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Abstract 2-Allyl-p-mentha-6,8-dien-2-ols P1�P3 synthesized from carvone P are tested as corro-

sion inhibitors of steel in 1 M HCl using weight loss measurements, potentiodynamic polarisation

and impedance spectroscopy (EIS) methods. The addition of 2-allyl-p-mentha-6,8-dien-2-ols

reduced the corrosion rate. Potentiodynamic polarisation studies clearly reveal that the presence

of inhibitors does not change the mechanism of hydrogen evolution and that they act essentially

as cathodic inhibitors. 2-Allyl-p-mentha-6,8-dien-2-ols tested adsorb on the steel surface according

to Langmuir isotherm. From the adsorption isotherm some thermodynamic data for the adsorption

process are calculated and discussed. EIS measurements show the increase of the charge-transfer

resistance with the inhibitor concentration. The highest inhibition efficiency (92%) is obtained

for P1 at 3 g/L. The corrosion rate decreases with the rise of temperature. The corresponding acti-

vation energies are determined.
ª 2011 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

The importance of organic compounds on the inhibition of
metal corrosion in acid solutions has hadmuch attention during
the last decade. The inhibiting action of these compounds is usu-
ally attributed to interactions with metallic surfaces by adsorp-
tion. The polar function is frequently regarded as the reaction

centre for the adsorption process establishment
(Sankarapapavinasam et al., 1989), being the adsorption bond
strength determined by the electron density and polarizability

of the functional group. Recently, we have reported that
natural extracts can be a source of cheap eco-friendly and non
toxic of inhibitors (Bouyanzer et al., 2006, 2010; Faska et al.,

2007, 2008; Ouchikh et al., 2009; Znini et al., 2012).
The widespread occurrence of p-menthane system in many

classes of natural products has made them a valuable building
block for the synthesis of various biologically organic target

molecules (Shing et al., 2001; Carter et al., 2000; Meulemans
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al., 1999; Jennistens et al., 1997). Thus, Synthesis of various p-
menthane derivatives is extensively studded with the goal to
obtain biologically active compounds. p-Mentha-6,8-dien-2-

one P (Carvone) has become the key starting natural com-
pound for the synthesis of a number of substances exhibiting
varying kinds of biological activity (Wang et al., 2001).

Carvone, a monoterpene ketone, occurs in nature and is
widely present in high concentrations in the essential oil of
Mentha specata (Gershenzon et al., 1989).

In the course of a continuing search for ecofriendly inhibitors
of corrosion of steel in acid media, we have studied the effect on
the corrosion of steel in 1 MHCl solution of carvone derivatives
having various side-chain substituents (2-allyl-p-mentha-6,8-

dien-2-ols) by gravimetric, potentiodynamic polarisation and
impedance spectroscopy (EIS) methods. Effect of temperature
is also studied.

2. Experimental

2.1. Synthesis of 2-allyl-p-mentha-6,8-dien-2-ols P1�P3

We were the first to accomplish stereoselective synthesis of

2-allyl-p-mentha-6,8-dien-2-ols from carvone and allylmagne-
sium chloride in ether. Condensation of allylmagnesium
compounds on carvone leads to 2-allyl-p-mentha-6,8-dien-

2-ols P1–P3 in good yields, respectively (Scheme 1). These mol-
ecules contain the allylic moiety in the axial position, and the
hydroxyl group, in the equatorial position of the cyclohexane

ring which adopts a chair conformation (Majidi et al., 2005).
The reaction, in all cases, is stereoselective and the alkyl-

ation of P takes place on the ‘‘si face’’ in a quasi-equatorial
fashion. The 13C NMR spectrum of each alcohol P1–P3 was

consistent with the presence of only one diastereoisomer except
for alcohol P2. Moreover, we point out that the addition of
crotylmagnesium chloride to carvone is not stereoselective.

The 13C NMR spectrum of the corresponding 2-allyl-p-men-
tha-6,8-dien-2-ol P2 illustrated that this compound existed in
the shape of two diastereoisomers (56/44). Thus, only two dia-

stereomers have been obtained from the four expected. One
deduces that a stereospecific reaction was involved when asym-
metric functional carbon has been created. Although, the cro-
tyl magnesium chloride exists almost exclusively in the primary

form (Hutchison et al., 1973), it reacts with Carvone such that
exclusively a-métallylcarveol products are formed.

