

King Saud University

Arabian Journal of Chemistry

www.ksu.edu.sa

ORIGINAL ARTICLE

A novel modification of ionic liquid mixture density based on semi-empirical equations using laplacian whale optimization algorithm

Hamidreza Bagheri^{a,*}, Mohammad Sadegh Hosseini^{b,*}, Hossein Ghayoumi Zadeh^c, Behrouz Notej^d, Ali Fayazi^c

^a Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran ^b Department of Chemical Engineering, Faculty of Engineering, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran ^c Department of Electrical Engineering, Faculty of Engineering, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran ^d Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran

Received 13 May 2021; accepted 28 July 2021 Available online 5 August 2021

KEYWORDS

Density; Equation; Ionic liquid; LXWOA; PT; SRK **Abstract** The main motivation of this study is development of density prediction of mixture including ionic liquid (IL) using semi-empirical and cubic equations of state (CEoS). The considered systems are contained of 51 ILs, 41 solvents and 4626 data point in the wide temperature range (278.15–348.15 K), ionic liquid mole fraction (0.0040–0.9977) and atmospheric pressure. Six simple semi-empirical equations with different mixing rules and two CEoSs (Soave-Redlich-Kwong EoS and Patel-Teja EoS) is investigated to predict the IL-mixture density. For each semi-empirical equation, the coefficients are optimized using laplacian whale optimization algorithm based on cation-family. These generalized modifications have not been used to ILs beforehand consequently, the accuracy and appropriateness of these equations to predict IL-mixture density are unsknown until now. The obtained results based on semi-empirical equations indicate that the performed modification provides low deviation of experimental data and can be applied by confidence in engineering and thermodynamic calculations. However, the results based on two CEoS show inacceptable accuracy.

© 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding authors.

E-mail addresses: hbagheri@uk.ac.ir (H. Bagheri), m.hosseini@vru. ac.ir (M. Sadegh Hosseini).

Peer review under responsibility of King Saud University.

1. Introduction

In current years, the attention in green technology has led to the extension of a novel class of highly tunable and unique components that are called ionic liquids (IL). The ILs are the components that have revolutionized the corresponding researches and chemical industries. They are investigated as green chemical components that play a very significant role

https://doi.org/10.1016/j.arabjc.2021.103368

1878-5352 © 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Nomen	ciature		
а	Attractive term parameter of equation of state		
	$[\text{cm}^6/\text{mol}^2]$	Greek	letter
a_i	Fitting parameters $(i = 0, 1, 2, 3, 4)$	α	Temperature dependency coefficient of attractive
AAPD	Average absolute percent deviation [-]		term
b	Repulsive term(co-volume) parameter of equation	η	Calculated critical compressibility factor [-]
	of state [cm ³ /mol]	ρ	Density [g/cm ³]
b_i	Fitting parameters $(i = 0, 1, 2, 3, 4)$	Ω	Patel-Teja Equation of state parameter coefficient
В	Dimensionless repulsive term parameter of equa-	ω	Acentric factor [-]
	tion of state [-]		
С	volume-translated parameter [cm ⁻ /mol]	Subscr	ipt
C_i	Fitting parameters $(1 = 0, 1, 2, 3)$	С	Critical
С	Dimensionless volume-translated parameter of	EoS	Equation of state
	equation of state [-]	Exp.	Experimental
k_{ij}	Binary interaction parameter [-]	т	Mixture
M_w	Solid molecular weight [g/mol]		
N	Number of experimental data point	Supers	cript
Р	Pressure [bar]	Calc.	Calculated
R	Ideal gas constant [bar.cm ³ /K.mol]	Ε	Excess
Т	Temperature [K]	EoS	Equation of state
$T_r = T_r$	T_c Reduced temperature [-]	i	Component i
V,v	Molar volume [cm ³ /mol]	i	Component <i>j</i>
X	Mole fraction [-]	5	1 5
Ζ	Compressibility factor [-]		

as a solvent to decrease applying of harmful, toxic and hazardous chemical components for the environment (Nishan et al., 2021). The main reason of increased considers on ILs is the aim of researchers to look for an appropriate alternative for volatile conventional organic solvents among the industries. Indeed, volatile conventional organic solvents are main environmental pollution resource in chemical industries (El shafiee et al., 2021). Although, all ILs are not completely considered as green solvents, some of ILs are even considerably toxic. Ionic liquids have involved a significant interest throughout the last three decades in the industrial and academic fields due to their unique properties (Agafonov et al., 2020; Omar et al., 2021). ILs are usually composed of inorganic or organic anions and an organic cation (Lian et al., 2016). According to cations, ILs are categorized to several categories like sulfonium, amino acids, phosphonium, guanidinium, ammonium, pyridazinium, piperazinium, oxazolidinium, tetrazolium, morpholinium, uranium, thiazolium, isoquinolinium, pyrroline, piperidinium, pyrrolidinium, pyridinium and imidazolium. Moreover, nitrate, perchlorate, bromide and chloride are simple anions and bis((trifluoromethyl)sulfonyl) imide, trifluoromethanesulfonate and lactate are complex anions (Bagheri et al., 2021; Evangelista et al., 2014; Xu et al., 2009). The ionic liquids properties will depend on the special combination of the anion and cation. The significant physicochemical features of ionic liquids like high electrochemical, thermal and chemical stability, non-flammability, low melting point and low vapor pressure (non-volatility) at moderate temperatures and pressures, high solvating power for non-polar and polar compounds have made ILs the exploration subject in many applications (Mohammadzadeh et al., 2020).

Designing equipment and chemical processes that involve ILs, needs accurate data on ILs thermo-physical features. The knowledge of ILs chemical and physical features is fundamental for ILs applications. Consequently, a number of scientists have investigated the thermodynamic properties of pure ILs and binary IL-mixture systems (Mesquita et al., 2019; Bagheri and Mohebbi, 2017). Until now, most investigations related to features of IL are limited to pure ones like viscosity, heat capacity, conductivity, surface tension and density. But, the usage of IL-mixture in engineering applications needs accurate detail about thermodynamic and physical features of ILs. The volumetric features refer to be related by substance volume change, such as expansibility, compressibility, excess molar volume, partial molar volume and density. ILs density is one of the most basic ILs volumetric features that is necessary in process design and calculations of metering of IL and it is interpreting interactions of intermolecular between solvent and ILs molecular (Tao et al., 2020). It is possible to calculate the ILs density accurately using experimental methods. However, as the experimental calculations are usually difficult, time consuming and costly consequently, the experimental calculations are not continuously possible (Tao et al., 2020; Bagheri et al., 2019; Paiva et al., 2019). Indeed, to develop process based on IL from the laboratory scale to industrial applications, the sufficient theoretical models to calculate ILs thermo-physical features must be considered (Bagheri and Ghader, 2017). In point of fact, the equipment design like liquid-liquid and vapor-liquid separation, energy and material balances including liquids, tower height calculations, rebuilders and condensers and storage vessels sizing, all need accurate liquid density values. Furthermore, other ILs features like surface tension or heat capacity, are sometimes correlated by density, so the reliable values of density permit one to calculate the mentioned features by an acceptable accuracy (Lian et al., 2016).

It is difficult to calculate features of all substances especially at various temperature and pressure or expensive and toxic components that maybe cause serious injuries for environment and human health. Thus, it is required to find out a method to calculate substances features. To solve the mentioned problem several estimation method was presented to estimate pure and IL-mixture. The presented methods are different from one case to another one and such correlations are based on some adjustable parameters, some of them are based on group contribution methods, equations of state and or machine learning methods (Abumandour et al., 2020; Yang et al., 2020; Bagheri et al., 2021).

Several semi-empirical equations were presented to calculate IL pure density such as Redlich-Kister polynomial equation, Lorentz-Lorenz equation, Tait equation and Wright equation and they have some fitting parameters (Lampreia et al., 2003; Valderrama and Zarricuetac, 2009; Geppert-Rybczyńska et al., 2010; I. Bahadur I, N. Deenadayalu, 2011; Matkowska and Hofman, 2013; Bahadur et al., 2013; Govinda et al., 2013; Govinda et al., 2013; Singh et al., 2014; Huang et al., 2015). However, Hosseini et al. (Hosseini et al., 2013) presented the modified version of Spencer and Danner equation to predict IL-mixture density. The used data set was including 854 experimental data points and 14 binary mixtures. The obtained results indicated the performed modification had acceptable performance to predict IL-mixture density. Equations of state (EoS) and group contribution (GC) EoS are other sets of equations which were used to estimate the IL binary mixture (Abareshi et al., 2009; Wang et al., 2010; Li et al., 2011; Shen et al., 2011; Shahriari et al., 2012; Oliveira et al., 2012; Hosseini et al., 2012; Yousefi, 2012; Sheikhi-Kouhsar et al., 2015). EoSs are important tool to design in chemical engineering and supposed a developing role in the consideration of the fluid mixtures phase equilibria. However, the accuracy of some CEoSs is low to predict features of thermodynamic in a wide range of pressures and temperatures (Liu et al., 2020; Kamath et al., 2010; Ghoderao et al., 2019; Coquelet et al., 2016). The binary mixtures containing IL are complex systems, due to depend not only on molecular-molecular interaction, but also on the ionmolecular and ion-ion interactions. Cubic EoSs (CEoSs) consider only the attraction and repulsive interaction and they are unable to consider the other intermolecular forces (Panayiotou et al., 2019; Farrokh-Niae et al., 2008; Kukreja et al., 2021; Secuianu et al., 2008; Lopez-Echeverry et al., 2017). Therefore, the obtained results of IL-mixture density based on CEoSs have systematic deviation. Although some corrections like volume-translated to decrease systematic deviation was performed (Sheikhi-Kouhsar et al., 2015). The statistical associating fluid theory (SAFT) family EoS is according to perturbation theory. The SAFT family EoSs consider almost all intermolecular forces and presented the real form of intermolecular forces of components. However, computer programing of SAFT family EoSs are time consuming and need advance numerical methods (Perdomo et al., 2021; J. Gross J, G. Sadowski, , 2002; Bülow et al., 2021). Also, GC method required an accurate and perfect knowledge of the IL structure and it is time consuming and complex. Furthermore, the model fails and is considerably limited when applying large substructures as group parameters (Qiao et al., 2010; Peng et al., 2017; Chen et al., 2019). Machine learning method is another advantageous tool to predict properties pure and mixture IL and it is extensively accepted as estimation technique (Venkatraman and Alsberg, 2017). The relationship between the properties is nonlinear and the machine learning method is a significantly able algorithm to estimate certain properties like density by learning the relation between the input data (for instance temperature, pressure and critical features) and output data (like density) (Zhang et al., 2006; Yusuf et al., 2021). Also, the accuracy of the obtained results depends on the size of the training data set and the most important weakness of the machine learning method is low capability to predict the future performance of the network (generalization) (Low et al., 2020).

Density is one of the basic features of ionic liquid mixtures that would be useful in understanding intermolecular interactions between molecules of ionic liquid and solvent. The main purpose of this study is to develop a more accurate and reliable methods for estimating density of IL + solvent binary system. Consequently, the density of 130 various IL + solvent binary mixture (4626 data point) including 11 different cation-family (BuPy, C₂mim, C₃mim, C₄mim, C₆mim, C₈mim, Hmim, Mmim. Moim. OcPv and Omim) in the wide range of temperature, IL mole fraction and in the atmospheric pressure is modeled using two methods, i.e. cubic equations of state (Soave-Redlich-Kwong (SRK) EoS as two-parameter CEoS and Patel-Teja (PT) EoS as three-parameter CEoS) and six semi-empirical equations. The semi-empirical equations had fitting parameters and the they were obtained for each cation-family, separately. To obtain the fitting parameters of semi-empirical equations, the improved laplacian whale optimization algorithm (LXWOA) was applied.

2. Materials and methods

2.1. Data set

The values of molecular weight (M_w) , critical molar volume (V_c) , acentric factor (ω) , critical pressure (P_c) and critical temperature (T_c) for each IL and solvent and as model input variables are necessary. Consequently, the mentioned properties of 51 ILs and 41 solvents that are used in this investigation, are provided in Table 1. The ILs critical properties were from references (Bagheri and Mohebbi, 2017; Bagheri and Ghader, 2017; Sheikhi-Kouhsar et al., 2015; Valderrama et al., 2008) and the critical properties of solvents were from references (Danesh, 1998; Green and Southard, 2019).

To calculate the density of IL + solvent binary systems, the enormous data set that covers a wide range of temperature, mole fraction, solvent and IL was provided. This data set was applied to developed the suggested models, contains 4626 experimental data point in the temperature range of 278.15-353.15 K, IL mole fraction range of 0.0040-0.9854 and atmospheric pressure. The data set was collected from references (Mokhtarani et al., 2009; Wang et al., 2012; Rilo et al., 2009; Solanki et al., 2013; Bhagour et al., 2013; Bhattacharjee et al., 2012; Wang et al., 2011; Bhujrajh and Deenadayalu, 2007; Ouijada-Maldonado et al., 2012; Rodriguez and Brennecke, 2006; Wang et al., 2011; Zhao et al., 2012; Vercher et al., 2007; Sadeghi et al., 2009; Tong et al., 2009; Iglesias-Otero et al., 2008; Gao et al., 2009; Patel et al., 2016; Domańska et al., 2006; Kumar et al., 2012; Mokhtarani et al., 2008; Matkowska and Hofman, 2013;

