then for the validation of the model. The calibration set (67*7) was used

for the r-PCA-MARS model. The partial least squares regression (PLS-R), and support vector

machine regression (SVM-R) models were utilized for comparison the quantitative value of the

�API gravity in crude oils. In this paper, we also conducted a comparison study of Kennard-

stone (KS) and duplex splitting methods on PLS-R and SVM-R models. The efficiency of the r-

PCA-MARS model was evaluated using coefficient of determination (R2), R2 estimated by gener-

alized cross-validation (R2GCV), root mean square error of calibration (RMSEC), root mean

square error of prediction (RMSEP), and mean absolute error (MAE). The optimal r-PCA-

MARS model uses 32 basis functions to characterize the �API gravity values in crude oils. The cor-

relation coefficients value for calibration and prediction sets were 0.997 and 0.926, respectively. The

RMSEC, RMSEP, MAE, and R2GCV in the piecewise-cubic r-PCA-MARS model was 6.726*10-

13, 0.538, 0.290 and 0.988, respectively. According to the results, the r-PCA-MARS model provided

high efficiency than commonly used regression models for prediction of �API gravity values in crude

oils. The result of this study confirmed that the r-PCA-MARS model is the best model with more

successful than the PLS-R and SVM-R models. It can be concluded that the r-PCA-MARS model is
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an appropriate model for describing the physicochemical properties of crude oil samples in the oil

industry.

� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Crude oil is a fossil fuel and nonrenewable source of energy in the

world. Crude oils are complex compound of saturated and aromatic

hydrocarbons and heteroatoms (Nitrogen, Sulfur, Oxygen). This make

considerable variation in physicochemical properties of crude oil sam-

ples. Investigation different physicochemical properties of crude oils

such as SARA analysis, viscosity, pour point and �API gravity is

important in oil industries. The �API gravity and viscosity as physical

properties of crude oil samples have an important role in determining

the economic value and consumption of crude oil samples (Speight and

Wiley, 2015; Hydrocarbons and Hydrocarbons, 2018; Panda et al.,

2009; Carbognani et al., 2003; Cristina et al., 2018; Ram and Potosı́,

2016; Santos et al., 2014; Rodrigues et al., 2018). The importance of

determining the physicochemical properties of crude oil is very funda-

mental in the oil industry (Fan and Buckley, 2002; Ver et al., 2019;

Ahmed et al., 2010; Riley et al., 2016).

One of the types of crude oil classification is based on �API gravity.

The classification of heavy and light crude oil is based on the �API

gravity value, which is measured as density of the crude oil relative

to water. Classification of crude oils based on �API gravity is shown

as light, medium and heavy. Heavy crude oil has an �API gravity less

than 22.3, the �API gravity value of medium and light crude oils are in

the range of 22.3 and 31.1 and equal to or > 31.1, respectively. Heavy

oils have a high density and light oils have a lower density. In general,

samples with higher �API gravity show an abundance of light hydro-

carbons in their composition, whereas those with lower �API values

present higher levels of asphaltenes and resins. �API gravity is also a

criterion for estimating the price of the crude oil and the derivatives

that may be obtained from the material. Although classification of

crude oils based �API gravity values are acceptable, but in this situa-

tion, some crude oils with same value of �API gravity show different

physical properties. This indicates different chemical properties in

the structure of crude oil. Therefore, it is necessary to provide a high

accuracy method for analysis of crude oil samples. Most of the stan-

dard methods for crude oil analysis have been reported according to

the American Society for Testing and Materials (ASTM), American

Petroleum Institute (API) and Energy Institute (EI). However, the

standard methods are expensive and not environmentally friendly.

Therefore, it is necessary to provide novel analytical methods to

evaluate the properties of crude oil samples. In recent years, there

have been successful applications of spectroscopy associated to chemo-

metrics methods for determination of the properties of crude oil

samples.