The structure of alcohols P1–P3 was proved by IR and

NMR spectroscopy. Their IR spectra lack carbonyl absorption
but contain a band at 1650, 3080, and 3460 cm�1, typical of
stretching vibration of C‚C bond, the vinylic protons of the
O

+
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R1 = Me, R2 = H
R1 = H, R2 = Me

MgCl

R1
R2

P

Scheme
allylic moieties (C‚CH2) and associated hydroxyl group,
respectively. In the 1H NMR spectra of these compounds we
observed signals from protons of both p-menthene fragment

and massifs due to protons of allylic moieties (Section 2).
The stereochemistry at the carbinol center of alcoholsP1–P3

was initially assigned based on the relative chemical shifts of the

carbinol centers in the 13C NMR spectra. The signal for the car-
binol carbon appears at lower fields for an equatorial than for
an axial hydroxyl group (see Section 2) (Stothers et al., 1972).

The carbinol signal further downfield should belong to the
axial-addition product. These data are consistent with our
previous results (Majidi et al., 2004) that the addition of arylic
magnesium chloride to cycloalkenone is stereoselective: the

attack occurs from the axial side of the molecule.
2.2. Synthesis of inhibitors

Infrared (IR) spectra were recorded on Schimatzu IR-470. 1H
NMR spectra were determined on a Brüker AC250 (300 MHz)
spectrometer with Me4Si as the internal standard. 13C NMR

spectra of CDCl3 solution were recorded on Brüker AC250
(60 MHz).
2.2.1. General procedure for the addition of allylic Grignard
reagents to Carvone: drilling of 2-allyl-p-mentha-6,8-dien-2-ols
P1–P3

Magnesium (1.1 g) was recovered by anhydrous ether (15 ml)

and was actived by 1,2-dibromoethane. Upon cessation of
gas evolution, the reaction flask was cooled with ice, and a
solution of allylic chloride (25 mmol) and menthone (15 mmol)

in 70 ml of anhydrous ether was added dropwise. The reaction
mixture was stirred in an ice bath for 8 h and then poured onto
a diluted sulphuric acid solution. The organic layer was
separated and the aqueous layer was extracted with ether.

The combined organic layer was washed to neutrality
and dried (Na2SO4). The solvent was evaporated and the resid-
ual oil was purified by chromatography (silica gel flash,

hexane).

2.2.2. 2-Allyl-p-mentha-6,8-dien-2-ol((1S,5R)-1-(prop-2-en-1-

yl)-5-(1-methylvinyl)-2-méthyl- cyclohex-2-énol) P1

C13H20O: Rdt = 77%. IR(film): 3400, 3080, 1635, 1035 cm�1.
1H NMR (CDCl3): 1.50 (2H, t, J= 6.4 Hz), 1.74 (6H, s), 1.92–
2.50 (5H, m), 4.73 (2H, s), 5.15 (1H, m), 5.48 (2H, m), 5.88

(1H, m). 13C NMR (CDCl3): 17.2 (q), 21.0 (q), 31.0 (t), 39.3
(d), 40.5 (t), 43.0 (t), 73.8 (s), 109.5 (t), 119.1 (t), 124.4 (d),
134.1 (d), 138.2 (s), 149.2 (s).
HO
Et2O

0ºC

R2

R1

P1 : R1 = R2 = H
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2.2.3. 2-Allyl-p-mentha-6,8-dien-2-ol(1-(1-methylprop-2-en-1-

yl)-5-(1-methylvinyl)-2-methyl- cyclohex-2-enol) P2

C14H22O: Rdt = 79%. IR(film): 3450, 3080, 1640; 1045 cm�1.
1H NMR (CDCl3): major isomer (56%): 1.14 (3H, d,
J= 5.1 Hz), 1.60 (1H, d, J= 5.5 Hz) 1.76 (6H, s), 2.10 (5H,

m), 4.76 (2H, s), 5.02 (1H, m), 5.59 (2H, s), 5.84 (1H, m).
13C NMR (CDCl3): 15.9 (q), 17.9 (q), 21.8 (q), 30.6 (t), 37.2
(t), 38.5 (d), 43.7 (d), 74.9 (s), 110.0 (t), 114.5 (s), 114.7 (t),

125.7 (d), 126.2 (s), 140.3 (d). Minor isomer (44%) 1H NMR
(CDCl3): 0.94 (3H, d, J= 5.5 Hz), 1.74 (6H, s), 4.74 (2H, s),
5.17 (1H, m), 5.65 (2H, s), 6.06 (1H, m). 13C NMR (CDCl3):
15.8 (q), 17.8 (q), 21.6 (q), 31.4 (t), 37.6 (t), 39.4 (d), 44.9

(d), 75.0 (s), 110.1 (t), 116.4 (s), 116.6 (t), 126.2 (s), 126.4 (d),
140.4 (d).