 Table 1
 The thermodynamics features of ILs and solvents.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8307 11 5981 15 7685 15
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5981 15 7685 15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7605 15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	/003 13
$ \begin{array}{c c} [C_2mim][CH_3SO_4] & 222.268 & 1053.610 & 45.91 & 602.6700 & 0.3200 & 0. \\ [C_2mim][CH_3(OCH_2CH_2)OSO_3] & 310.000 & 1162.900 & 28.10 & 862.3000 & 0.2539 & 0. \\ [C_2mim][DCA] & 177.210 & 999.000 & 29.10 & 597.8000 & 0.2122 & 0. \\ [C_mim][EtSO_4] & 236.290 & 1061.100 & 40.40 & 578.6822 & 0.2664 & 0. \\ [C_mim][NO_3] & 173.174 & 918.398 & 33.30 & 531.68 & 0.2349 & 0. \\ [C_mim][OCc] & 170.210 & 807.100 & 29.20 & 544.0000 & 0.3171 & 0. \\ [C_mim][OTI] & 260.200 & 898.800 & 35.80 & 653.4000 & 0.3171 & 0. \\ [C_mim][OTI] & 260.200 & 898.800 & 35.80 & 653.4000 & 0.3171 & 0. \\ [C_mim][OTI] & 260.200 & 992.300 & 35.80 & 636.3977 & 0.2797 & 0. \\ [C_mim][GL] & 205.099 & 815.601 & 32.97 & 526.1600 & 0.2591 & 0. \\ [C_mim][GL] & 205.099 & 815.601 & 32.97 & 526.1600 & 0.2591 & 0. \\ [C_mim][GL] & 205.099 & 815.601 & 32.97 & 526.1600 & 0.2915 & 0. \\ [C_mim][GL] & 205.099 & 815.601 & 32.97 & 526.1600 & 0.2915 & 0. \\ [C_mim][GL] & 205.099 & 815.601 & 32.97 & 526.1600 & 0.2911 & 0. \\ [C_mim][GL] & 205.000 & 1081.600 & 36.10 & 716.9000 & 0.2915 & 0. \\ [C_mim][CI] & 175.000 & 789.000 & 27.80 & 568.8000 & 0.2442 & 0. \\ [C_mim][CI] & 175.000 & 789.000 & 27.80 & 568.8000 & 0.2442 & 0. \\ [C_mim][CI] & 266.354 & 1231.847 & 20.32 & 892.4346 & 0.1793 & 1. \\ [C_mim][Glu] & 266.354 & 1231.847 & 20.32 & 892.4346 & 0.1793 & 1. \\ [C_mim][Glu] & 266.354 & 1231.847 & 20.32 & 892.4346 & 0.1793 & 1. \\ [C_mim][Glu] & 266.354 & 1231.847 & 20.32 & 892.4346 & 0.1793 & 1. \\ [C_mim][Glv] & 214.290 & 1012.794 & 24.29 & 701.7463 & 0.2050 & 1. \\ [C_mim][HSO_4] & 236.300 & 1103.800 & 43.40 & 664.9000 & 0.3185 & 0. \\ [C_mim][DF_6] & 284.180 & 708.900 & 17.30 & 779.4230 & 0.2317 & 0. \\ [C_mim][Fl_6] & 284.180 & 708.900 & 17.30 & 779.4230 & 0.2317 & 0. \\ [C_mim][Fl_7] & 247.200 & 841.100 & 26.70 & 728.4475 & 0.2817 & 0. \\ [C_mim][Fl_7] & 247.200 & 841.100 & 26.70 & 728.4475 & 0.2817 & 0. \\ [C_mim][Fl] & 247.200 & 841.100 & 26.70 & 728.4475 & 0.2817 & 0. \\ [C_mim][CI] & 202.720 & 829.200 & 23.50 & 683.0308 & 0.2358 & 0. \\ \endel \endel \endel \endel \end$	8142 15
$\begin{array}{c c} 6 & [C_2mim][CH_3(OCH_2CH_2)_2OSO_3] & 310.000 & 1162.900 & 28.10 & 862.3000 & 0.2539 & 0. \\ [C_2mim][DCA] & 177.210 & 999.000 & 29.10 & 597.8000 & 0.2122 & 0. \\ 8 & [C_2mim][EtSO_4] & 236.290 & 1061.100 & 40.40 & 578.6822 & 0.2684 & 0. \\ 9 & [C_mim][IL-lactate] & 200.241 & 965.989 & 26.32 & 620.1200 & 0.2059 & 0. \\ 10 & [C_2mim][OAc] & 173.174 & 918.398 & 33.30 & 531.68 & 0.2349 & 0. \\ 11 & [C_2mim][OAc] & 170.210 & 807.100 & 29.20 & 544.0000 & 0.2398 & 0. \\ 12 & [C_mim][OTI] & 260.200 & 898.800 & 35.80 & 653.4000 & 0.3171 & 0. \\ 13 & [C_2mim][TFA] & 224.200 & 824.670 & 28.86 & 593.4675 & 0.2360 & 0. \\ 14 & [C_2mim][THA] & 205.099 & 815.601 & 32.97 & 526.1600 & 0.2591 & 0. \\ 15 & [C_3mim][Br] & 205.099 & 815.601 & 32.97 & 526.1600 & 0.2591 & 0. \\ 16 & [C_3mim][Glu] & 200.263 & 992.821 & 26.41 & 765.56 & 0.2481 & 1. \\ 17 & [C_4mim][CI_3SO_4] & 250.000 & 1081.600 & 36.10 & 71.9651 & 0.2641 & 0. \\ 18 & [C_4mim][CI] & 175.000 & 789.000 & 27.80 & 568.8000 & 0.2422 & 0. \\ 19 & [C_4mim][CIO_4] & 288.659 & 722.540 & 22.64 & 716.5103 & 0.2735 & 0. \\ 21 & [C_4mim][CIO_4] & 286.354 & 1231.847 & 20.32 & 892.4346 & 0.1793 & 1. \\ 23 & [C_4mim][Glu] & 264.349 & 1096.084 & 32.55 & 774.0000 & 0.2801 & 0. \\ 22 & [C_4mim][Glu] & 263.500 & 1103.800 & 43.40 & 664.9000 & 0.3185 & 0. \\ 24 & [C_4mim][Glv] & 214.290 & 1012.794 & 24.29 & 701.7463 & 0.2050 & 1. \\ 24 & [C_4mim][HSQ_4] & 250.320 & 1081.600 & 36.10 & 643.4045 & 0.2616 & 0. \\ 25 & [C_4mim][Glv] & 214.290 & 1012.794 & 24.29 & 701.7463 & 0.2050 & 1. \\ 24 & [C_4mim][HSQ_4] & 250.320 & 1081.600 & 36.10 & 643.4045 & 0.2616 & 0. \\ 27 & [C_4mim][HSQ_4] & 250.320 & 1081.600 & 36.10 & 643.4045 & 0.2616 & 0. \\ 27 & [C_4mim][HSQ_4] & 250.320 & 1081.600 & 36.10 & 643.4045 & 0.2616 & 0. \\ 27 & [C_4mim][HSQ_4] & 250.320 & 1081.600 & 36.10 & 643.4045 & 0.2616 & 0. \\ 27 & [C_4mim][HF_6] & 284.180 & 708.900 & 17.30 & 779.4230 & 0.2317 & 0. \\ 29 & [C_6mim][BF_1] & 247.200 & 841.100 & 26.70 & 728.4475 & 0.2817 & 0. \\ 30 & [C_6mim][BF_1] & 247.200 & 841.100 & 26.70 & 728.4475 & 0.2817$	3400 15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5176 15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7661 15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3368 11
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9467 15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5678 39
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5889 15
15 $[C_2mim][1FA]$ $224,200$ $824,670$ 28.86 $593,4675$ 0.2530 $0.$ 14 $[C_2mim][triflate]$ $260,200$ $992,300$ 35.80 636.3977 0.2797 $0.$ 15 $[C_3mim][Br]$ 205.099 815.601 32.97 526.1600 0.2591 $0.$ 16 $[C_3mim][Glu]$ 200.263 992.821 26.41 765.56 0.2481 $1.$ 17 $[C_4mim][BF_4]$ 226.020 632.300 20.40 671.9651 0.2641 $0.$ 18 $[C_4mim][CH_3SO_4]$ 250.000 1081.600 36.10 716.9000 0.2915 $0.$ 19 $[C_4mim][Cl_3]$ 275.000 1081.600 36.10 716.9000 0.2915 $0.$ 20 $[C_4mim][Cl_4]$ 238.669 722.540 22.64 716.5103 0.2735 $0.$ 21 $[C_4mim][ClO_4]$ 286.354 1231.847 20.32 892.4346 0.1793 $1.$ 23 $[C_4mim][Glv]$ 214.290 1012.794 24.29 701.7463 0.2050 $1.$ 24 $[C_4mim][HSO_4]$ 236.300 103.800 43.40 664.9000 0.3185 $0.$ 25 $[C_4mim][MeSO_4]$ 250.320 1081.600 36.10 643.4045 0.2616 $0.$ 25 $[C_4mim][MeSO_4]$ 250.320 1081.600 36.10 643.4045 0.2616 $0.$ 26 $[C_4mim][MeSO_4]$ 250.320 1081.600 36.10 643.4045 0.2616	/509 59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0808 39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5255 59 4505 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4303 13
$\begin{array}{c c} [C_4min][Dr 4_4] & 250.026 & 20.106 & 20.106 & 0.1.001 & 0.2011 & 0.1.001 \\ [Reference] [C_4min][CH_3SO_4] & 250.000 & 1081.600 & 36.10 & 716.9000 & 0.2915 & 0. \\ [C_4min][Cl] & 175.000 & 789.000 & 27.80 & 568.8000 & 0.2442 & 0. \\ [C_4min][ClO_4] & 238.669 & 722.540 & 22.64 & 716.5103 & 0.2735 & 0. \\ [C_4min][Glu] & 264.349 & 1096.084 & 32.55 & 774.0000 & 0.2801 & 0. \\ [C_4min][Glu] & 286.354 & 1231.847 & 20.32 & 892.4346 & 0.1793 & 1. \\ [C_4min][Gly] & 214.290 & 1012.794 & 24.29 & 701.7463 & 0.2050 & 1. \\ [C_4min][HSO_4] & 236.300 & 1103.800 & 43.40 & 664.9000 & 0.3185 & 0. \\ [C_4min][MeSO_4] & 250.320 & 1081.600 & 36.10 & 643.4045 & 0.2616 & 0. \\ [C_4min][MeSO_4] & 250.320 & 1081.600 & 36.10 & 643.4045 & 0.2616 & 0. \\ [C_4min][PF_6] & 284.180 & 708.900 & 17.30 & 779.4230 & 0.2317 & 0. \\ [C_6min][BF_4] & 254.070 & 690.000 & 17.90 & 772.7525 & 0.2442 & 0. \\ [C_6min][Br] & 247.200 & 841.100 & 26.70 & 728.4475 & 0.2817 & 0. \\ [C_6min][CI] & 202.720 & 829.200 & 23.50 & 683.0308 & 0.2358 & 0. \\ \end{array}$	8489 15
$\begin{array}{c c} [C_4min][C1]_{30044} & 260300 & 7800 & 27.80 & 568.800 & 0.2442 & 0. \\ [C_4min][Cl]_{30044} & 238.669 & 722.540 & 22.64 & 716.5103 & 0.2442 & 0. \\ [C_4min][EtSO_4]_{30044} & 264.349 & 1096.084 & 32.55 & 774.0000 & 0.2801 & 0. \\ [C_4min][Glu]_{30044} & 286.354 & 1231.847 & 20.32 & 892.4346 & 0.1793 & 1. \\ [C_4min][Gly]_{30044} & 214.290 & 1012.794 & 24.29 & 701.7463 & 0.2050 & 1. \\ [C_4min][HSO_4]_{30044} & 236.300 & 1103.800 & 43.40 & 664.9000 & 0.3185 & 0. \\ [C_4min][MeSO_4]_{30044} & 250.320 & 1081.600 & 36.10 & 643.4045 & 0.2616 & 0. \\ [C_4min][OcSO_4]_{30044} & 250.320 & 1081.600 & 36.10 & 643.4045 & 0.2616 & 0. \\ [C_4min][PF_6]_{30044} & 254.070 & 690.000 & 17.30 & 779.4230 & 0.2317 & 0. \\ [C_6min][BF_4]_{30044} & 247.200 & 841.100 & 26.70 & 728.4475 & 0.2817 & 0. \\ [C_6min][Cl]_{30044} & 202.720 & 829.200 & 23.50 & 683.0308 & 0.2358 & 0. \\ \end{array}$	4111 11
$ \begin{array}{c c} [C_4min][CIQ_4] & 1751000 & 17100 & 17100 & 17100 & 0.12112 & 0.12$	4908 11
$ \begin{array}{c c} [C_4min][EtSO_4] & 264.349 & 1096.084 & 32.55 & 774.0000 & 0.2801 & 0. \\ [C_4min][Glu] & 286.354 & 1231.847 & 20.32 & 892.4346 & 0.1793 & 1. \\ [C_4min][Gly] & 214.290 & 1012.794 & 24.29 & 701.7463 & 0.2050 & 1. \\ [C_4min][HSO_4] & 236.300 & 1103.800 & 43.40 & 664.9000 & 0.3185 & 0. \\ [C_4min][L-lactate] & 228.295 & 1005.090 & 24.60 & 734.3400 & 0.2190 & 1. \\ [C_4min][MeSO_4] & 250.320 & 1081.600 & 36.10 & 643.4045 & 0.2616 & 0. \\ [C_4min][OcSO_4] & 349.000 & 1189.800 & 20.20 & 1116.7000 & 0.2310 & 0. \\ [C_4min][PF_6] & 284.180 & 708.900 & 17.30 & 779.4230 & 0.2317 & 0. \\ [C_6min][BF_4] & 254.070 & 690.000 & 17.90 & 772.7525 & 0.2442 & 0. \\ [C_6min][Br] & 247.200 & 841.100 & 26.70 & 728.4475 & 0.2817 & 0. \\ [C_6min][CI] & 202.720 & 829.200 & 23.50 & 683.0308 & 0.2358 & 0. \\ \end{array}$	8418 15
$ \begin{array}{c c_{4}mim]} \hline [Glu] & 286.354 & 1231.847 & 20.32 & 892.4346 & 0.1793 & 1. \\ \hline \\ 23 & [C_{4}mim][Gly] & 214.290 & 1012.794 & 24.29 & 701.7463 & 0.2050 & 1. \\ 24 & [C_{4}mim][HSO_4] & 236.300 & 1103.800 & 43.40 & 664.9000 & 0.3185 & 0. \\ 25 & [C_{4}mim][L-lactate] & 228.295 & 1005.090 & 24.60 & 734.3400 & 0.2190 & 1. \\ 26 & [C_{4}mim][MeSO_4] & 250.320 & 1081.600 & 36.10 & 643.4045 & 0.2616 & 0. \\ 27 & [C_{4}mim][OcSO_4] & 349.000 & 1189.800 & 20.20 & 1116.7000 & 0.2310 & 0. \\ 28 & [C_{4}mim][PF_6] & 284.180 & 708.900 & 17.30 & 779.4230 & 0.2317 & 0. \\ 29 & [C_{6}mim][BF_4] & 254.070 & 690.000 & 17.90 & 772.7525 & 0.2442 & 0. \\ 30 & [C_{6}mim][Br] & 247.200 & 841.100 & 26.70 & 728.4475 & 0.2817 & 0. \\ 31 & [C_{6}mim][CI] & 202.720 & 829.200 & 23.50 & 683.0308 & 0.2358 & 0. \\ \end{array}$	4497 15
$\begin{array}{c c} 23 & [C_4min][Gly] & 214.290 & 1012.794 & 24.29 & 701.7463 & 0.2050 & 1. \\ 24 & [C_4min][HSO_4] & 236.300 & 1103.800 & 43.40 & 664.9000 & 0.3185 & 0. \\ 25 & [C_4min][L-lactate] & 228.295 & 1005.090 & 24.60 & 734.3400 & 0.2190 & 1. \\ 26 & [C_4min][MeSO_4] & 250.320 & 1081.600 & 36.10 & 643.4045 & 0.2616 & 0. \\ 27 & [C_4min][OcSO_4] & 349.000 & 1189.800 & 20.20 & 1116.7000 & 0.2310 & 0. \\ 28 & [C_4min][PF_6] & 284.180 & 708.900 & 17.30 & 779.4230 & 0.2317 & 0. \\ 29 & [C_6min][BF_4] & 254.070 & 690.000 & 17.90 & 772.7525 & 0.2442 & 0. \\ 30 & [C_6min][Br] & 247.200 & 841.100 & 26.70 & 728.4475 & 0.2817 & 0. \\ 31 & [C_6min][CI] & 202.720 & 829.200 & 23.50 & 683.0308 & 0.2358 & 0. \\ \end{array}$	4083 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0513 15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7034 59
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0172 59
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4111 59
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7042 11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7553 15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9625 15
31 $[C_6 min][Cl]$ 202.720 829.200 23.50 683.0308 0.2358 0.	6070 39
	5725 39
$32 [C_6 mim][EtSO_4] \qquad 292.403 1125.917 27.14 888.2200 0.2609 0.$	5314 11
$33 [C_6 mim][MeSO_4] \qquad 278.376 1110.838 29.61 831.1100 0.2699 0.738 0.$	4899 59
$34 [C_6 mm][PF_6] \qquad 312.200 754.300 15.50 848.1796 0.2123 0.3312.200 0.312.200 0.312.300 0.312$	8352 59
$35 [C_8mim][BF_4] \qquad 282.100 727.400 15.78 884.3653 0.2337 0.9$	9956 59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8065 59
$\frac{37}{100}$ [C ₈ mim][Cl] 230.780 869.400 20.30 797.0536 0.2267 0.	6566 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4111 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9385 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0221 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9002 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3270 39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3086 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3086 11
46 [Moim][Fi] 282.140 737.000 16.00 883.4000 0.2337 1.	0287 11
47 [Moim][CH ₃ (OCH ₃ CH ₃) ₂ OSO ₃] 394.538 1257.282 18.44 1204.9900 0.2153 0.	7786 59
48 [OcPv[[BF ₄] 279.133 692.340 15.99 876.5600 0.2467 0.	9795 59
49 $[OCPV[NO_3]$ 254.332 986.900 20.05 856.2795 0.2119 0.	7495 59
50 $[Omim][BF_4]$ 282.100 726.100 16.00 822.2359 0.2207 0.	9954 59
51 $[Omim][PF_6]$ 340.260 810.800 14.00 1007.4940 0.2119 0.	9385 59
52 Acetone 58.080 508.200 47.01 206.6908 0.2329 0.	3070 60
53 Acetonitrile 41.053 545.000 48.30 170.3680 0.1839 0.	3380 61
54 Amino acid 200.900 710.350 19.19 743.3000 0.2447 0.	5425 61
55 Benzaldehyde 106.120 694.750 46.50 335.5608 0.2736 0.	3050 61
56 Benzyl alcohol 108.138 720.150 43.74 335.4608 0.2482 0.	3631 61
57 Butanone 72.110 536.750 42.10 266.5694 0.2547 0.	3200 61
58 Butyl acetate 116.158 575.400 30.90 383.5359 0.2509 0.	4394 60
59 Butyl amine 73.140 531.950 42.00 290.0000 0.2790 0.	3290 60
60 DEGMME ⁻¹ 120.150 630.050 35.40 366.8700 0.2511 0.1	8707 60
61 Dichloromethane 84.932 510.000 60.80 182.4035 0.2649 0.	1986 60
62 Diethyl carbonate 118.100 576.050 33.90 356.1248 0.2553 0.4	4848 60
03 DI-EGMEE 134.180 602.050 28.60 421.9985 0.2442 0.	57.40