In this study, the robust-principle component analysis (r-PCA) in

combination with the multivariate adaptive regression splines (MARS)

method is introduced as an advanced modeling for the determination

of �API gravity in crude oil samples using attenuated total reflection

–Fourier transform infrared (ATR-FTIR) spectroscopy. While special

attention is given to environmental considerations when choosing stan-

dard methods, the proposed method provides a fast and simple tech-

nique. Due to the lack of the need to use toxic solvents and the very

limited need for sample preparation, the proposed method is intro-

duced as a complementary method to the conventional standard and

reference analysis for determining the �API gravity in crude oil

samples.

Although analytical methods (such as mass spectrometry, NMR

spectroscopy) are efficient tool for the structure analysis of crude oils

but them have some disadvantage such as take a long time for analysis,

expensive and not eco-friendly (Borisov et al., 2019; Rakhmatullin
et al., 2018; Filgueiras et al., 2016; Iravani, 2018; Bagheri Garmarudi

et al., 2019; Talpur et al., 2015; Elvira et al., 2019; Brown and

Lynch, 2007). Previously an approach has been reported for determi-

nation and classification of crude oils using partial least square regres-

sion (PLS-R) and support vector machine regression (SVM-R)

(Mohammadi et al., 2020). The present work proposed a quantitative

method for determination of �API gravity in crude oil samples using

ATR-FTIR spectroscopy. The r-PCA in combination with the MARS

method is as an advanced modeling for the determination of �API

gravity in crude oil samples using ATR-FTIR spectroscopy due to

reduce the number of redundant input variables (Friedman and

Roosen, 1995; Samui, 2013; Jekabsons, 2011; Wang et al., 2020;

Mukkamala et al., 2006; Vyas et al., 2021; Pitmann and McCulloch,

2002; Kisi and Parmar, 2016, Friedman, 1991). Although MARS

method has been successfully applied as one of the most outstanding

method for regression in highly nonlinear systems, limited works have

been reported in the field of crude oil samples prediction.

For comparison the result of regression models for determination

of �API gravity value of crude oil samples, we compared the efficiency

of three methods: piecewise-cubic rPCA-MARS, PLS-R and SVM-R

(Rodrigues et al., 2018; Sadrara and Khanmohammadi, 2023; Samui,

2013; Santos et al., 2014; Smola and Schölkopf, 2004; Speight and

Wiley, 2015, Chen et al., 2007, Devrim et al., 2014, Geladi and

Kowalski, 1986, Olivieri, 2018, Parhizkar et al., 2017). The combina-

tion of ATR-FTIR spectroscopy with chemometrics has shown the

ability to analyze crude oil samples. The rPCA-MARS method was

proposed to determine the quantitative value of �API gravities of crude

oil samples to find the best correlation between the chemical structure

of ATR-FTIR spectra of crude oil samples and the �API gravities of

these samples.
2. Material and method

2.1. Chemometrics procedures

Principal component analysis-multivariate adaptive regression

splines (PCA-MARS).
The MARS model as a multivariate regression method,

proposed by Jerome Friedman, is a flexible model in spline fit-

ting that can be used for high dimensional data. The data in
the MARS model are divided into several parts, which are pro-
portional to the spline functions in each part.

The Eq. (1) and Eq. (2) are truncated functions, which are

separated from each other by a so-called knot location.

b�q x� tð Þ ¼ � x� tð Þ½ �qþ ¼ t� xð Þqifx < t

0otherwise

�
ð1Þ

bþq x� tð Þ ¼ þ x� tð Þ½ �qþ ¼ x� tð Þqifx > t

0otherwise

�
ð2Þ

The spline functions describing are b�q x� tð Þ and bþq x� tð Þ.
In the first step, the splines and the knot location are selected
in MARS model that the best describe the response variable.
In a second step, the base functions are assembled into a mul-
tidimensional model, that describe the response. The MARS

model equation is given as follow Eq. (3)

http://creativecommons.org/licenses/by-nc-nd/4.0/
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by ¼ a0 þ
XM
m¼1

amBm xð Þ ð3Þ

where ŷ is the output predicted value for the response variable;

a0 is the constant coefficient; M is the number of base func-
tions (BFs); and am and Bm is the coefficient and base function
Fig. 1 The ATR-FTIR

Fig. 2 Flowchart of the
of observation. The basis functions in MARS model are

obtained using forward/backward stepwise strategy. At first,
in MARS model for each pair of functions the best description
of response is selected. Then, in order to obtain the complex

multivariate model, the new spline function is added step
wisely. For avoiding the overfitting in MARS model due to
of crude oil sample.

chemometrics analysis.