2.2.4. 2-Allyl-p-mentha-6,8-dien-2-ol((1S,5R)-1-(2-methylprop-
2-en-1-yl)-5-(1-methylvinyl)-2-methylcyclohex-2-enol) P3

C14H22O: Rdt = 72%. IR(film): 3450, 3080, 1640, 1043 cm�1.
1H NMR (CDCl3): 1.61 (2H, s), 1.71 (3H, s), 1.74 (3H, s), 1.84

(3H, s), 2.23 (5H, m), 4.92 (2H, s), 5.43 (2H, s), 5.8 (1H, m).
13C NMR (CDCl3): 17.3 (q), 20.4 (q), 25.0 (q), 31.34 (t), 39.7
(d), 40.7 (t), 46.1 (t), 74.1 (s), 109.4 (t), 115.5 (t), 123.8 (d),

138.8 (d), 142.9 (s), 149.0 (s).

2.3. Gravimetric, Rp polarisation and EIS measurements

Steel samples (0.21% C, 0.38% Si, 0.09% P, 0.01% Al, 0.05%
Mn, 0.05% S) are used. The aggressive solution (1 M HCl) was
prepared by the dilution of analytical grade 37% HCl with

bidistilled water. Prior to all measurements, the steel samples
were polished with different emery paper up to 1200 grade
and washed thoroughly with bidistilled water and dried with
acetone.

Gravimetric measurements were carried out in a double
walled glass cell equipped with a thermostat-cooling con-
denser. The solution volume was 100 ml. The steel specimens

used had a rectangular form (2 cm · 2 cm · 0.05 cm). The
immersion time for the weight loss was 1 h at 333 K.

Electrochemical measurements were carried out in conven-

tional three-electrode electrolysis cylindrical Pyrex glass cell.
The working electrode (WE) had the form of a disc cut form
the steel sheet. The area exposed to the corrosive solution
was 1 cm2. A saturated calomel electrode (SCE) and a disc

platinum electrode were used, respectively, as reference and
auxiliary electrodes. The temperature was thermostatically
controlled at 298 ± 1 K.

Electrochemical experiments were recorded using an
EG&G instruments potentiostat-galvanostat model 263A, at
scan rate of 0.5 mV/S, coupled to a computer equipped with

a software 352 Soft Corr III. Before recording the polarisation
curves the test solution was de-aerated and magnetically stirred
for 30 min in the cell with pure nitrogen to attain stationary

(Ecorr). Gas pebbling was maintained throughout the experi-
ments. WE was then inserted and prepolarised at �800 mV
(SCE) for 10 min in order to remove oxide film from the elec-
trode. The scan rate was 1 mV s�1.

Polarisation resistance measurements were performed by
scanning through a potential range which is very close to the
corrosion potential. The potential range is ±10 mV around

Ecorr. Polarisation resistance (RP) values are obtained from
the current potential plots.
The electrochemical impedance spectroscopy (EIS) mea-
surements were carried out with the electrochemical system
(Tacussel) which included a digital potentiostat model Volta-

lab PGZ 100 computer at Ecorr after immersion in solution
without bubbling, the circular surface of steel exposing of
1 cm2 to the solution were used as the working electrode. After

the determination of steady-state current at a given potential,
sine wave voltage (10 mV) peak to peak, at frequencies
between 100 kHz and 10 MHz were superimposed on the rest

potential. Computer programs automatically controlled the
measurements performed at rest potentials after 30 min of
exposure. The impedance diagrams are given in the Nyquist
representation.

3. Results and discussion

3.1. Weight loss tests

The corrosion rate (Wcorr) of steel in 1 M HCl solution at var-

ious concentrations of molecule tested was determined after
1 h of immersion period at 333 K. Values of corrosion rates
and inhibition efficiencies are given in Table 1. In the case of

the weight loss method, the inhibition efficiency (EW%) was
determined by the following relation:

EWð%Þ ¼ 100� ð1�Wcorr=WoÞ ð1Þ

Wcorr and Wo are the corrosion rates of steel with and without

the inhibitors, respectively.
It has been observed that the inhibition efficiency increased

with increasing concentration and reached a maximum value

at an optimum concentration 3 g/L. we noted that all
compounds used in this study showed very good inhibition
of corrosion. The best action is observed with 2-allyl-p-men-
tha-6,8-dien-2-ol P1 which leads to 92% at 3 g/L.