No.	Substance	M_{w}	$T_{c}(K)$	P _c (bar)	V _c (cm ³ /mol)	Z _c	ω	Reference
64	Dimethyl carbonate	90.330	529.950	31.38	374.5837	0.2702	0.2711	61
65	Dimethyl sulfoxide	78.139	729.000	56.50	227.0000	0.2143	0.2806	61
66	EGMEE ²	91.020	567.050	42.30	293.9262	0.2671	0.7591	61
67	EGMME ³	76.100	562.050	50.10	241.9265	0.2627	0.7311	61
68	Ethanol	46.069	513.900	61.48	164.6178	0.2399	0.6450	60
69	Ethyl acetate	88.106	523.300	38.80	282.2150	0.2549	0.3660	60
70	Ethylene glycol	62.068	720.000	82.00	191.0000	0.2650	0.5068	60
71	Iso-butanol	58.140	408.100	36.48	262.7000	0.2861	0.1810	60
72	Methanol	32.042	512.600	80.97	116.3652	0.2239	0.5640	60
73	Methyl acetate	74.079	506.600	47.50	224.9187	0.2569	0.3310	60
74	Methyl methacrylate	100.116	566.000	36.80	319.3081	0.2529	0.2802	60
75	Pentanone	86.132	560.950	37.40	292.9209	0.2379	0.3448	61
76	PGMEE ⁴	104.150	554.127	45.32	294.0736	0.2930	0.7238	61
77	PGMME ⁵	90.140	553.050	43.40	293.9384	0.2810	0.7219	61
78	Pyridine	79.100	620.050	56.20	246.7049	0.2724	0.2430	61
79	Nitromethane	61.040	588.200	63.10	173.0000	0.2261	0.3480	61
80	MDEA ⁶	119.630	677.050	37.00	313.3000	0.2086	0.9970	61
81	β-Pyridine	93.129	645.050	46.50	311.0000	0.2732	0.2706	61
82	1-Butanol	74.123	535.900	41.88	273.0054	0.2599	0.5692	61
83	1-Decanol	158.281	688.000	23.08	645.0000	0.2636	0.6070	61
84	1,3-Dichloropropane	112.980	560.000	42.40	291.0000	0.2684	0.2564	61
85	1,4-Dioxane	88.110	587.000	52.08	234.9209	0.2539	0.2793	61
86	1-Hexanol	102.175	611.300	34.46	377.0160	0.2589	0.5586	61
87	1-Octanol	130.228	652.300	27.83	509.0000	0.2646	0.5697	60
88	1-Propanol	60.096	536.800	51.69	216.4515	0.2539	0.6209	60
89	2-Propanol	60.096	508.300	47.65	217.0849	0.2479	0.6544	60
90	Tetrahedrofuran	72.110	504.200	51.90	224.0000	0.2809	0.2254	61
91	Tri-EGMEE	178.240	679.120	24.80	567.1593	0.2523	1.0590	61
92	Water	18.015	647.100	220.50	55.1466	0.2289	0.3450	60

¹ Diethylene glycol monomethyl ether.

² Ethylene glycol monoethyl ether.

³ Ethylene glycol monomethyl ether.

⁴ Propylene glycol monoethyl ether.

⁵ Propylene glycol monomethyl ether

⁶ N-methyldiethanolamine.

Gao et al., 2010; Jiang et al., 2013; Singh et al., 2013; Pau and Panda, 2012; Wandschneider et al., 2008; Zhong et al., 2007; Fan et al., 2009; Pal and Kumar, 2011; Pal et al., 2010; Kermanpour and Sharifi, 2012; Kermanpour, 2012; Kermanpour and Niakan, 2012; Pal and Kumar, 2012; Zhu et al., 2011; Gomez et al., 2006; Malek et al., 2014; Ijardar and Malek, 2014; Akbar and Murugesan, 2013; Akbar et al., 2016; González et al., 2012; Pereiro et al., 2006; Pereiro and Rodriguez, 2007; Jiang et al., 2012) and the more details are prepared in Table 2. The provided data set contains several chemical compounds (51 ILs and 41 solvents) and 130 binary systems. Also, ILs are counting 11 various cations and 25 various anions.

2.2. Equation of state

In 1873 van der Waals presented the first modification of ideal gas EoS by including in attraction and repulsive intermolecular forces (Bagheri et al., 2018; Soave, 1984). After that, many modifications have been presented to improve the van der Waals EoS by change in attraction and repulsive intermolecular forces to predict phase equilibrium behavior and thermody-

namic properties. For instance, Redlich and Kwong (Redlich and Kwong, 1949) modified van der Waals EoS attractive term, Soave (Soave, 1972; Soave et al., 1993) modified the temperature dependency of the Redlich and Kwong EoS and Peng and Robinson (Peng and Robinson, 1976) modified the attractive term. The mentioned cubic EoS are known as twoparameter EoS. The two-parameter EoSs predict the same critical compressibility factor for all components, but for example, critical compressibility factor for hydrocarbons component are in the of range 0.2-0.3. Also, in many cases the accuracy of two-parameter EoSs to calculate density and vapor pressure of components is unacceptable consequently, using of third parameter to modify the attractive term was supposed (Gaffney et al., 2018; Bagheri et al., 2019; Yang et al., 2018; Yokozeki and Shiflett, 2010; Bagheri et al., 2019; Kumar and Upadhyay, 2021). For example, Schmidt and Wenzel EoS (Schmidt and Wenzel, 1980) and Patel-Teja EoS (Patel and Teja, 1982) are two well-known three-parameter cubic EoSs. They used acentric factor (ω) as the third parameter.

The pressure explicit Patel-Teja (PT) EoS is as following (Bagheri and Mohebbi, 2017; Danesh, 1998; Patel and Teja, 1982):

 Table 2
 The ionic liquid + solvent mixtures investigated in this study.

No.	System	T (K)	X _{IL}	ND*	Reference
1	$BuPvBF_4$ + water	283.15-343.15	0.1440-0.8900	104	62
2	$BuPyNO_3 + water$	298.15	0.0091-0.9018	16	63
3	$C_2 mim BF_4 + water$	298.15	0.0040-0.7774	17	64
4	$C_2 mim BF_4 + pridine$	293.15-308.15	0.1225-0.9349	72	65
5	$C_2 mim BF_4 + \beta$ -pyridine	293.15-308.15	0.1217-0.9317	72	65
6	$C_2 mim BF_4$ + acetone	293.15-308.15	0.1214-0.9203	72	66
7	C_2 mimBF ₄ + dimethylsulphoxide	293.15-308.15	0.1319-0.9249	72	66
8	$C_2 \text{mim} C_2 \text{SO}_4 + \text{water}$	283.15-343.15	0.1017-0.9977	49	67
9	C_2 mimCH ₃ SO ₄ + methanol	298.15	0.0500-0.9389	12	68
10	C_2 mmCH ₃ (OCH ₂ CH ₂) ₂ OSO ₃ + methanol C mimCH (OCH CH) OSO + water	298.15-313.13	0.0380-0.9830	45	69
11	$C_2 \min C A_3 (O C A_2 C A_2)_2 O S O_3 + water$	298.15-313.15	0.0002 0.0067	43	70
12	C_2 minDCA + ethanol	298.15-343.15	0.1059-0.8666	40	70
14	C_2 minEtSO ₄ + water	278 15-348 15	0.0084-0.7888	64	71
15	$C_2 \text{minL-lactate} + \text{water}$	298.15	0.0059-0.9390	17	72
16	$C_2 \text{mim} NO_3 + \text{ethanol}$	298.15	0.0995-0.9000	9	73
17	$C_2 mim NO_3 + methanol$	298.15	0.1000-0.8995	9	73
18	C_2 mimOAc + water	298.15-343.15	0.0992-0.9067	40	70
19	C_2 mimOAc + ethanol	298.15-343.15	0.1059-0.8666	40	70
20	C_2 mimOTf + water	278.15-348.15	0.0076-0.7705	64	71
21	$C_2 mimTFA + water$	278.15-348.15	0.0088-0.7950	64	71
22	C_2 mimtriflate + methanol	278.15-318.15	0.0505-0.9489	65	74
23	C_2 mimtriflate + water	278.15-338.15	0.0178-0.9498	133	74
24	C_3 mimBr + acetonitrile	288.15-308.15	0.01578-0.9782	60	75
25	C_3 mimBr + dimethyl sulfoxide	288.15-308.15	0.02769–0.9854	55	75
26	C_3 mimGlu + amino acid	283.15-338.15	0.0390-0.5427	216	76
27	$C_4 \text{mimBF}_4 + \text{ethanol}$	298.15	0.0517-0.8295	11	11
28	C_4 mimBF ₄ + miromethane C mimBF ₄ + 1.3 dichloropropage	298.15	0.0512-0.8034	15	77
30	C_{4} mmBF ₄ + ethylene glycol	298.15	0.0517_0.9028	14	77
31	$C_4 \text{mim}BF_4 + \text{water}$	298.15	0.0017-0.9005	2.7	64
32	$C_4 \text{mim}BF_4 + \text{ethanol}$	298.15	0.0986-0.9059	12	64
33	$C_4 \text{mim}BF_4$ + benzaldehyde	298.15-313.15	0.1000-0.8990	36	78
34	C_4 mimBr + ethylene glycol	293.15-323.15	0.0969-0.897	63	79
35	C_4 mim $CH_3SO_4 + 1$ -butanol	298.15	0.0745-0.9622	10	80
36	C_4 mim $CH_3SO_4 + 1$ -decanol	298.15	0.0603-0.9569	10	80
37	C_4 mim $CH_3SO_4 + 1$ -hexanol	298.15	0.0602-0.9714	10	80
38	C_4 mim $CH_3SO_4 + 1$ -octanol	298.15	0.0497-0.9605	10	80
39	C_4 mim CH_3SO_4 + ethanol	298.15	0.0713-0.9614	10	80
40	C_4 mim CH_3SO_4 + methanol	298.15	0.0507-0.9308	10	80
41	C_4 mim CH_3SO_4 + water	298.15	0.0498-0.9783	12	80
42	C_4 mimCl + ethylene glycol	298.15-318.15	0.0132-0.9126	30 71	81
43	$C_4 \text{minEtSO}_4 + \text{ethanol}$	283.15-328.15	0.1400-0.9000	32	82
45	C_{4} mimEtSO ₄ + methanol	283 15-328 15	0.0501-0.8485	32	83
46	C_4 mimGlu + benzylalcohol	298.15-313.15	0.1001-0.9001	36	84
47	$C_4 mimGly + benzylalcohol$	298.15-313.15	0.1000-0.9000	36	84
48	C_4 mimHSO ₄ + water	303.15-343.15	0.1012-0.9917	35	67
49	C_4 mimL-lactate + 1-butanol	298.15-318.15	0.1000-0.8997	27	85
50	C ₄ mimL-lactate + ethanol	298.15-318.15	0.0992-0.8974	27	85
51	C ₄ mimL-lactate + methanol	298.15-318.15	0.0997-0.8981	27	85
52	C ₄ mimL-lactate + water	298.15-318.15	0.1002-0.9010	27	85
53	C_4 mimMeSO ₄ + methanol	298.15-313.15	0. 0422–0.9526	44	86
54	C_4 mimMeSO ₄ + 1-propanol	298.15-313.15	0.0482-0.9510	44	86
55	C_4 mimMeSO ₄ + 2-propanol	298.15-313.15	0.0482-0.9531	40	86
50 57	C_4 mimMeSO ₄ + 1-butanol	298.15-313.15	0.0425-0.7996	32	86 87
59	C_4 mmWIS + water C mimNTf + 1 butenel	296.15-525.15	0.2000-0.8000	50	0/
50	$C_{4} = minNTf_{a} + 1_{a} propagal$	298.15	0.0941-0.8980	10	88
60	C_{4} min Ω_{12} + 1-propanol	298.15	0.0798-0.9450	10	80
61	$C_4 \text{minOcSO}_4 + 1\text{-butanol}$	298.15	0.0999-0.8672	9	80
62	$C_4 \text{mimOcSO}_4 + 1 \text{-octanol}$	298.15	0.2472-0.9508	8	80
63	$C_4 mimOcSO_4 + 1$ -decanol	298.15	0.0627-0.9723	10	80