Table 1 Statistical parameters of PLS-R, SVM-R models for

determination �API gravity values in crude oil samples using

different splitting methods.

Model Splitting method R2
cal. RMSEC

PLS-R K-S 0.937 2.208

Duplex 0.944 2.310

SVM-R K-S 0.958 2.006

Duplex 0.988 1.088

Table 2 The basis functions and related equations of the

MARS model.

Number Basis function (piecewise-cubic model)

BF1 BF1 = C (x1|-1, �0.93853, �0.88592,0.40593)

BF2 BF2 = C (x3|+1,0.054162,0.37963,0.6841)

BF3 BF3 = C (x3|-1,0.054162,0.37963,0.6841)

BF4 BF4 = BF1 * C(x2|+1,0.54797,0.73285,1.6174)

BF5 BF5 = BF1 * C(x2|-1,0.54797,0.73285,1.6174)

BF6 BF6 = C(x1|-1,0.40593,1.6978,1.7022) * C(x2|

+1,0.22966,0.36309,0.54797)

BF7 BF7 = C (x1|-1,0.40593,1.6978,1.7022) * C(x2|-

1,0.22966,0.36309,0.54797)

BF8 BF8 = BF3 * C(x4|+10.041262,0.14639,0.46804)

BF9 BF9 = BF3 * C(x4|-10.041262,0.14639,0.46804)

BF10 BF10 = C(x1|+1,1.7614,1.8163,2.6276)

BF11 BF11 = C(x1|-1,1.7614,1.8163,2.6276)

BF12 BF12 = C (x4| +1, �0.25131, �0.22891, �0.041262)

BF13 BF13 = C(x4|-1,-0.25131,-0.22891,-0.041262)

BF14 BF14 = BF12 * C(x3|+1,0.6841,0.98857,1.1534)

BF15 BF15 = BF12 * C(x3|-1,0.6841,0.98857,1.1534)

BF16 BF16 = C(x5|+1,0.29471,0.39079,0.75408)

BF17 BF17 = C(x5|-1,0.29471,0.39079,0.75408)

BF18 BF18 = BF3 * C (x1|+1, �1.3762, �1.299, �1.1451)

BF19 BF19 = BF1 *C (x5|+1, �0.29047,0.19862,0.29471)

BF20 BF20 = BF1 * C (x5|-1, �0.29047,0.19862,0.29471)

BF21 BF21 = BF16 * C(x1|+1,1.7022,1.7065,1.7614)

BF22 BF22 = BF16 * C(x1|-1,1.7022,1.7065,1.7614)

BF23 BF23 = BF13*C (x2|+1, 0.97157,0.096233,0.22966)

BF24 BF24 = BF13 * C(x2|-1,-0.97157,0.096233,0.22966)

BF25 BF25 = BF16 * C (x1|+1, �1.1451, �0.99114,-0.93853)

BF26 BF26 = BF3 * C (x1|+1, �2.0329,-1.4533,-1.3762)

BF27 BF27 = BF3 * C (x1|-1, �2.0329, �1.4533,-1.3762)

BF28 BF28 = BF11 * C(x3|-1, �1.0176,-0.27131,0.054162)

BF29 BF29 = C(x7|-1, �0.40658,-0.079666,0.30303)

BF30 BF30 = C(x4|-1,-0.84129,-0.27371,-0.25131)

BF31 BF31 = C(x2|+1, �0.97157,0.096233,0.22966)

BF32 BF32 = C(x2|-1, �0.97157,0.096233,0.22966)
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excess number of spline functions, the generalized cross-
validations (GCV) parameter is calculated. It is given by the
following the Eq. (4).