3.2. Polarisation measurements

Cathodic and anodic polarisation curves for steel in 1 MHCl in

the presence of 3 g/L of P1, P2 and P3 at 308 K are shown in
Fig. 1. In the cathodic domain, it is clear that the current
density decreases with the addition of 2-allyl-p-mentha-6,8-

dien-2-ols compounds; this indicates that these compounds are
adsorbed onto the metal surface and hence inhibition occurs.

At the same concentration (3 g/L), the value of Icorr of steel

in the case of P1 is smaller than those of P2 and P3. Com-
pound P1 gives more inhibition efficiency than P2 and P3 in
1 M HCl; this enhanced efficiency is due to the absence of
the methyl group in molecule P1. The polarisation study con-

firms the excellent inhibiting character of P1 obtained with
weight loss measurements.

In order to better understand the inhibition mechanism

of P1, a detailed study on this compound was carried out.
Polarisation curves for steel at various concentrations of P1

in de-aerated normal HCl solutions are shown in Fig. 2. The

extrapolation of the Tafel straight line allows the calculation
of the corrosion current density (Icorr). The values of (Icorr),
the corrosion potential (Ecorr), the cathodic Tafel slopes (bc)
and the corrosion inhibition efficiency (EI%) for different con-

centrations of P1 are given in Table 2. The inhibition efficiency
(EI) of the inhibitor for the corrosion of steel was calculated by
using corrosion current density as follows:
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Figure 1 Polarisation curves of steel in 1 M HCl without and

with 3 g/l of P1, P2 and P3.

Figure 2 Polarisation curves of steel in 1 M HCl containing

various concentrations of P1.

Table 1 Influence of 2-allyl-p-mentha-6,8-dien-2-ols (P1–P3) concentration on the steel corrosion in 1 M HCl at 1 h.

Compounds C (g/l) W (mg/cm2h) E (%)

Blank 1 M 12.6776 –

HO
P1

1 3.5635 71.89

1.5 2.7688 78.15

2 2.1579 82.97

2.5 1.5486 87.78

3 1.0956 91.38

HO
P2 1 5.6128 55.72

1.5 4.6187 63.56

2 3.7065 70.76

2.5 3.2589 74.29

3 2.5138 80.17HO
P3 1 6.6625 47.44

1.5 5.4766 56.8

2 5.0142 60.44

2.5 4.4042 65.25

3 3.5458 72.03
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EIð%Þ ¼ 100� ð1� Icorr=IoÞ ð2Þ

where Io and Icorr are the corrosion current density values
without and with the inhibitor, respectively.
It is clear from the results that the addition of inhibitor
caused a decrease in the current density. The values of the cor-
rosion current (Icorr) of steel in the inhibited solution were
smaller than those for the inhibitor free solution. Cathodic cur-

rent potential curves gave rise to parallel Tafel lines indicating
that the hydrogen evolution is activation controlled and the
reduction mechanism is not affected by the presence of inhib-

itors. The addition of inhibitors did not change the values of
corrosion potential (Ecorr) when the concentration increases.
These results demonstrated that the hydrogen evolution reac-

tion was inhibited and that the inhibition efficiency increased
with inhibitor concentration.

In the anodic range, the polarisation curves of steel in 1 M
HCl without and with P1 show an increase of overvoltage near

the corrosion potential. For an overvoltage higher than
240 mV SCE, the presence of inhibitor P1 does not change
the current versus potential characteristics (Fig. 2). This fact

means that the inhibition mode of P1 depends on electrode
potential and acts essentially as a cathodic inhibitor. The same
results have been reported by other authors (Mengoli et al.,

1991). This potential can be defined as the desorption
potential. At potential higher than 240 mV SCE, the
significant steel dissolution leads to desorption of the

inhibiting film. In this case, the desorption rate of P1 is
raised more that its adsorption.

The inhibiting properties of the tested inhibitor have also
been evaluated by the determination of the polarisation resis-

tance. The inhibition efficiency (ERp
) was defined as follow:

ERp
ð%Þ ¼ 100� ð1� RP=R

0
PÞ ð3Þ

RP and R0P are the polarisation resistances in the absence and
in the presence of the inhibitor, respectively.

The corresponding polarisation resistance (RP) values of
steel in 1 M HCl in the absence of different concentrations
of the inhibitor are given in Table 2.