-	•

Table 2	(continued)				
No.	System	T (K)	X _{IL}	ND*	Reference
64	C_4 mimOcSO ₄ + methanol	298.15	0.0088-0.9080	10	80
65	$C_4 mimPF_6$ + benzaldehyde	298.15-313.15	0.0523-0.8996	40	89
66	$C_4 mimPF_6$ + methyl methacrylate	283.15-353.15	0.0993-0.9014	117	90
67	$C_4 mimPF_6 + EGMEE$	288.15-318.15	0.0507-0.8949	70	91
68	$C_4 mimPF_6 + di-EGMEE$	288.15-318.15	0.0523-0.9059	70	91
69	$C_4 mimPF_6 + tri-EGMEE$	288.15-318.15	0.0558-0.9075	70	91
70	$C_4 mimPF_6 + PGMME$	288.15-308.15	0.0553-0.9574	24	92
71	$C_4 \text{mimPF}_6 + PGMME$	288.15-308.15	0.0526-0.9468	24	92
72	C_4 mmPF ₆ + DEGMME	288.15-308.15	0.0864-0.8992	24	92
/3 74	$C_6 \text{mimBF}_4 + 1\text{-propanol}$	293.15-333.15	0.1006-0.8894	33 45	93
74 75	$C_6 \text{mm} \mathbf{P} \mathbf{F}_4 + 2 \text{-propanor}$	295.15-555.15	0.0835-0.8507	43	94
76	C_{6} mmBF ₄ + EGMME	288 15-318 15	0.0530-0.0908	72	95
70	$C_6 \text{minBF}_4 + \text{butanone}$	208.15 510.15	0.0492-0.8931	13	97
78	C_{6} minBF ₄ + butylamine	298.15	0.0492-0.8787	13	97
79	C_{6} mmBF ₄ + ethylacetate	298.15	0.0498-0.8908	13	97
80	$C_{\epsilon} mimBF_4$ + tetrahedrofuran	298.15	0.0498-0.8925	13	97
81	$C_6 mimBr + EGMME$	288.15-318.15	0.0541-0.9050	70	96
82	C_{6} mimCl + water	298.15-343.15	0.0583-0.8726	32	98
83	C_6 mimEtSO ₄ + ethanol	293.15-333.15	0.0554-0.8533	32	83
84	C_6 mimEtSO ₄ + methanol	283.15-328.15	0.0520-0.9139	32	83
85	C_6 mimMeSO ₄ + ethanol	293.15-333.15	0.0503-0.7699	32	83
86	$C_6 mim MeSO_4$ + methanol	283.15-328.15	0.0612-0.9285	32	83
87	$C_6 mimPF_6 + EGMME$	288.15-318.15	0.0503-0.9094	72	96
88	$C_6 mimPF_6$ + butylacetate	293.15-323.15	0.0956-0.9354	70	99
89	$C_6 mim PF_6$ + ethylacetate	293.15-323.15	0.0905-0.9560	70	99
90	$C_8 mimBF_4 + 1,4 dioxane$	298.15-318.15	0.0859-0.8893	27	100
91	C_8 mimBF ₄ + tetrahedrofuran	298.15-318.15	0.0963-0.8612	27	100
92	C_8 mimBr + ethylene glycol	293.15-323.15	0.1023–0.8983	63	79
93	C_8 mimCl + ethylene glycol	298.15-318.15	0.0077-0.9583	36	81
94	C_8 mimCl + water	298.15-343.15	0.0365-0.8516	36	98
95	$C_8 \text{mim} C_1 OSO_3 + \text{ethylene glycol}$	298.15-318.15	0.0052-0.9244	36	81
90 07	$C_8 \text{mmPF}_6 + \text{outylacetate}$	293.15-323.15	0.1078-0.8940	63	99
97	$H_{min}BE_{\ell} + ethanol$	293.15-525.15	0.1030-0.8895	05	64
90	HmimBE, $+$ water	298.15	0.3032-0.9000	7	64
100	HmimBF ₄ + N-methyldiethanolamine	303 15-323 15	0.1176-0.9030	55	101
101	HmimFAP + N-methyldiethanolamine	303.15-328.15	0.1007–0.8993	54	102
102	HmimNTf ₂ + 1-propanol	298.15-328.15	0.0578-0.9594	33	103
103	HmimNTf ₂ + 2-propanol	298.15-328.15	0.0527-0.9379	33	103
104	$HmimNTf_2 + acetone$	288.15-298.15	0.0528-0.9483	33	103
105	HmimNTf ₂ + acetonitrile	298.15-328.15	0.0503-0.9247	33	103
106	$HmimNTf_2 + ethanol$	298.15-328.15	0.0518-0.9351	36	103
107	HmimNTf ₂ + dichloromethane	288.15-298.15	0.0570-0.9699	33	103
108	$HmimNTf_2 + methanol$	298.15-313.15	0.0198-0.9462	24	103
109	$HmimPF_6$ + acetone	298.15	0.0462-0.9518	12	104
110	$HmimPF_6$ + butanone	298.15	0.0579-0.9483	11	104
111	HmimPF ₆ + diethyl carbonate	298.15	0.0098-0.9498	12	104
112	HmimPF ₆ + dimethyl carbonate	298.15	0.0524-0.9500	11	104
113	HmimPF ₆ + ethanol	293.15-303.15	0.0198-0.9920	34	105
114	HmimPF ₆ + butylacetate	298.15	0.0365-0.9496	11	104
115	HmimPF ₆ + ethylacetate	298.15	0.0585-0.9477	11	104
110	Himim PF_6 + methylacetate	296.15	0.0411-0.9499	11	104
117	MmimCH SO + 1 butanol	298.15	0.0583 0.0608	11	104
119	$MmimCH_3O_4 + ethanol$	298.15	0.0503-0.9098	12	80
120	$MmimCH_3O_4 + methanol$	298.15	0.0660-0.9198	10	80
121	$MmimCH_3SO_4 + water$	298.15	0.0206-0.9376	14	80
122	$MmimMeSO_4$ + ethanol	293.15-303.15	0.0738-0.9512	33	105
123	$MoimBF_4$ + ethanol	298.15	0.1012-0.9014	9	64
124	$MoimCH_3(OCH_2CH_2)_2OSO_3 + methanol$	298.15-313.15	0.1100-0.9090	18	69
125	$OcPyBF_4 + water$	283.15-348.15	0.2170-0.9000	112	62
126	$OcPyNO_3 + methanol$	298.15	0.1026-0.9360	8	106

(continued on next page)

I able 2	(continued)				
No.	System	T (K)	X _{IL}	ND*	Reference
127	$OcPyNO_3 + ethanol$	298.15	0.2000-0.8760	8	106
128	$OcPyNO_3 + 1$ -butanol	298.15	0.1245-0.8990	8	106
129	$OmimBF_4$ + ethanol	283.15-343.15	0.2470-0.9190	78	82
130	$OmimPF_6$ + ethanol	293.15-303.15	0.0447-0.9502	33	105
	Total number of data			4626	

Number of experimental data point.

$$P = \frac{RT}{v - b} - \frac{a_c a(T)}{v(v + b) + c(v - b)}$$
(1)

where R is the universal gas constant and v is the molar volume. Also, the parameters are as following (Bagheri and Mohebbi, 2017; Patel and Teja, 1982):

$$a_c = (\Omega_{aci} \frac{(RT_{ci})^2}{P_{ci}})\alpha(T)$$
⁽²⁾

$$\alpha(T) = \left[1 + m_i (1 - \sqrt{\frac{T}{T_{ci}}})\right]^2 \tag{3}$$

$$m_i = 0.452413 + 1.30982\omega_i - 0.295937\omega_i^2 \tag{4}$$

$$b_i = \Omega_{bi} \frac{RT_{ci}}{P_{ci}} \tag{5}$$

$$c_i = \Omega_{ci} \frac{RT_{ci}}{P_{ci}} \tag{6}$$

$$\Omega_{ci} = 1 - 3\eta_i \tag{7}$$

$$\eta_i = 0.329032 - 0.076799\omega_i + 0.0211947\omega_i^2 \tag{8}$$

$$\Omega_{bi}^{3} + (2 - 3\eta_{i})\Omega_{bi}^{2} + 3\eta_{i}^{2}\Omega_{bi} - \eta_{i}^{3} = 0$$
⁽⁹⁾

$$\Omega_{aci} = 3\eta_i^2 + 3(1 - 2\eta_i)\Omega_{bi} + \Omega_{bi}^2 + (1 - 3\eta_i)$$
(10)

Furthermore, Patel-Teja EoS in the form of compressibility factor is as following (Bagheri and Mohebbi, 2017):

$$Z^{3} + (C-1)Z^{2} + (A - 2BC - B - C - B^{2})Z + (BC + B^{2}C - AB) = 0$$
(11)

The pressure explicit SRK EoS is as following (Danesh, 1998; Patel and Teja, 1982):

$$P = \frac{RT}{v-b} - \frac{a(T)}{v(v+b)} \tag{12}$$

Furthermore, the SRK EoS based on compressibility factor as follows (Danesh, 1998):

$$Z^{3} - Z^{2} + (A - B - B^{2})Z + AB = 0$$
(13)

The pure component parameters a_i and b_i are given by the following equations (Bagheri et al., 2018):

$$a_{i} = 0.42747 \frac{R^{2} T_{ci}^{2}}{P_{ci}} \left[1 + m_{i} (1 - \sqrt{\frac{T}{T_{ci}}}) \right]^{2}$$
(14)

$$b_i = 0.08664 \frac{RT_{ci}}{P_{ci}}$$
(15)

$$m_i = 0.48 + 1.574\omega_i - 0.176\omega_i^2 \tag{16}$$

The coefficients a, b and c for mixtures are obtained from van der Waals type I mixing rule (Bagheri et al., 2018; Ghalandari et al., 2020):

$$a_m = \sum_i \sum_j x_i x_j \sqrt{a_i a_j} (1 - k_{ij})$$
(17)

$$b_m = \sum_i x_i b_i \tag{18}$$

$$c_m = \sum_i x_i c_i \tag{19}$$

2.3. Semi-empirical equation

There is a great change of analytical expressions, which permit predicting and correlating the density of liquids. Such correlations are usually according to apply of adjustable parameters for each component (Geppert-Rybczyńska et al., 2010; Singh et al., 2014). But, the mentioned types of generalized correlations were not developed for IL-mixture systems. Several semi-empirical equations were presented to predict pure IL density. In this communication, through several presented semi-empirical equations, six semi-empirical equations were selected and the details are given as following (Elbro et al., 1991; Mchaweh et al., 2004; Gunn and Yamada, 1971; Hankinson and Thomson, 1979; Poling et al., 2001; Sandler, 2017; Kontogeorgis and Folas, 2009 Dec 1):

$$\ln \frac{M_w P_c}{R\rho T} = \ln V^0 + \omega \ln V^1$$

$$\ln V^0 = a_0 + a_1 T_r + a_2 T_r^2 + a_3 T_r^3 + a_4 T_r^4 + a_5 T_r^5 + a_6 T_r^6$$

$$\ln V^{1} = b_{0} + b_{1}T_{r} + b_{2}T_{r}^{2} + b_{3}T_{r}^{3} + b_{4}T_{r}^{4} + b_{5}T_{r}^{5} + b_{6}T_{r}^{6}$$
(20)

$$\rho = \frac{M_w}{V_c} \left(a_0 + a_1 \tau^{\frac{1}{3}} + a_2 \tau^{\frac{2}{3}} + a_3 \tau + a_4 \tau^{\frac{4}{3}} \right)$$

$$\tau = 1 - \frac{T_r}{\left[1 + (0.48 + 1.574\omega - 0.176\omega^2)(1 - \sqrt{T_r})\right]^2}$$
(21)

$$\rho = \frac{P_c M_w}{RT_c V_1 (1 - \omega V_2)(a_0 + a_1 \omega)}$$

$$0.2 < T_r < 0.8 : V_1 = b_0 + b_1 T_r + b_2 T_r^2 + b_3 T_r^3 + b_4 T_r^4$$

$$0.8 < T_r < 1 : V_1$$

= $b_0 + b_1 \sqrt{1 - T_r} \log (1 - T_r) + b_2 (1 - T_r) + b_3 (1 - T_r)^2$

$$V_2 = c_0 + c_1 T_r + c_2 T_r^2 \tag{22}$$

$$\rho = \frac{M_w}{V_c \left[V^0 + \left(1 - \frac{\omega \left(b_0 + b_1 T_r + b_2 T_r^2 + b_3 T_r^3 \right)}{T_r + b_4} \right) \right]}$$

$$V^0 = a_0 + a_1 (1 - T_r)^{\frac{1}{3}} + a_2 (1 - T_r)^{\frac{2}{3}} + a_3 (1 - T_r) + a_4 (1 - T_r)^{\frac{4}{3}}$$
(23)

$$\rho = \left(\sum_{i} \frac{P_{ci} M_{wi}}{R T_{ci} x_{i}}\right) \left(a_{0} + a_{1} \omega + a_{2} \omega^{2} + a_{3} \omega^{4}\right)^{-\left(1 + (1 - T_{r})^{\frac{2}{7}}\right)}$$
(24)

Also, the Nasrifar-Moshfeghian (NM) equation was used to predict the density of binary IL + solvent. The equation is expressed by (Nasrifar and Moshfeghian, 1998; Rabari et al., 2014; Mathias and Copeman, 1983):

$$\rho = \frac{M_w}{V_c} \rho_0 \left[1 + \delta (f(T_r) - 1)^{\frac{1}{3}} \right]$$
(25)

$$\rho_0 = 1 + 1.1688 \left(1 - \frac{T_r}{f(T_r)} \right)^{\frac{1}{3}} + 1.8177 \left(1 - \frac{T_r}{f(T_r)} \right)^{\frac{2}{3}} - 2.65811.1688 \left(1 - \frac{T_r}{f(T_r)} \right) + 2.1613 \left(1 - \frac{T_r}{f(T_r)} \right)^{\frac{4}{3}}$$
(26)

$$f(T_r) = \left[1 + c_0 \left(1 - \sqrt{T_r}\right) + c_1 \left(1 - \sqrt{T_r}\right)^2 + c_2 \left(1 - \sqrt{T_r}\right)^3\right]^2, T_r < 1$$

$$f(T_r) = \left[1 + c_0 \left(1 - \sqrt{T_r}\right)\right]^2, T_r > 1$$
(27)

As mentioned, the presented semi-empirical equations, for first time, were used for pure liquids (except Eq. (24)). Subsequently, to develop them to IL-mixture systems the mixing rules must be applied. There are five thermodynamic properties in equations (20) - (27) i.e. acentric factor, critical temperature, critical pressure, critical volume and molecular weight. In this study, various mixing rules were considered. The details of all mixing rules and the final mixing rules that were applied, are provided in Table 3.