GCV Mð Þ ¼
1
n

Pn
m¼1 yi � bfM xið Þ

h i2
1� C Mð Þ

n

h i2 ð4Þ

Where C Mð Þ as a complexity criteria in the model as fol-
lows Eq. (5):

C Mð Þ ¼ Mþ 1ð Þ þ dM ð5Þ
In C Mð Þ equation,M is the non constant basis function and

dM defined as cost for each basis function. Finally, the selec-
tion optimum MARS model is based on evaluation the pre-

dicted parameters such as cross validation or new test set
data. The details about MARS model are given in literature
(Stevens, 1991; Talpur et al., 2015; Taylan et al., 2010;
Thomas and Haaland, 1990; Ahmed et al., 2010; Massart

et al., 1998).

2.2. Sample preparation and ATR-FTIR spectroscopy
measurement

In this study, for construction of regression models 20 different
crude oils samples were used. The �API gravity of the samples
Fig. 3 Plot of coefficient of determination (R2), R2 estimated by generalized cross-validation (R2GCV), mean square error (MSE) and

generalized cross-validation (GCV) versus number of basis functions for piecewise-cubic MARS model.



Table 3 ANOVA results of piecewise-cubic MARS model for �API gravity determination in crude oil samples.

Function STD GCV R
2
GCV #Basis #Params Variables

1 11.228 20.471 0.794 3 3.00 1

2 1.970 15.940 0.840 2 2.00 2

3 23.929 27.324 0.725 2 2.00 3

4 16.190 36.817 0.630 3 3.00 4

5 199.182 26.104 0.738 2 2.00 5

6 1.948 17.311 0.826 1 1.00 7

7 8.821 31.664 0.682 4 4.00 1 2

8 13.370 26.300 0.736 4 4.00 1 3

9 196.929 30.860 0.690 5 5.00 1 5

10 4.781 26.995 0.729 2 2.00 2 4

11 18.797 44.511 0.553 4 4.00 3 4

Table 4 Estimated input variable importance of piecewise-cubic MARS model for �API gravity determination in crude oil samples.

Variable delGCV nSubsets subsRSS subsGCV

1 100.000 31 100.000 100.000

2 36.910 29 35.625 37.337

3 44.685 24 22.972 28.180

4 49.899 24 22.972 28.180

5 31.561 30 40.716 41.454

6 0.000 0 0.000 0.00 unused

7 2.464 14 4.100 6.879
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was measured using the ISO 12185–96 standard. The �API
gravity is computed according to the Eq. (6). In �API gravity

measurement, specific gravity is density of crude oil into the
density of water at 15.6 �C (60 �F), and 1 atm. (Density was
measured using a digital automatic densimeter).

�
API ¼ 141:5

Specific Gravity
� 131:5 ð6Þ
Fig. 4 Plot of main factor effect of independent variables (x1, x2, x3

MARS model for determination of �API gravity in crude oil samples.
The spectral data were accumulated in the range of 800 –
4000 cm�1 by FTIR spectrometer (Nicolet, Madison, WI,

USA), that is equipped with a horizontal zinc-selenide attenu-
ated reflector. The data were acquired using 16 scans and res-
olution 4 cm�1. Fig. 1. shows the ATR-FTIR spectra of crude

oil sample in the range of 800–4000 cm�1. The crude oil
samples were replicated 5 times to achieve enough spectral
data for statistical analysis. In chemometrics methods, when
, x4, x5, x6 and x7) against responses variable of piecewise-cubic



Fig. 4 (continued)
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the number of data is small an approach is to repeat the num-
ber of spectra to obtain enough the number of data for analy-
sis (Ver et al., 2019). In this work, our aim is to investigate the
relationship between chemical structure of crude oil samples

and �API gravity of these samples. The procedure was based
on the �API gravity determination of ATR-FTIR spectra of
crude oil samples.

2.3. Data analysis

At first, all ATR-FTIR spectroscopy measurements were dig-

italized using an Omnic software. Then, data were prepro-
cessed by baseline correction and standard normal variate
(SNV) methods. A main step in construct the calibration
model is to all spectral data divided into two sets. A set of
100 samples were applied. 67 samples were used as the calibra-
tion set and for evaluation of calibration model, 33 indepen-
dent samples were used as the prediction set. The all spectral

data divided by the duplex algorithm. Three different regres-
sion models were performed for determination of �API gravity
value in crude oil samples. The PLS-R and SVM-R as tradi-

tional models were applied using the Unscrambler V-10.5
(CAMO software AS, Oslo, Norway). The rPCA-MARS as
robust model was obtained in MATLAB software.