3.3. Electrochemical impedance spectroscopy (EIS)

The corrosion behaviour of steel in 1 M hydrochloric
acidic solution, in the absence and presence of P1, is also



Table 2 Electrochemical parameters of steel at various concentrations of P1 studied in 1 M HCl. Corresponding corrosion inhibition

efficiencies.

Concentration (g/l) Ecorr (mV/SCE) bc (mV/dec) Icorr (lA/cm2) EI (%) RP (X cm2) ERp (%)

Blank �396 176 781 – 68 –

1 �400 180 226 71 212 72

1.5 �401 165 190 76 283 76

2 �401 194 156 80 358 81

3 �402 170 100 87 566 88

Table 3 Impedance parameters of steel in 1 M HCl in the

absence and presence of tested compounds at 3 g/L.

Concentration

(M)

Rt (X cm2) Fmax (Hz) Cdl (lF/cm
2) E (%)

Blank 120 15.86 83.58 –

P3 366 5.53 78.58 67

P2 420 7.33 51.68 71

P1 1000 2.36 67.46 88
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investigated by the EIS at 308 K after 30 min of immersion.
The charge-transfer resistance (Rt) values are calculated from

the difference in impedance at lower and higher frequencies,
as suggested by Tsuru et al. (1978). The double-layer
capacitance (Cdl) and the frequency at which the imaginary

component of the impedance is maximal (�Zmax) are found
as represented in the equation:

Cdl ¼ 1=x � Rt where x ¼ 2p fmax ð4Þ

where fmax is the frequency at which the imaginary component

of the impedance (Zim) is maximum and Rt is the diameter of
the loop.

Impedance diagrams are obtained for frequency range
100 kHz–10 mHz at the open circuit potential for steel in

1 M HCl in the presence and absence of inhibitor. Nyquist
plots for steel in 1 M HCl at 3 g/L of P1–P3 is presented in
Fig. 3. Table 3 gives values of charge-transfer resistance, Rt

double-layer capacitance, Cdl, and fmax derived from Nyquist
plots and inhibition efficiency, the inhibition efficiency got
from the charge-transfer resistance is calculated by the follow-

ing relation:

ERt
% ¼ R0t � Rt

R0t
� 100 ð5Þ

Rt and R0t are the charge-transfer resistance values without
and with inhibitor, respectively.

Generally, Fig. 3 showed that the impedance spectra exhibit
one single depressed semicircle, and the diameters of semicircle
increases with the inhibitors mainly with P1. From the results
Figure 3 Nyquist plots of steel in 1 M HCl containing various

compounds at 3 g/L.
of Table 3 and Fig. 4, it is clear that the compound P1 is the
best inhibitor.

In order to better understand the inhibition mechanism of
P1, a detailed study on this compound was carried out. The
impedance parameters are mentioned in Table 3.

In fact, the presence of both inhibitors enhances the value
of Rt in acidic solution. Values of double-layer capacitance
are also brought down to the maximum extent in the presence

of inhibitor and the decrease in the values of Cdl follows the
order similar to that obtained for Icorr in this study. The
decrease in Cdl is due to the adsorption of this compound onto
the metal surface leading to the formation of film from acidic

solution (Bentiss et al., 1999).
As we notice, the impedance diagrams (Fig. 4) show perfect

semi-circles whose size increases with the concentration of the

inhibitor indicating a charge-transfer process mainly control-
ling the corrosion of steel. Similar diagrams were described
in the literature for the electrode of iron and steel with and
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Table 4 Electrochemical parameters of steel in 1 M

HCl + P1 at various concentrations and the corresponding

inhibition efficiency.

Concentration (M) Rt (X cm2) Fmax (Hz) Cdl (lF/cm
2) E (%)

Blank 120 15.86 83.58 –

1 g/L 480 4.18 79.32 75

1.5 g/L 522 3.95 77.15 77

2 g/L 667 3.25 73.45 82

2.5 g/L 800 2.82 70.65 85

3 g/L 1000 2.36 67.46 88

Figure 5 Arrhenius plots for steel in 1 M HCl in the absence and

presence of 5, 6 and 7.
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without inhibitor 1 M HCl (Elachouri et al., 2001; Bentiss
et al., 1999). From the impedance data, the charge-transfer

resistance (Rt) increases with the inhibitor concentration
(Table 4). Also, the double-layer capacitance (Cdl) decreases
with increase in the concentration of the inhibitor.