2.3.1. Pre-processing of the train and test

The AI learning approaches used to estimate the target parameters applying input parameters are widely nonlinear and depend mainly on the learning database (Memarzadeh et al., 2020; Ali et al., 2018; Nguyen-Huy et al., 2018). In cases where we are dealing with large-scale data processing, dimensionality reduction and subset selection methods can be necessary and useful tools in model development (Xu et al., 2019; Riahi-Madvar and Seifi, 2018). Important points that are essential in designing the precise prediction model for the AI model include the selection of appropriate input and data clustering techniques due to the diversity of the data set (Riahi-Madvar and Seifi, 2018; Loey et al., 2021; Mueller and Massaron, 2021). In order to achieve reliable data subsets for training and testing, the subset selection of maximum dissimilarity method (SSMD) was used to select training and testing subsets through a random manipulation of these data sets. Selecting the most appropriate train sets in the proposed preprocessing strategy is the most important task in SSMD-based approaches for data selection, which extremely depends on the expansion of the data (Riahi-Madvar and Seifi, 2018). In the SSMD method, data selection is not focused only on a specific area. Although these data are very different from each other, they can still show the statistical features of the original dataset (Lajiness and Watson, 2008). The data must first be normalized. Thus, the process of normalization and then denormalization of the initial data set is performed by Eq. (28), respectively.

$$y_{n} = \frac{y_{i} - y_{min}}{y_{max} - y_{min}} \to y_{i} = y_{n}(y_{max} - y_{min}) + y_{min}$$
(28)

The Kennard-Stone (KS) algorithm is used to describe the SSMD in which a subset of N points in j dimensional space is selected (Kennard and Stone, 1969). The candidates of subset for training can be defined by the following matrix Y:

$$y = \begin{pmatrix} y_{11} & \cdots & y_{j1} \\ \vdots & \ddots & \vdots \\ y_{1N} & \cdots & y_{jN} \end{pmatrix}$$
(29)

where Y represents a data set as $Y = (y_1, y_2, \dots, y_j)$ that contains *j* factor and a set of N points in *j* dimensional space defined by *j* factors (Kennard and Stone, 1969). The selection of design points is done sequentially (Riahi-Madvar et al., 2019). The goal in each step is to select points that are evenly

Property Tested mixing rule Final mixing rule $M_w = \sum_i x_i M_{wi}$ $M_w = \sum_i x_i M_{wi}$ M_w $T_c = \frac{T_{ci} + T_{cj}}{2} T_c = \sum_i x_i T_{ci} T_c = \sum_i \sum_j x_i x_j T_{cij} , T_{cij} = \sqrt{T_{ci} T_{cj}}$ $T_c = \sum_i \sum_j x_i x_j T_{cij}$ T_c $T_c = \frac{1}{\sum \frac{x_i}{\sum x_i}}$ $V_c = \sum_i x_i V_{ci}$ V_c $V_c = \left(\frac{\sqrt[3]{V_{c1}} + \sqrt[3]{V_{c2}}}{2}\right)^3 V_c = \sum_i x_i V_{ci} V_c = \sum_i \sum_j x_i x_j V_{cij}, \ V_{cij} = \left(\frac{\sqrt[3]{V_{c1}} + \sqrt[3]{V_{c2}}}{2}\right)^3$ $P_{c} = \frac{P_{ci} + P_{cj}}{2} P_{c} = \sum_{i} x_{i} P_{ci} P_{c} = \frac{1}{\sum_{i} x_{i}} P_{c} = \sum_{i} \sum_{j} x_{i} x_{j} P_{cij} , \ P_{cij} = \sqrt{P_{ci} P_{cj}}$ $P_c = \sum_i x_i P_{ci}$ P_c $P_{c} = \frac{Z_{cij}RT_{cij}}{V_{cii}}, Z_{cij} = \frac{Z_{ci}+Z_{cj}}{2}, T_{cij} = \sqrt{T_{ci}T_{cj}}, V_{cij} = \left(\frac{\sqrt[3]{V_{ci}}+\sqrt[3]{V_{c2}}}{2}\right)^{3}$ $\omega = \frac{\omega_i + \omega_j}{2} \omega = \sqrt{\omega_i \omega_j} \omega = \sum_i x_i \omega_i$ ω $\omega = \sqrt{\omega_i \omega_j}$

Table 3 The details of all mixing rules for thermodynamic properties (Poling et al., 2001; Sandler, 2017; Kontogeorgis and Folas,2009 Dec 1; Nasrifar and Moshfeghian, 1998).

spaced along the object area at each step of the algorithm. The first point is selected close to the average of the dataset and the second point is chosen so that it has the greatest distance from the first point. Eventually, the third point is selected so that it has the longest distance from the aforementioned two points. The training subcomponent involves these aspects of data points, in addition, the test subset includes the remaining data points (Wu et al., 1996). The subsets are selected by maximizing the minimum distance between the train dataset and the rest of the data points in the original dataset. The statistical features of the subsets obtained from the SSMD method are depicted in Table 4. As it can be seen from Table 4; all parameters have approximately the same distributions over train and test datasets, which is in accordance with the equal scale of standard deviation, kurtosis, skewness. Moreover, a wide range of ρ is observed from the longitudinal dispersion data in both training and testing stages.

2.3.2. LXWOA theories and formulation

To determine the coefficient of the semi-empirical equation using experimental data of IL-mixture, optimization algorithms must be used. Some of the algorithms that used to obtain the coefficients of semi-empirical equations are genetic algorithm, artificial bee colony algorithm, imperialist competitive algorithm, particle swarm optimization, and simulated annealing (Singh, 2019). The whale optimization algorithm is a nature-inspired metaheuristic optimization algorithm, which is inspired by the search behavior of humpback whales. The main difference between LXWOA and WOA is the improved convergence of the algorithm. The LXWOA algorithm is a combination of the WOA and Laplace crossover algorithms, which was introduced by Singh for the first time (Singh, 2019). The whale optimization algorithm is a novel natureinspired meta-heuristic optimization method, which was presented by Mirjalili and Lewia (Mirjalili and Lewis, 2016). The WOA method is inspired by the social behavior and the bubble-net hunting strategy of humpback whales in which the bubble-net hunting behavior is used to prey hunting. One of the advantages of the WOA method is that it does not need a large amount of initial information. This feature makes the method have a small number of adjustment parameters that can be easily tuned for a great variety of applications. The LXWOA algorithm consists of the following steps: In the first step, an initial population of size N_p is generated randomly from the data set. In the second step, the WOA method is first followed by the LXWOA in each iteration, then two agents are chosen (Singh, 2019). The best agent is determined by the first agent and the second agent is randomly chosen from the present population. In the third step, laplace crossover operators are used to create two offspring by combining the best and

	Parameter	Mean	Mode	SD	Min	Median	Maximum	Skewness	Kurtosis
Total data set	ρ	1.110	1.0836	0.121	0.772	1.120	1.398	-0.481	3.000
	\mathbf{X}_1	0.459	0.200	0.298	0.0009	0.406	0.997	0.220	1.739
	Т	305.470	298.150	15.583	278.150	303.150	353.15	0.687	3.241
	M_{w1}	236.916	236.30	51.811	107.110	236.300	648.867	0.636	10.208
	T _{c1}	862.300	968.100	162.090	571.300	898.800	1376.1	0.054	1.759
	ω_1	0.712	0.8140	0.209	0.308	0.814	1.408	-0.226	2.264
	V _{c1}	689.000	676.80	146.162	298.240	676.800	1983.5	0.988	13.758
	M _{w2}	59.080	18.020	56.734	18.020	46.070	350	3.552	18.205
	T _{c2}	589.171	647.100	83.601	506.550	562.050	837.15	0.942	3.302
	ω ₂	0.4997	0.345	0.178	0.198	0.564	1.106	0.477	2.667
	V _{c2}	195.260	55.900	186.530	55.900	1670	1175	3.790	20.000
Testing data set	ρ	1.1025	1.083	0.114	0.772	1.108	1.398	-0.350	3.131
-	X ₁	0.453	0.200	0.280	0.0009	0.409	0.997	0.213	1.852
	Т	306.686	298.150	15.593	278.150	303.150	353.15	0.687	3.224
	M_{w1}	238.119	236.300	54.294	107.110	240.000	648.867	0.364	7.896
	T _{c1}	851.230	968.100	164.862	571.300	802.145	1376.100	0.280	1.777
	ω ₁	0.7174	0.814	0.214	0.308	0.814	1.408	-0.142	2.258
	V _{c1}	696.919	676.800	154.383	298.240	701.300	1983.500	0.670	10.302
	M _{w2}	64.049	18.020	64.633	18.020	46.070	350.000	3.220	14.377
	T _{c2}	590.359	647.100	85.869	506.550	562.050	837.150	1.024	3.490
	ω ₂	0.526	0.345	0.183	0.198	0.564	1.106	0.374	2.649
	$\tilde{V_{c2}}$	213.477	55.900	214.080	55.900	167.000	1175.000	3.356	15.254
Training data set	ρ	1.129	1.029	0.134	0.780	1.167	1.395	-0.796	2.989
e	, X1	0.474	0.242	0.335	0.0009	0.400	0.990	0.187	1.481
	T	302.654	298.150	15.195	278.150	298.150	353.150	0.714	3.288
	M_{w1}	234.107	236.300	45.385	107.111	236.300	648.867	1.623	20.296
	T_{c1}	888.174	968.100	152.386	571.30	968.100	13761.000	-0.527	2.167
	ω ₁	0.699	0.814	0.198	0.325	0.814	1.357	-0.501	2.153
	V _{c1}	670.528	676.800	122.960	298.24	676.800	1983.500	2.187	32.166
	M _{w2}	47.478	18.020	28.090	18.02	41.050	134.178	0.760	2.565
	T_{c2}	586.395	647.100	78.008	506.55	560.000	802.050	0.655	2.424
	(U)2	0.436	0.345	0.149	0.198	0.345	0.870	0.527	2.106
	V.2	152.741	55 900	80 346	55 900	167.000	422 000	0.404	2 442

Note: The subscript 1 is related to IL and the subscript 2 is related to solvent.

randomly selected agents. The fitness of each offspring over the worst agent in the present population is evaluated one by one. If offspring has better fitness over the worst agent, it is then replaced by the worst particle. The best search agent is then updated and iteration is increased. Finally, this process is followed by the algorithm till termination criteria is satisfied (Liakos et al., 2018).

2.3.2.1. Whale optimization algorithm. Searching for a prey, encircling prey, and spiral bubble-net feeding maneuver are two main phases that are used by humpback whales to prey hunting. In the searching for a prey (the first phase), a random search is done to explore the prey depending on the position of each other (exploration phase). In the encircling prev and spiral bubble-net attacking (the second phase), the location of prey is perceived by the humpback whales after encircling them and the spiral updating position are implemented (exploitation phase). Since the optimal solution is not known in the a priori search space, the best current candidate solution is considered by the WOA algorithm as the target prey or close to the optimum target point. The WOA algorithm has received a lot of attention in recent years due to its advantages such as simple principle, simple operation, easy implementation, few adjustment parameters, and strong robustness, and many valuable research results have been obtained in this field. Moreover, the research results show that the WOA algorithm significantly outperformed other optimization algorithms, such as differential evolution and gravitational search in terms of solution accuracy and algorithm stability. Therefore, according to the above explanations, this algorithm was used in the present study. After the position of the best search agent is defined by the algorithm, the position of the other search agents will be updated towards the best search agent. The mathematical model of WOA is provided as follows: let N_P be the population size and M_{itr} be MaxIter (Mirjalili and Lewis, 2016; Liakos et al., 2018; Kotsiantis et al., 2006; Dutton and Conroy, 1997; Maxwell et al., 2018). The method consists of two adjustable parameters a and b, which the value of the parameter a linearly decreases in the range 2 to 0 through iterations and the value of the parameter b reduces from -1 to -2. Next, the coefficients A_i , C_i and a random number l_i are calculated for agent *i* by the following equations (Singh, 2019):

$$A_i = 2ar_1 - a, C_i = 2r_2, l_i = (b - 1)r_3 + 1$$
(30)

where r_1 , r_2 and r_3 represent three random numbers that are uniformly distributed on the interval from 0 to 1. Next, a random number p_r is generated in (0; 1). If $0.5 \ge p_r$ and $|A_i| \ge 1$, the d^{th} particle of the next position $(x_i^d(t+1))$ is updated by the i^{th} agent through the $x_{rand}^d(t)$ agent as follows (Singh, 2019):

$$D_{i}^{d} = \left| C_{i} x_{rand}^{t}(t) - x_{i}^{d}(t) \right|, x_{i}^{d}(t+1) = x_{rand}^{d}(t) - A_{i} D_{i}^{d}$$
(31)

where $x_{rand}^{d}(t)$ indicates a random position of i^{th} agent in d^{th} dimension at time *t*. Now, If $p_r < 0.5$ and $|A_i| < 1$, the d^{th} particle of next position $(x_i^d(t+1))$ is updated by the i^{th} agent through the x_{best}^d agent as follows (Singh, 2019):

$$D_{i}^{d} = \left| C_{i} x_{best}^{t}(t) - x_{i}^{d}(t) \right|, x_{i}^{d}(t+1) = x_{bset}^{d}(t) - A_{i} D_{i}^{d}$$
(32)

Next, if $p_r \ge 0.5$ the following spiral model is generated by evaluating the distance between the whale postion (x_i) and prey postion $(x_{best}$ (t)) in d^{th} dimension $D_i^d = |C_i x_{best}^t(t) - x_i^d(t)|$ at iteration t to imitate the helix-shaped movement of humpback whales (Singh, 2019):

$$x_i^d(t+1) = D_i^d e^{bl_i} \cos(2\pi l_i) + x_{bset}^d(t)$$
(33)

The Laplace crossover (LX) is proposed by Deep and Thakur for the first time in which two off-springs i.e. $y_1 = (y_1^1, y_1^2, \dots, y_1^m)$ and $y_2 = (y_2^1, y_2^2, \dots, y_2^m)$ are generated from a pair of parents i.e. $x_1 = (x_1^1, x_1^2, \dots, x_1^m)$ and $x_2 = (x_2^1, x_2^2, \dots, x_2^m)$ in such a way that both of the offspring have a symmetric position over the parents position. Next, two uniformly distributed random numbers u_i 2 [0; 1] and v_i 2 [0; 1] are firstly generated (Mirjalili and Lewis, 2016; Kotsiantis et al., 2006). Then, a random number l_i is generated by simply inverting the distribution function of Laplace distribution as follows:

$$l_i = \begin{cases} p - qln(u_i)v_i \le 0.5\\ p + qln(u_i)v_i > 0.5 \end{cases}$$
(34)

where p ϵ R and q > 0 are called the location parameter and the scale parameter, respectively.