Piecewise-cubic MARS method regression were performed in
Matlab using the Matlab-file was written by M. Khanmoham-
madi Khorrami. The flowchart of the data analysis shown in

Fig. 2.
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3. Result and discussion

3.1. A comparative study of different splitting methods with

PLS-R and SVM-R models

Data segmentation is an important step for building a calibra-
tion model. This approach consists of dividing the samples into
the calibration and prediction data sets. The calibration set is
used for construction of model and the prediction set applied

for model validation. Splitting the data into calibration and
prediction data sets is technique commonly used in data anal-
ysis. In order to construction calibration model based train

data set and estimate the model efficiency using test data set.
Commonly used methods are the random selection (RS),
Kennard-Stone (KS) and duplex algorithms. The RS works
randomly and the KS works based on Euclidian distance cal-

culation between the samples (Vyas et al., 2021; Wang et al.,
2020; Kennard and Stone, 1969; Reitermanov, 2010). The
duplex algorithm is similar to the KS algorithm but allows

to select both calibration and validation points that are inde-
pendent. The duplex algorithm for calibration model, choosing
the pair of points that are the most distant from each other.
Then, for validation of model, selecting the pair of points

which are farthest apart. Two kind of splitting method were
used in order to comparison the effect of the algorithm used
for training/test splitting on the result of regression models.

The KS and duplex algorithms were applied for comparative
the result of PLS-R and SVM-R models. The result of regres-
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sion models for each calibration model PLS-R and SVM-R

based on splitting method as shown in Table. 1. The root mean
square error for calibration (RMSEC) and the correlation
coefficient (R2) of regression models were calculated. The
RMSE was calculated according to Eq.7. where, Y^

i is the pre-

dicted value by the calibration model and yi is the reference
value of the ith observation. In the mentioned equation, n is
the number of samples in calibration or prediction set.

In this study, the results of SVM-R as a non-linear model
were acceptable for prediction of �API gravity values of crude
oil samples. The RMSEC values using duplex algorithm for

PLS-R and SVM-R were 1.088 and 2.310 respectively.
According to the result that obtained using different splitting
methods, it was found that the result of regression model in

duplex algorithm for calibration set is better than the result
of KS algorithm.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

yi� yið Þ
n

vuuut ð7Þ
3.2. Analyses using rPCA-MARS

An important step in the MARS model is that the number of
observations is greater than the number of variables. In order
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to reduce the number of variables and reduce the size of raw
data, the rPCA model was used. The data were preprocessed
using baseline correction and standard normal variate SNV

method before using for decomposed to obtain PC scores
and rPCA-MARS model. The seven PCs with total explained
variance close to 95% were extracted using rPCA model from

the 100 *1661 data matrix. Therefore, the raw data matrix
from the dimensions of 100*1661 reach to 100*7. The all data
set splitted using duplex algorithm into calibration and predic-

tion sets due to 67*7 and 33*7 dimensions, respectively.
Fig. 5 Three-dimensional graph of interaction effect of variables in p

oil samples.
3.2.1. Analysis of variance (ANOVA)

The r-PCA-MARS model was executed based on piecewise-

cubic algorithm. The BFs in rPCA-MARS model are applied
to obtain the best prediction responses. In order to combine
the different (BFs) to reach the prediction responses and for

avoiding overfitting of model, the infeasible BFs are removed
by backward stepwise in the final rPCA-MARS model.
Fig. 3. show the Plot of coefficient of determination R2, R2

estimated by generalized cross-validation (R2GCV), mean
square error (MSE) and generalized cross-validation (GCV)
iecewise-cubic MARS modeling to determine �API gravity in crude
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versus number of basis functions for piecewise-cubic MARS

models. The optimized model is created in conditions that
the lowest GCV and the highest R2 GCV were achieved. The
final optimum model was selected using 32 BFs. The list of
basis functions for piecewise-cubic algorithm is presented in