3.4. Effect of temperature

The corrosion rate of steel with temperature was studied in

molar HCl both in the absence and presence of inhibitor at a
maximal concentration (3 g/L) in the temperature range 313–
343 K using weight loss measurements, the corresponding
results are summarised in Table 5. The corrosion rate is more

increased with the rise of temperature for uninhibited acid
solution. The presence of inhibitor leads to a decrease in the
corrosion rate. The inhibitory action of inhibitor is slightly

increased at elevated temperature leading to the increase of
E%. The apparent activation energy is easily determined by
the following relations:

Wcorr ¼ k expð�Ea=RTÞandW0
corr ¼ k0 expð�E0a=RTÞ ð6Þ

W0 and W� are the corrosion rates of steel with and without

inhibitor, respectively. E0a and Ea are the apparent activation
energies in the presence and absence of inhibitor, respectively.

Straight lines of Arrhenius slopes are obtained. The evalu-

ation of activation energies is deduced from the corresponding
slopes (Fig. 5). Values obtained are 50.90, 18.52, 38.50 and
45.27 kJ/mol for free acid and in added with P1, P2 and P3,
respectively. It is obviously seen that the activation energy

strongly decreases in the presence of inhibitors. Some authors
(Donahue et al., 1965; Banejee et al., 1992), attributed this
Table 5 Effect of temperature (313–343 K) on the corrosion inhibitio

1 h.

Compounds T (�C) W (m

HO
P1

313 0.713

323 1.031

333 1.096

343 2.027

HO
P2

313 1.036

323 2.324

333 2.513

343 6.471

HO
P3

313 1.250

323 2.963

333 3.545

343 7.196
result to that the inhibitor species are physically adsorbed onto
the metal surface.

3.5. Adsorption isotherm

The values of surface coverage h for different concentrations of

the inhibition in acidic media of different compounds were
evaluated from weight loss using the equation (Landolt
et al., 1993):

h ¼ Wðh¼0Þ �Wh

Wðh¼0Þ �Wðh¼1Þ
ð7Þ

The surface coverage values h were tested graphically for fit-
ting a suitable adsorption isotherm. The plot of Cinh/h versus
Cinh yields a straight line, proving that the adsorption of the

inhibitors from HCl solution on the steel surface. This shows
that Langmuir isotherm (Langmuir, 1947) is accurate in all
cases (Fig. 6):

Cinh

h
¼ 1

b
þ Cinh ð8Þ

b ¼ 1

55:5
: exp �DG

�
ads

R � T

� �
ð9Þ
n of steel 1 M HCl by 2-allyl-p-mentha-6,8-dien-2-ols (P1–P3) at

g/cm2h) W0 (mg/cm2h) E (%)

86 3.4780 79.47

2 9.41863 89.04

5 12.6776 91.35

7 19.369 89.5

7 3.4780 70.19

9.41863 75.3

8 12.6776 80.17

3 19.369 66.58

3 3.4780 64.04

0 9.41863 68.54

8 12.6776 72.03

0 19.369 62.84



Figure 6 Langmuir isotherm adsorption model of inhibitors on the surface of steel in 1 M HCl.
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Cinh is the inhibitor concentration; h is the fraction of the sur-

face covered, b is the adsorption coefficient and DG�ads is the
standard free energy of adsorption.

The DG�ads were estimated from the equilibrium constant b

deduced from the intercept of linear plots: DG
�

adsðP1Þ ¼
�25:0kJ=mol, DG

�

adsðP2Þ ¼ �23:7kJ=mol; DG
�

adsðP3Þ ¼ �23:1
kJ=mol.

Analysis of results shows that the inhibitor P1, which gives

maximum efficiency exhibits more negative of DG
�

ads indicating
that it is strongly adsorbed on the metal surface. In general, the
negative values of DG

�

ads indicate the spontaneous adsorption

of inhibitors on the steel surface (Talati et al., 1983). A value
of �40 kJ/mol for DG�ads is usually adopted as a threshold
value between chemisorption and physisorption (Donahue

et al., 1965) then, this value indicates that inhibitor interacts
on the steel surface by electrostatic effect.

4. Conclusion

From the overall experimental results the following conclu-
sions can be deduced:

1. 2-Allyl-p-mentha-6,8-dien-2-ols compounds P1–P3 act as
good inhibitors for the corrosion of steel in HCl medium.

2. The inhibition efficiency increases with the 2-allyl-p-men-

tha-6,8-dien-2-ols concentration to attain 92% at 3 g/l for
P1.

3. The inhibition efficiency of 2-allyl-p-mentha-6,8-dien-2-ols

increases with the rise of temperature.
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