The off-springs are generated as follows:

$$y_1^i = x_1^i + l_i |x_1^i - x_2^i|, y_1^i = x_2^i + l_i |x_1^i - x_2^i|$$
(35)

If for some of *i* the created off-spring are outside the search space i.e. $y^i < y^i_{low}$ or $y^i > y^i_{up}$, a random number is then selected from $\left[y_{low}^{i}, y_{up}^{i}\right]$ for y^{i} as the generated off-spring. For smaller values of q, LX produces the off-spring close to the parents and for greater values of q; LX produces the offsprings away from the parents. For fixed values of p and q, LX dispenses off-springs according to the parents dispersion (Mirjalili and Lewis, 2016; Liakos et al., 2018). An equation for ρ is firstly defined based on previous literature to run the algorithm. The parameters obtained from the equation are then used as variables for the LXWOA algorithm. Moreover, a suitable objective function will be defined for the implementation of the algorithm in the following section. In this regards, at the end of each iteration, the best value of x_{best}^d must be found by the algorithm through changing the values of the variables. Eventually, the optimal solution rapidly converges towards a local optimum after a couple hundred times of running the algorithm. Eventually, after running the program a couple of hundred times, the convergence towards the optimal solution is achieved by the algorithm. This means that the hunting location has been identified and surrounded by the humpback whale. The flowchart of the implied algorithm is noticed in Fig. 1.

The main contribution of the proposed LXWOA algorithm is addressed in this subsection. After performing repeated runs of the optimization algorithm, it was found that it is not feasible to provide an equation that covers all the data. This creates some difficulty; first of all, the algorithm will not converge properly. The second problem is that the error value R_2 will increase because the algorithm has insisted on synchronizing and fitting itself overall data despite the high errors. Thus, a solution must be provided to prevent this problem at the various stages of the learning process. This means that one should try to converge the proposed model to less error data as much as possible. In this regard, the cumulative distribution function (CDF) function of the errors is defined as an objective function for the LXWOA optimization algorithm. Therefore, the objective function is considered as a coefficient ($\gamma = 0.8$) of CDF for the error defined as follows:

Fig. 1 The algorithm of LXWOA method.

$$Error(i) = y_{Predictedvalue}(i) - y_{Observedvalue}(i)$$

$$Fitness = \gamma \left(\sum |CDF_{errors}| \right) \tag{36}$$

Indeed, some of the data generated by the LXWOA model may differ significantly from the actual data. Therefore, there is a lot of error in this data. This portion of the data may contain up to 10 to 20 percent of total data per run of the optimizer program. Therefore, if we want to present the cost function in the optimization algorithm in such a way that it puts pressure on all data to reduce the total error, it causes the model to move away from convergence in data with less error at the cost of achieving a lower error. In this regard, we try to reduce the model pressure on high errors each time the optimization process is performed. For this purpose, the CDF of the errors is first obtained. Part of the errors (with a coefficient (0.8)) is then considered as a criterion for the cost function.

3. Results and discussion

No CEoS can prepare exact descriptions of behavior of realfluid in all interest regions. Both SRK EoS and PT EoS consider only the attractive and repulsive intermolecular force between molecules. However, they have fundamental challenge to pure and mixture liquid density and the modification has been made to improve CEoS capability using modifying the repulsive and attractive terms (Sheikhi-Kouhsar et al., 2015). In this study, in the first step, the accuracy of SRK EoS and PT EoS was investigated. For example, Fig. 2 indicates the density behavior of C_6 mimBr + EGMME at $x_{IL} = 0.3990$ and $x_{IL} = 0.7003$ and C_6 mimPF₆ + EGMME at $x_{IL} = 0.2006$ and $x_{IL} = 0.8019$ and at atmospheric pressure based on SRK EoS and PT EoS. Both CEoSs could not predict the mixture density with satisfactory accuracy. To decrease the deviation, the binary interaction parameter (k_{ij}) was used for both of them; however, the effect of interaction parameter on improving the modeling results was insignificant.

As another suggestion to model the IL-mixture density, application of semi-empirical equations was studied. The various semi-empirical equations were developed in this communication (see Appendix A). The semi-empirical equation parameters are determined by matching prediction density (based on semi-empirical equation) with experimental data. To model the density of IL-mixture systems based on semiempirical equations, two methods was considered. In the first method, the coefficients of Eqs. (20) - (24) that were presented by authors (Valderrama and Zarricuetac, 2009; Hosseini et al., 2013) with all mixing rules that are provided in Table 3, was applied. The obtained results indicated presented coefficients was not appropriate idea to predict IL-mixture systems. For instance, Fig. 3 indicates the results of C_4 mimHSO₄ + water at x_{IL} = 0.2066 and C_2 mim C_2 SO₄ + water x_{IL} = 0.8775 using

Fig. 2 The density behavior of (a) C_6 mimBr + EGMME (system I: $x_{IL} = 0.3990$; system II: $x_{IL} = 0.7003$) and (b) C_6 mimPF₆ + EGMME (system I: $x_{IL} = 0.2006$; system II: $x_{IL} = 0.8019$). The experimental data are from Pal and Kumar (Pal and Kumar, 2012).

Fig. 3 The density behavior of (a) C_4 mimHSO₄ + water, $x_{IL} = 0.2066$ and (b) C_2 mimC₂SO₄ + water, $x_{IL} = 0.8775$. The experimental data are from Bhattacharjee et al. (Bhattacharjee et al., 2012).

Eqs. (20) - (24) with available coefficients in the literature (Valderrama and Zarricuetac, 2009; Hosseini et al., 2013). The behavior of all equations is out of experimental data. Indeed, this behavior was predictable. Due to the presented coefficients by authors (Valderrama and Zarricuetac, 2009; Hosseini et al., 2013) were obtained based on pure experimental data.

In the second method, the coefficients of Eqs. (20) - (25) was optimized using improved laplacian whale optimization algorithm. ILs composed of various cation structures and due to the behavior of each cation-family is similar, subsequently; to present a comprehensive IL-mixture density model, the semi-empirical equation coefficients of each cation-family were obtained, separately. In order, to obtain the coefficients, 70% of experimental data of each cation-family were used (according to SSMD method) and the rest of them were applied

to investigate the accuracy of presented modification. Table 5 indicates the obtained results of coefficients of each cation-family.

The statistical validation of optimized coefficients was investigated by introducing four statistical parameters of correlation factor (R^2) , average absolute percent deviation (AAPD), standard deviation (STD) and root mean squared error (RMSE). These parameters are formulated as following and the values of them are provided in Table 6.

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} \left(\rho_{Calc.}(i) - \rho_{Exp.}(i)\right)^{2}}{\sum_{i=1}^{N} \left(\rho_{Calc.}(i) - \rho_{Exp.}(i)\right)^{2}}$$
(37)

$$AAPD = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\rho_{Exp.} - \rho_{Calc.}}{\rho_{Exp.}} \right| \times 100$$
(38)

Table 3 The Obthinzation coefficients of semi-empirical equation based on cation-family	Table 5	The optimization	coefficients o	of semi-empiric	al equation based	on cation-family
--	---------	------------------	----------------	-----------------	-------------------	------------------

	BuPy	C ₂ mim	C ₃ mim	C ₄ mim	C ₆ mim	C ₈ mim	Hmim	Mmim	Moim	OcPy	Omim
Eq.	(20)										
a_0	1.4276	1.4333	3.4141	2.5435	1.5269	2.2006	1.2667	1.4437	2.6180	1.6672	1.4351
a_1	-24.4288	-12.1559	-16.3907	-20.5247	-18.5703	-25.5447	-22.8585	-19.3457	-17.1898	-27.4722	-25.7281
a_2	90.4586	89.7786	96.8990	100.7207	110.7657	91.6898	79.7247	111.2392	101.9145	85.9381	98.3142
a ₃	-200.1014	-198.2336	-210.2945	-187.1111	-167.4654	-179.7048	-202.6287	-206. 6067	-199.7036	-188.7557	-208.7630
a_4	289.1036	375.1405	318.5853	302.9995	297.3273	360.1928	350.1520	325.2051	378.4956	398.9698	341.7952
a_5	-265.4304	-222.9168	-238.7594	-274.5659	-205.1692	-297.9199	-301.6974	-269. 9160	-241.8707	-250.9096	-225.3736
a_6	79.9026	91.1474	99.8885	86.3146	55.1304	69.2458	92.8226	64.1757	95.4982	79.2156	80.3134
b_0	12.2575	10.1718	30.4343	23.3592	20.1003	17.1419	11.2923	9.6965	16.8973	21.0296	15.2065
b_1	-125.2630	-140.5759	-145.0790	-150.5398	-134.8022	-120.1509	-138.4204	-145.5454	-124.7027	-117.9474	-115.4756
b_2	400.2939	505.1158	477.5352	563.3992	489.2882	471.6863	523.9821	512.4536	469.5230	485.1155	530.7250
b_3	-925.9014	-999.6598	-851.6390	-874.8194	-905.6473	-963.5568	-812.2813	-887.7445	-945.4015	-824.9164	-911.4074
b_4	1241.7436	1300.4585	1225.7009	1150.4076	1281.2225	1200.4156	1269.2198	1250.3201	1195.2240	1312.8904	1275.3236
b_5	-707.6116	-714.8203	-680.4270	-750.7814	-697.3104	-760.1877	-720.8627	-777.6309	-685.1064	-711.8785	-730.7766
b_6	177.1086	197.4633	164.1537	185.7426	155.2871	161.8064	149.8930	185.8250	123.4602	201.9203	134.9338
Eq.	(21)										
a_0	1.1278	0.7955	0.8490	1.0164	0.9630	0.9295	1.0516	0.9245	0.9888	1.0989	1.1354
a_1	0.9789	0.8439	0.7985	0.8510	1.1044	1.2000	0.7999	1.2331	0.1219	1.1945	1.1182
a_2	1.3484	1.6776	1.3846	1.8330	1.8698	1.7689	1.2860	1.3067	1.9288	1.2168	1.7321
a_3	-2.3143	-2.6155	-2.4477	-2.5247	-1.9864	-1.9550	-2.7765	-1.8697	-2.5991	-2.12/3	-2.2932
a_4	1.6046	2.1912	1.7298	1.9164	2.3200	2.3160	1.6645	2.3982	2.5198	2.5117	1.8912
Eq.	(22)	0.5705	0.0419	0 1021	0.2150	0.5041	0 7740	0.9910	0.7509	0.000	0 2749
a_0	0.1/04	0.5795	0.9418	0.1931	0.3139	0.3941	0.7740	0.8810	0.7398	0.0990	0.2748
a_1	-0.101/	-0.0466	-0.3398	-0.0313	-0.2339	-0.0914	-0.1094	-0.1151	-0.1340	-0.0485	-0.0911
<i>c</i> ₀	0.1010	0.2555	0.1452	0.1492	0.3222	0.4313	0.2803	0.3075	0.3060	0.3093	0.4205
<i>c</i> ₁	-0.1238	-0.1900	-0.8515	-0.0369	-0.0239	-0.0760	-0.0427	-0.0/10	-0.0232	-0.0364	-0.2085
C2 1	-0.0431	-0.1971	-0.0893	-0.0472	-0.1043	-0.0712	-0.0977	-0.0852	-0.0333	-0.0393	-0.0304
b_0	1 5863	0.9099	0.8340	1 2209	1 3500	1.3307	1.2332	1 5338	1 6114	1 4690	1 6237
b_1	0.0008	0.5002	0.0349	0.4415	0.3555	0.5366	0.7005	0.8023	0.5367	0.0408	0.5360
b_2	-1 2906	-0.0432 -1.1832	-0.9130	-1.6756	-0.5555 -1.5181	-0.5300	-2.4936	-1.9311	-0.3307 -2.4297	-0.9498 -1.2415	-0.3309 -1.1341
b_{4}	1 1 1 96	1.1032	1 0380	1 4301	1 3295	1 6635	0.8577	1 7030	1 6049	1.6873	1.6685
Eq.	(23)	1.5720	1.0500	1.4501	1.5275	1.0055	0.0577	1.7050	1.0049	1.0075	1.0005
a_0	0.9237	0.9546	0.8591	1.0457	1.0078	1.1426	1.0658	1.1769	1.1013	1.0215	0.9991
a_1	-1.5944	-1.8065	-1.0305	-1.7807	-1.5123	-1.2685	-1.6932	-1.8750	-1.9345	-1.1633	-1.2911
a_2	1.4910	1.1961	1.4801	1.6313	1.7802	1.9290	1.6889	1.5471	1.9232	1.5406	1.5774
a_3	-0.5045	-0.9082	-0.5401	-0.8468	-1.2402	-0.7031	-1.2997	-1.3899	-0.6139	-1.4053	-0.9271
a_4	0.1691	0.2583	0.8386	0.1172	0.2183	0.1331	0.1459	0.1639	0.2663	0.4048	0.5017
b_0	-0.1475	-0.4908	-0.2453	-0.2381	-0.1930	-0.2464	-0.1167	-0.2775	-0.3877	0.2138	0.2800
b_1	0.3936	0.6255	0.7937	0.8723	0.9885	0.3403	0.9230	0.5377	0.5324	0.1234	0.3024
b_2	-0.0788	-0.0958	-0.4074	-0.0130	-0.0344	-0.0412	-0.0212	-0.0715	-0.0950	-0.0812	-0.1439
b_3	-0.0247	-0.0444	-0.5809	-0.0571	-0.0986	-0.0653	-0.0826	-0.0673	-0.0325	-0.0559	-0.0197
b_4	0.8583	0.8467	0.9535	0.9651	1.0002	0.9752	0.9736	1.0066	0.9032	1.1348	0.8155
Eq.	(24)										
a_0	0.2460	0.4161	0.4562	0.2525	0.3958	0.3565	0.1419	0.2463	0.3942	0.3905	0.3069
a_1	0.1202	0.1873	0.1806	0.1746	0.2739	0.2780	0.1672	0.1348	0.1415	0.3984	0.3195
a_2	0.3704	0.3878	0.8206	0.9808	0.4860	0.7096	0.6277	0.7660	0.5270	0.5532	0.2534
<i>a</i> ₃	0.7872	0.1991	0.4587	0.6378	0.3589	0.3845	0.3397	0.4229	0.8887	0.6658	0.3048
Eq.	(25)										
δ	0.4359	0.4119	0.4195	0.1330	0.8724	0.0561	0.6827	0.3716	0.6354	0.8796	0.4114
c_0	0.7885	0.1887	0.9206	0.6706	0.9045	0.9032	0.1506	0.4059	0.7984	0.6710	0.5605
c_1	-0.5214	-0.1829	-0.1358	-0.2606	-0.5895	-0.6440	-0.5259	-0.3548	-0.3120	-0.6672	-0.6436
<i>c</i> ₂	1.5579	1.7272	1.5768	1.5816	0.8496	2.1506	2.1369	1.5607	20.1661	1.3143	0.8827

$$MSE = \frac{\sum_{i=1}^{N} \left(\rho_{Calc.}(i) - \rho_{Exp.}(i) \right)^2}{N}$$
(39)

$$STD = \sum_{i=0}^{N} \sqrt{\frac{\left(\rho_{Calc.}(i) - \bar{\rho_{Exp.}(i)}\right)^2}{N}}$$
(40)