Table. 2. The equation of the optimum piecewise-cubic MARS
model due to interaction between basis functions is given by
the following Eq. (8).
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y ¼ 11:918� 1:0211 � BF1þ 47:568 � BF2þ 49:705

� BF3� 127:23 � BF4� 5:2219 � BF5� 5:6335

� BF6� 0:45631 � BF7þ 177:09 � BF8� 49:079

� BF9� 0:58577 � BF10þ 7:7715 � BF11þ 31:782

� BF12� 32:955 � BF13� 476:21 � BF14� 83:359

� BF15þ 1612:8 � BF16� 9:9021 � BF17þ 165:08

� BF18þ 251:77 � BF19þ 49:39 � BF20þ 138:73

� BF21� 583:58 � BF22þ 69:242 � BF23þ 19:762

� BF24� 565:86 � BF25� 159:03 � BF26þ 49:064

� BF27� 5:5348 � BF28þ 13:13 � BF29þ 3:3702

� BF30þ 3:1819 � BF31þ 1:8621 � BF32 ð8Þ
In ANOVA results of rPCA-MARS model, the value of the

standard deviation of the function (STD) and the function

number showed the efficiency of the model. The number of
BFs, R2 GCV and the predictor variables of the ANOVA
result were listed in the Table. 3. Based on ANOVA decompo-

sition, 11 basis factions are presented. In the Table. 4. esti-
mated input variable importance of piecewise-cubic MARS
model for �API gravity determination in crude oil samples

are presented. The delGCV value indicated the relative impor-
tance of a variable. The result showed the input variables of x1
and x4 including maximum of features importance. Using the
delGCV values, the best variable takes the highest value of

GCV equal to 100 and the variable with less important take
a 0 value that it is not used by the MARS model. The nSubsets
value indicates the number of subsets that each variable

included. The variable with more subsets is more important
in model. The value of subsGCV is similar to the value of
subsRSS. However, in subsGCV the GCV and in subsRSS

the residual sum of squares (RSS) were used. The subsRSS
measures the amount of reduction in the RSS for each subset
compared to the previous subset. The variables with larger

reduction value in RSS are more important in construction
of model. The main and interaction effects of independent
variables on response variable can be determined using the
MARS model. Figs. 4 and 5. which provide graphical repre-
Fig. 6 The scatter plot of PLS-R and SVM-R models versu
sentation of MARS model, are considered. Fig. 4. show the
singular effect of independent variables (x1, x2, x3, x4, x5, x6
and x7) on response variable of piecewise-cubic MARS model

and Fig. 5. illustrate 3D graph of piecewise-cubic MARS mod-
eling of �API gravity determination in crude oil samples. In
Fig. 4. the knot locations for (x1, x2, x3, x4, x5, and x7) are

presented.

3.3. The �API gravity determination and comparison the results
of calibration models

PLS-R, SVM-R and piecewise-cubic rPCA-MARS models
were applied to investigate the efficiency of the model in crude

oil samples. These models were used to determine �API gravity
values of crude oil samples. The all ATR-FTIR spectra were
divided in two sets calibration and prediction by duplex algo-
rithm in regression models. The calibration models and predic-

tion sets for each calibration model consisted of 67 and 33
crude oil samples, respectively. The �API gravity value, were
used as reference data for each model. Construction calibra-

tion models, provide a correlation between the ATR-FTIR
spectra as X matrix and the �API gravity as Y. Fig. 6. display
the scatter plot of PLS-R and SVM-R models versus predicted

values of �API gravity in crude oil samples for calibration and
prediction sets, respectively. The calculated values of R2

Cal., R
2-

pred, RMSEC and RMSEP for PLS-R and SVM-R calibration
models are shown in Table. 5. According to the results that

obtained using the PLS-R (R2
Cal. = 0.944, RMSEC = 2.310,

RMSEP = 4.117) and SVM-R (R2
Cal. = 0.988,

RMSEC = 1.088, RMSEP = 2.591) models showed relatively

poor accuracy in estimation of �API gravity values of crude oil
samples in comparison with the piecewise-cubic rPCA-MARS
model. MARS model as a non-parametric regression method

uses two piecewise linear or cubic splines as basis functions
to investigate relationship between the input variables and
the set of responses. The MARS model, a flexible estimation

is performed to approximate the nonlinear relationship
between the input variables and the response variable using
piecewise linear or cubic basis functions. In this study, accord-
ing to the results, the final model was selected based on the
s predicted values of � API gravity in crude oil samples.