For example, Fig. 4 indicates the total results of the correlation factor based on Eq. (20) and C₄mim-family with applying test data subcategories. The solid 45° line shows the details of fitting between the experimental data and the related ones, whereas circles point show the comparison between the obtained results based on Eq. (20) and the experimental density data. The R^2 value is 0.9856. Indeed, closeness of the circle

Table 6 T	Table 6 The values of evaluation criteria.										
	BuPy	C ₂ mim	C ₃ mim	C ₄ mim	C ₆ mim	C ₈ mim	Hmim	Mmim	Moim	OcPy	Omim
Eq. (20)											
R^2	0.9843	0.9826	0.9810	0.9672	0.9965	0.9610	0.9850	0.9660	0.9882	0.9817	0.9779
RMSE	0.0151	0.0268	0.0658	0.0235	0.0425	0.0630	0.0409	0.0604	0.0563	0.0634	0.0261
Mse $\times 10^3$	0.1459	0.4930	0.1256	0.5311	0.3114	0.6735	0.2278	0.1295	0.5176	0.4596	0.3616
AAPD	0.6203	0.1036	0.5026	0.2572	0.3013	0.3208	0.1818	0.0895	0.2943	0.2166	0.2724
STD	1.2825	0.8968	0.7412	0.9432	0.6912	1.2285	0.8310	0.6492	0.5619	0.9588	1.0348
Eq. (21)											
\mathbb{R}^2	0.9694	0.9877	0.9866	0.9665	0.9765	0.9671	0.9622	0.9891	0.9820	0.9889	0.9796
RMSE	0.0490	0.0417	0.0980	0.0186	0.0332	0.0246	0.0678	0.0568	0.0542	0.0178	0.0203
Mse $\times 10^3$	0.5543	0.2363	0.6750	0.6876	0.3615	0.1061	0.6381	0.1885	0.2560	0.3759	0.2241
AAPD	0.2200	0.3742	0.7296	0.8094	0.2403	0.1911	0.2633	0.2744	0.5545	0.1070	0.4451
STD	0.6077	1.0013	1.3647	0.7242	0.8031	0.7237	1.2732	0.9935	0.9702	0.6824	1.2029
Eq. (22)											
R^2	0.9648	0.9874	0.9902	0.9611	0.9814	0.9829	0.9879	0.9798	0.9894	0.9969	0.9874
RMSE	0.0602	0.0236	0.0820	0.0465	0.0329	0.0677	0.0191	0.0102	0.0605	0.0515	0.0772
Mse $\times 10^3$	0.5845	0.1933	0.4885	0.6527	0.2146	0.5924	0.6365	0.1818	0.2674	0.6023	0.2503
AAPD	0.6905	0.1205	0.3155	0.7333	0.2660	0.3034	0.8785	0.2799	0.3015	0.2622	0.1240
STD	0.8942	0.5669	0.4012	0.6171	1.2187	0.6396	1.2972	1.2513	0.5196	0.7305	0.8006
Eq. (23)											
\mathbb{R}^2	0.9780	0.9671	0.9856	0.9683	0.9975	0.9744	0.9727	0.9822	0.9631	0.9927	0.9839
RMSE	0.0243	0.0233	0.0642	0.0660	0.0592	0.0306	0.0114	0.0298	0.0456	0.0598	0.0600
Mse $\times 10^3$	0.2669	0.1757	0.7953	0.6583	0.5247	0.2842	0.6188	0.4152	0.5709	0.3258	0.1862
AAPD	0.0726	0.6398	0.2103	0.2083	0.2473	0.8620	0.1735	0.0448	0.5440	0.7945	0.9860
STD	0.6415	0.8807	0.6718	1.0162	0.7894	0.9218	0.6626	0.8150	0.7477	0.8000	0.8267
Eq. (24)											
R^2	0.9834	0.9629	0.9600	0.9725	0.9838	0.9812	0.9793	0.9633	0.9940	0.9865	0.9909
RMSE	0.0168	0.0574	0.0419	0.0217	0.0496	0.0196	0.0622	0.0135	0.0286	0.0589	0.0641
Mse $\times 10^3$	0.3712	0.2964	0.8294	0.3186	0.2629	0.1378	0.2661	0.3379	0.4493	0.5525	0.6964
AAPD	0.1296	0.1990	0.7658	0.3636	0.4531	0.8402	0.2328	0.2751	0.1893	0.5120	0.0473
STD	0.6227	0.9080	1.0767	1.0769	0.7726	0.8680	0.6457	1.1202	0.5200	0.7332	0.8881
Eq. (25)											
\mathbb{R}^2	0.9874	0.9953	0.9705	0.9864	0.9806	0.9634	0.9818	0.9694	0.9868	0.9850	0.9878
RMSE	0.0529	0.0387	0.0952	0.0571	0.0569	0.0529	0.0282	0.0508	0.0474	0.0142	0.0350
Mse $\times 10^3$	0.6510	0.2341	0.8651	0.6813	0.3055	0.3780	0.1360	0.4671	0.2850	0.5357	0.2802
AAPD	0.0558	0.6734	0.5588	0.4156	0.9137	0.6346	0.0422	0.2637	0.2711	0.0939	0.6510
STD	1.0151	0.6302	1.0973	0.5869	0.6230	1.1140	0.6719	0.9082	0.8108	1.0359	0.6241

Fig. 4 Predicted versus experimental IL density mixtures for test datasets. The reported results are related to Eq. (23) and C₄mim-family.

points to the solid line in Fig. 4 demonstrates the presented modification technique has acceptable ability to predict IL-mixture density.

The six semi-empirical equations gave different results and any cation-family presented various results to predict the density of IL-mixture system at all temperatures. For example, Fig. 5 indicates the density behavior of OmimBF₄ + ethanol ($x_{IL} = 0.247$ and $x_{IL} = 0.839$) and C₄mimClO₄ + ethanol ($x_{IL} = 0.709$ and $x_{IL} = 0.900$) based on semi-empirical equations (using test data). According to Fig. 5, the semi-empirical equations could predict the mixture density with acceptable accuracy. All semi-empirical equations have similar behavior and they could predict the mixture density with acceptable accuracy.

All semi-empirical equations, except Eq. (24), only were used to predict pure IL density up to now. For first time, we have examined the capability of these equations to predict the density of IL-mixture system at various mole fractions and temperatures. Subsequently, mixing rules had significant

Fig. 5 The density behavior of (a) $OmimBF_4$ + ethanol, $x_{IL} = 0.247$ and $x_{IL} = 0.839$ (b) $C_4mimClO_4$ + ethanol, $x_{IL} = 0.709$ and $x_{IL} = 0.900$. The obtained results based on Eq. (20) with optimized coefficients. The experimental data are from Mokhtarani et al. (Mokhtarani et al., 2008).

role in this development and they show the effect of component mole fraction. According to Table 3 various mixing rules, at least three mixing rules for each property, was investigated. The mixing rule of all thermodynamic properties except acentric factor and critical temperature, was linear. The experimental data density mixture are function of mole fraction and temperature and all semi-empirical equations are function of reduced temperature (T_r), therefore, critical temperature mixing rule have remarkable influence on accuracy of obtained results based on semi-empirical equations. Several critical temperature mixing rules have been investigated but non-linear ones indicated better results. This mixing rule is function of second power of mole fraction and also second order of radical of both IL and solvent critical temperature ($\sqrt{T_{ci}T_{ci}}$). To more investigation of accuracy of obtained confidents, the density behavior of IL binary systems that was unused in the optimization coefficients procedure was model. For instance, Fig. 6 indicates the results of BuPyBF₄ + water, $x_{IL} = 0.144$ and $x_{IL} = 0.737$ and OcPyBF₄ + water, $x_{IL} =$ 0.242 and $x_{IL} = 0.816$ binary systems. The obtained results indicated the all semi-empirical equation can predict the behavior of density of IL-mixture with satisfactory accuracy and it demonstrates the accuracy of presented models. Furthermore, the values of AAPD of all binary systems are provided in Table 7. According to Table 7, the AAPD of Eqs. (20) - (25), SRK EoS and PT EoS are 0.7312, 0.7666, 0.7631, 0.7583, 0.7750, 0.7560, 22.0470, 18.9372, respectively. Indeed, Eqs. (21) - (23) have almost the similar functionality of temper-

Fig. 6 The density behavior of (a) $BuPyBF_4$ + water, $x_{IL} = 0.144$ and $x_{IL} = 0.737$ and (b) $OcPyBF_4$ + water, $x_{IL} = 0.242$ and $x_{IL} = 0.816$. The experimental data are from Mokhtarani et al. (Mokhtarani et al., 2009).

ature and they need the similar input, subsequently, the AAPD of them is almost similar. Also, the results of NM equation are considerable. This equation requires critical temperature, molecular weight and critical volume as input but the temperature functionality of NM equation is contained two different non-linear expressions.

In the case of density mixtures, as mentioned, influence of mixing rule to extend the critical properties and molecular weight is significant and it affect the accuracy of semi-empirical equation. According to Table 3, different mixing rules were applied to generalize the pure thermodynamics properties to binary mixtures. After investigation the accuracy and comparison the AAPD values of obtained results, the final mixing rules for each thermodynamics properties were selected. For example, the

obtained results of C₂mimBF₄ + acetone binary system at $x_{IL} = 0.5772$ and $x_{IL} = 0.8304$ based on equation (25) and C₂mimBF₄ + dimethylsulphoxide binary system at $x_{IL} = 0.3417$ and $x_{IL} = 0.6717$ based on equation (23) are presented in Fig. 7. The optimization process was performed based on both final and linear mixing rules ($Q = \sum_i x_i Q_i : Q = M_w$, T_c, V_c, P_c, ω). According to Fig. 7, the selection of mixing rules had considerable effect on the optimized coefficient and furthermore, prediction of density of IL-mixture.

4. Conclusion

In the present communication, six semi-empirical equations with various mixing rules was employed to calculate the den-

Table 7	The AAPD	values of Ed	as. (20)–(25) and CEoSs.
I abic /	I III I II II D	values of L	45. (20) (25	, and CLODS.

System number*	Eq. (20)	Eq. (21)	Eq. (22)	Eq. (23)	Eq. (24)	Eq. (25)	SRK EoS	PT EoS
1	0.2366	0.9938	0.6236	0.2660	0.5182	0.1118	20.6262	18.3660
2	0.3138	0.9736	0.4391	0.6749	0.7861	0.9652	22.2795	25.7948
3	0.4822	0.4050	0.5199	0.8488	0.7260	0.3481	17.8561	31.2398
4	0.9775	0.3402	0.3065	0.7040	0.3442	0.8307	19.7477	16.4109
5	0.6457	0.5299	0.1762	0.6311	0.7489	0.3351	24.2136	18.8411
6	0.0599	0.7519	0.4793	0.5294	0.6676	0.2002	17.4252	29.3787
7	0.4855	0.3745	0.2577	0.2571	0.1959	0.3253	19.9113	14.9408
8	0.0024	0.8064	0.5500	0.5801	0.2602	0.7941	22.6095	30.5583
9	0.1135	1.0045	0.4547	0.34/6	0.3795	0.84/3	28.3839	20.2513
10	0.0138	0.3204	0.8008	0.78825	0.0452	0.5885	24 2074	10.3090
12	0.3506	0.3614	0.5615	0.1624	0.4078	0.4751	29.3464	13 5489
13	0.1209	0.5865	0.1637	0.8849	0.8533	0.8700	30 0776	21.9492
14	0.0255	0.6330	0.4872	0.7121	0.3213	0.7359	18.3771	14.7050
15	1.1136	0.4185	0.9857	0.5823	0.6095	0.8825	22.2321	23.5823
16	1.2179	0.4185	0.7488	0.4786	0.7445	1.1079	15.9280	11.2609
17	0.5172	0.8909	0.8568	0.5696	0.6746	0.7641	14.2380	10.9519
18	0.7567	0.7174	0.7288	0.8311	0.8608	0.4860	17.4102	20.8407
19	1.1845	0.4581	1.3931	0.6394	1.1597	0.6883	25.1026	23.3282
20	0.8233	1.1454	0.7946	0.7233	0.5799	0.7766	16.0869	14.5742
21	0.9013	1.0476	0.3938	1.0127	0.9457	1.0858	17.1235	18.5200
22	0.9249	0.9706	0.4059	0.6363	1.4645	0.8279	20.4922	18.4954
23	1.0355	0.8541	1.0774	0.3261	0.7345	0.9145	21.3880	19.2354
24	0.7399	0.5475	0.8528	1.1006	1.1143	1.1042	13.2281	15.3350
25	0.4353	0.6610	0.6409	0.6654	0.4502	0.4738	25.0577	21.5457
26	0.6793	0.7609	1.1913	0.9286	0.8049	1.3186	18.1603	14.2094
27	0.9769	1.0/15	0.9096	1.1884	1.0869	0.5985	19.4429	10.3003
28	0.7649	0.7374	1.1308	0.8/08	0.0270	0.5799	23.2291	18.4309
30	1.0510	0.8341	0.8102	1.0620	0.7719	1.0049	15 2965	13 3316
31	0.8245	0.6287	0.9059	0.9214	0.9887	0 6440	20.0022	16 4984
32	0.5583	0.8584	0.8950	1.3014	1.1800	0.9410	23.1882	19.5751
33	0.9300	1.1585	1.0751	0.6562	0.4595	0.7722	16.0683	15.3228
34	0.7717	0.7922	0.8343	0.8596	1.1295	0.9228	22.1401	20.1552
35	0.8754	0.7628	0.6590	1.1077	0.7437	0.6417	21.2102	18.2696
36	0.7837	0.3913	1.1158	0.5664	0.8120	0.4831	25.2277	23.5010
37	0.3936	1.0511	0.6216	0.9803	0.7890	1.2878	22.3686	19.6221
38	0.9286	0.5020	0.7248	0.7647	0.9881	0.5595	20.2726	17.3448
39	0.7720	0.7740	0.5062	1.0887	1.1570	0.8122	24.0508	23.4803
40	0.9569	0.9026	0.7202	0.5310	0.4262	1.2882	25.2024	20.3102
41	1.0547	1.0610	0.9624	0.6344	0.6095	0.7403	19.5668	16.2232
42	0.7944	0.8800	0.7353	0.8147	0.8221	1.1154	15.0228	13.5625
43	1.3939	0.9507	0.5585	1.0/9/	0.4545	1.3330	20.2113	18 4001
44	0.7020	0.7874	0.9803	0./192	1.3022	0.8104	17.1145	18.4901
45	0.9280	0.9151	0.8137	0.5581	1 1561	0.0103	16 2416	11 3694
47	1 0205	0 4208	0 7411	0.9023	0 5926	0.5682	18 5587	16 4248
48	0.6093	0.8715	0.8273	0.7207	0.6800	0.6479	22.1217	14.3894
49	1.1242	0.5098	0.5184	1.0568	0.9178	0.9191	20.4540	15.1821
50	0.9328	0.7951	0.7125	0.8855	1.0723	0.7718	26.1576	19.5411
51	1.0071	0.6699	0.9141	1.0862	0.5984	0.6173	17.4104	20.3195
52	1.0873	0.5733	0.7026	0.6897	0.8417	0.7947	20.4437	25.4147
53	0.9315	0.9009	0.4173	0.8277	0.9166	0.8500	26.1834	22.4174
54	0.8387	1.1847	1.1503	0.6041	0.6460	0.6555	27.2895	20.3707
55	0.6351	0.3769	0.8066	0.2743	1.0362	1.3064	19.4910	16.1931
56	1.1824	0.5897	1.2777	0.4010	0.4390	0.7860	30.2903	25.2651
57	0.9700	0.9605	1.4981	0.7703	0.5992	1.0047	20.5929	14.6114
58	0.7653	1.0829	0.7731	1.0306	0.9872	1.2551	24.4616	19.4590
59	0.6842	0.5678	0.8767	0.7822	1.1243	0.5189	22.3143	17.2093
60	0.9165	1.2557	0.7068	0.9975	0.6618	0.8639	28.2994	20.3600
62	1.0381	0.9686	0.5094	0.0778	1.0406	0.8255	25.44/4	10.5362
63	0.9038	0.7088	0.7302	0.5880	0.0784	0.7545	20.3667	16 1150
03	0.7250	0.7900	0.9554	0.7909	0.7062	1.1759	20.3007	10.1150
							(continued or	i next page)