Table 5 The result of PLS-R, SVM-R and piecewise-cubic rPCA-MARS models for �API gravity determination in crude oil samples.

Model R
2
cal. R

2
GCV R

2
pred RMSEC RMSEP MSE Number of LVs/scores

PLS-R 0.944 – 0.816 2.310 4.117 – 5 (LVs)

SVM-R 0.988 – 0.860 1.088 2.591 – –

piecewise-cubic rPCA-MARS 0.997 0.988 0.926 6.726*10-13 0.538 0.290 7 (scores)
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piecewise-cubic rPCA-MARS model. Table. 5. presents statis-
tics parameters for investigation the efficiency of calibration

models PLS-R, SVM-R and piecewise-cubic rPCA-MARS.
The R2, RMSEC, RMSEP, MAE, and R2 GCV in the
piecewise-cubic rPCA-MARS model were 0.997, 6.726*10-13,

0.538, 0.290, and 0.988, respectively. The piecewise-cubic
rPCA-MARS model include better predictive performance in
this study. Fig. 7. display the scatter plot of piecewise-cubic

rPCA-MARS model versus predicted values of � API gravity
in crude oil samples. As can be seen in Table. 5. based on
the result that obtained using PLS-R as a linear calibration
model and SVM-R as a non-linear regression model, the

results of SVM-R model were slightly better than PLS-R
model for �API gravity determination, however the robust
model is required. Although MARS method has been success-

fully applied as one of the most outstanding method for regres-
sion in highly nonlinear systems, limited works have been
reported in the field of crude oil samples prediction. The first

advantage of applied method is transferability of proposed
method. This method can be applied to study the other prop-
erties in crude oil samples and validated using conventional
reference analysis. As another advantage of this work, we have

written a comprehensive and intelligent algorithm in M�file/
MATLAB which allows to provide details of the MARS oper-
ation. The two parameters importance evaluation in the

MARS model are denoted as ANOVA decomposition and
delGCV, which are used for interpreting the influence of input
variables to the outputs and description the importance of rel-

ative variables, respectively. We reported the MARS algorithm
parameters including delGCV, nSubset, subsRSS and
Fig. 7 The scatter plot of piecewise-cubic rPCA-MARS model

versus predicted values of � API gravity in crude oil samples.
subsGCV in detail which estimate input variable importance.
In this study, after rPCA where the eigenvectors of a correla-

tion matrix are orthogonal, the MARS algorithm pruned the
less important component using introduced parameters. As a
result, only the useful input parameters were appeared in the

final expression of the MARS model after the forward and
backward pass (Xu et al., 2006; Yang et al., 2005,
Khanmohammadi and Sadrara, 2022).

4. Conclusion

In this study, the determination of �API gravity in crude oil samples

using robust principal component analysis–multivariate adaptive

regression splines rPCA–MARS was proposed as an analysis method.

According to the results obtained using MARS model based on robust

PAC, it showed that this model is suitable for determining �API grav-

ity in crude oil samples. Also, the result of this study showed that the

rPCA–MARS model performs better than PLS-R and SVM-R models.

In MARS model, the interaction between variables and non-linearity

of data modeled without any restrictions, automatically. The efficiency

of the MARS model is determined by the basis factors. The RMSEC,

RMSEP, MAE, and R2GCV in the piecewise-cubic rPCA-MARS

model were 6.726*10-13, 0.538, 0.290 and 0.988, respectively. Gener-

ally, the results showed that rPCA-MARS model provide powerful

result for prediction of �API gravity values in crude oils. The result

of this verification was that the rPCA-MARS model is the best model

with more successful than the PLS-R and SVM-R models. The agree-

ment between experimental data and the result that obtained using

regression models confirms that the piecewise-cubic rPCA-MARS

model can applied to estimate the �API gravity values of crude oil sam-

ples based on the IR spectroscopic data.
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