 Table 7 (continued)

System number*	Eq. (20)	Eq. (21)	Eq. (22)	Eq. (23)	Eq. (24)	Eq. (25)	SRK EoS	PT EoS
64	0.8682	1.0271	0.7306	1.1561	0.8568	0.6108	31.2142	25.2189
65	0.4962	0.4970	0.5676	0.7679	0.5670	0.8960	19.3296	12.3942
66	1.0135	0.9702	0.6312	1.1071	0.9584	0.5956	22.2232	20.4761
67	0.6528	0.6173	1.0526	0.4040	1.1928	1.3312	32.3213	26.5113
68	1.0590	1.0087	0.9463	1.3112	0.8234	0.9441	23.2044	19.3744
69	0.9628	0.7772	1.2073	0.4152	0.6455	1.1672	25.4590	15.4579
70	0.6561	0.7240	0.8028	0.5473	1.0702	0.7092	26.3738	22.3680
71	0.9642	0.4912	0.7451	1.0189	0.6651	0.5748	20.1293	24.1283
72	0.8688	1.1057	0.9951	0.8658	0.9186	1.0616	19.3760	13.5043
73	1.1162	0.7521	1.1260	1.0728	0.5636	0.9677	26.2362	17.3098
74	0.9265	0.7323	1.0939	0.8414	1.0548	0.3449	29.4522	25.1483
75	0.8010	1.0950	0.9583	0.5727	0.9696	1.0/53	26.3080	20.2611
/6	0.5967	0.4691	0.8234	1.1601	0.7618	0.51/3	22.1527	18.1489
// 79	0.9740	1.1055	0.9506	0.0131	0.4281	1.12/9	18.3002	11.2910
70	0.7856	0.8141	0.0111	1.04/5	0.0132	0.9081	20.1981	14.4174
79 80	0.7830	0.8208	1.0294	0.0343	0.6100	0.9245	27.0570	19.2077
81	1.0063	0.8298	0.0832	0.7007	1.0015	0.0081	25 2030	10.3470
82	0.5515	1.0584	0.9852	0.2872	0.6018	1.0400	23.2950	20 4034
82	1.0324	1.0120	0.6887	0.7416	1 1276	0.8326	22.1805	26.1072
85	0.4616	0.2522	1 1657	0.5994	0.6575	1 1419	19 5836	23 2855
85	1.0995	0.7428	0.8728	1.0030	0.3680	0.6658	17 1113	12 5065
86	0 5938	1 0764	0.9620	1.0255	1.0601	0.8125	20 2285	13 3925
87	1.1246	1.2448	1.1656	0.8523	0.5949	0.4132	23.5275	17.4630
88	0.9295	0.8751	0.5092	1.1403	0.7628	0.3559	16.3271	22.1459
89	0.8602	0.3406	1.0966	0.8856	0.9862	1.0417	26.4708	18.3663
90	1.1492	0.4746	0.8574	1.1516	1.1790	0.4501	17.2814	23.1822
91	0.7055	1.1907	0.5293	0.4263	0.8536	0.9265	26.3938	20.4300
92	1.0513	0.6945	1.0913	0.3350	0.9183	0.4481	20.0959	12.3902
93	0.5322	1.0568	0.8131	0.9647	0.6648	1.0756	18.2427	25.4996
94	0.5131	0.4318	1.2280	0.6211	0.3784	0.7032	20.3507	16.3106
95	0.4457	0.6764	0.9205	1.1251	0.5122	0.3348	27.4560	19.0258
96	1.1939	0.6925	0.5570	0.7361	0.6118	0.6541	30.3385	24.3835
97	0.9260	1.0649	0.8042	0.5577	1.0655	0.5390	20.5021	26.6911
98	0.5716	0.4146	0.7446	0.9852	0.7023	0.4653	23.2957	19.2800
99	1.1555	0.9556	0.9868	1.1887	0.3375	0.8093	24.4195	20.4356
100	0.9246	0.7489	0.8192	0.6692	1.0280	1.1993	19.1761	15.3610
101	0.7495	1.0863	1.2728	1.1763	0.7377	0.7280	25.2438	19.5895
102	0.8335	0.3809	0.9006	0.5686	1.0282	0.5233	20.3450	15.2570
103	1.0173	1.0885	0.7667	0.7837	0.7383	0.3304	26.2945	19.3476
104	0.9434	1.1998	1.0156	1.0830	0.8712	0.9216	23.3907	20.4538
105	1.0471	0.1241	0.0436	0.1824	0.3021	1.1070	19.6531	14.7969
106	0.4073	0.6530	0.0282	0.7868	0.9569	0.8697	22.9742	17.6829
107	0.2090	0.6049	0.96/6	0.3350	0.5228	0.2784	26.1503	20.5382
108	0.7435	0.9946	0.5816	0.2269	0.8929	0.3780	23.6544	18.8334
109	0.2463	0.7650	0.6785	0.6209	0.4821	0.7939	17.3563	13.3656
110	0.4908	0.0024	0.2104	0.1852	0.0014	0.3938	24.3270	20.9555
111	0.8725	0.9480	0.8890	0.6427	0.7775	0.9340	10.4307	22 4184
112	0.7850	0.3739	0.4104	0.0427	0.7970	0.4619	21.0427	17 5832
115	0.2302	0.1728	0.1923	0.7249	1.0286	0.1461	21.5000	22 8108
114	0.2654	0.5318	1.0878	0.2393	0.8433	0.2049	30 2080	24.8862
115	0.1344	0.1149	0.7160	0.3176	0.1619	0.4388	28 2236	24.8802
117	0.4082	1 1505	0.5350	1 1786	1 4210	0.4500	23 4463	17 2598
118	1.0533	0.4865	0.6443	0.7387	0.3543	0.8803	21.2917	15.3503
119	0.7894	0.9125	0.9461	0.9538	0.7117	1.0629	18.5784	23.5890
120	0.1277	0.8769	0.3354	0.7117	0.9756	0.7431	26.8781	20.6559
121	0.3077	0.7126	0.4122	0.4314	0.8272	0.9128	24.3818	19.3874
122	0.4527	0.4187	0.6633	1.0881	1.1240	0.3716	25.7595	18.2520
123	0.7520	0.2798	0.8228	0.3768	1.0647	0.3627	18.2413	13.3981
124	0.6198	0.9099	1.1055	0.9867	0.6933	0.5579	23.3374	19.1641
125	0.4934	0.3213	0.8309	0.4075	0.6011	0.5841	30.3836	24.2541
126	0.8331	0.8488	0.5991	0.9630	1.1515	0.3296	19.1895	14.7146

Table 7 (continued)								
System number*	Eq. (20)	Eq. (21)	Eq. (22)	Eq. (23)	Eq. (24)	Eq. (25)	SRK EoS	PT EoS
127	0.1512	1.1110	1.0555	1.1976	0.4223	0.9994	27.5462	23.5352
128	1.0881	0.6283	0.3094	0.5494	0.9735	0.1587	18.6711	15.2730
129	0.0558	0.9169	0.8610	0.7337	0.4125	0.5869	20.4749	16.4600
130	0.3635	0.7954	0.6822	0.8151	0.9161	1.0103	23.1087	20.3927
Average AAPD	0.7312	0.7666	0.7631	0.7583	0.7750	0.7560	22.0470	18.9372

System number according to Table 2.

Fig. 7 The density behavior of (a) $C_2 mimBF_4$ + acetone, $x_{IL} = 0.5772$ and $x_{IL} = 0.8304$ based on equation (25) and (b) $C_2 mimBF_4$ + dimethylsulphoxide, $x_{IL} = 0.3417$ and $x_{IL} = 0.6717$ based on equation (23). The experimental data are from Bhagour et al. (Bhagour et al., 2013).

Table A1 Generalized models for liquid density considered in this study Valderrama and Zarricuetac, 2009, Hosse	ini et al., 2013.
Model	Parameters
$\ln \frac{M_w P_c}{R\rho T} = \ln V^0 + \omega \ln V^1 \ln V^0 = a_0 + a_1 T_r + a_2 T_r^2 + a_3 T_r^3 + a_4 T_r^4 + a_5 T_r^5 + a_6 T_r^6 \ln V^1$	ω, M_w, T_c, P_c
$= b_0 + b_1 T_r + b_2 T_r^2 + b_3 T_r^3 + b_4 T_r^4 + b_5 T_r^5 + b_6 T_r^6$	
$\rho = \frac{M_w}{V_c} \left(a_0 + a_1 \tau^{\frac{1}{3}} + a_2 \tau^{\frac{2}{3}} + a_3 \tau + a_4 \tau^{\frac{4}{3}} \right) \tau = 1 - \frac{T_r}{\left[1 + (0.48 + 1.574\omega - 0.176\omega^2) \left(1 - \sqrt{T_r} \right) \right]^2}$	ω, M_w, T_c, V_c
$\rho = \frac{P_c M_w}{RT_c V_1 (1 - \omega V_2)(a_0 + a_1 \omega)} 0.2 < T_r < 0.8 : V_1 = b_0 + b_1 T_r + b_2 T_r^2 + b_3 T_r^3 + b_4 T_r^4 0.8 < T_r < 1 :$	ω, M_w, T_c, P_c
$V_1 = b_0 + b_1 \sqrt{1 - T_r} \log(1 - T_r) + b_2 (1 - T_r) + b_3 (1 - T_r)^2, V_2 = c_0 + c_1 T_r + c_2 T_r^2$	
$\rho = \frac{M_w}{V_c \left[V^0 + \left(1 - \frac{\omega(b_0 + b_1 T_r + b_2 T_r^2 + b_3 T_r^3)}{T_r + b_4} \right) \right]} V^0 = a_0 + a_1 (1 - T_r)^{\frac{1}{3}} + a_2 (1 - T_r)^{\frac{2}{3}} + a_3 (1 - T_r) + a_4 (1 - T_r)^{\frac{4}{3}}$	ω, M_w, T_c, V_c
$ ho = \left(\sum_{i} rac{P_{ci} M_{ui}}{R T_{ci} x_i} ight) \left(a_0 + a_1 \omega + a_2 \omega^2 + a_3 \omega^4 ight)^{-\left(1 + (1 - T_r)^{2\over 7} ight)}$	ω, M_w, T_c, P_c
$\rho = \frac{M_w}{V_c} \rho_0 \left[1 + \delta(f(T_r) - 1)^{\frac{1}{3}} \right] \rho_0 = 1 + 1.1688 \left(1 - \frac{T_r}{f(T_r)} \right)^{\frac{1}{3}} + 1.8177 \left(1 - \frac{T_r}{f(T_r)} \right)^{\frac{2}{3}}$	M_w, T_c, V_c
$-2.65811.1688\left(1-\frac{T_r}{f(T_r)}\right)+2.1613\left(1-\frac{T_r}{f(T_r)}\right)^{\frac{4}{3}}$	
$\rho = \frac{M_w}{V_c} \left[a_0 + a_1 (1 - T_r) + (a_2 + a_3 \omega) (1 - T_r)^{\frac{1}{3}} \right]$	ω, M_w, T_c, V_c
$ ho = rac{M_w(Z_c)^{-(1-T_c)^{0.29}}}{V_c}$	Z_c, M_w, T_c, V_c
$\rho = \frac{M_w}{V_c} \left[1 + \sum_{i=1}^4 k_i (1 - T_r)^{i/3} \right]$	M_w, T_c, V_c
$\rho = \frac{M_w}{V_c} (0.29056 - 0.08775\omega)^{-(1-T_r)^{0.29}}$	ω, M_w, T_c, V_c

sity of 130 different IL-mixture binary systems. The considered systems covered 51 ILs (11 cation-family) and 41 solvents. The used semi-empirical equations had unknown coefficients and to present comprehensive IL-mixture density, the unknown coefficients was obtained using laplacian whale optimization algorithm for each cation-family, separately. Regarding the presentation in the field of cost function, the obtained results were highly accurate. To obtained of unknown coefficients, 70% of experimental data of each cation-family according to SSMD method were used and the remaining experimental data were applied to investigate the accuracy of presented models. The obtained results based on both test and train data were acceptable and the performed modification on semi-empirical equations to generalize binary mixture was successful. Beside the semi-empirical equations, capability of SRK EoS and PT EoS cubic equations state to was investigated predict ILmixture density; however, the obtained results based on both CEoSs had significant deviation from experimental data therefore, that using binary interaction parameter could not decrease deviation, remarkably.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. The list of all semi-empirical equations that are used in this study, are given in Table A.1.

References

Nishan, U., Niaz, A., Muhammad, N., Asad, M., Shah, A.A., Khan, N., Khan, M., Shujah, S., Rahim, A., 2021. Arab. J. Chem. 14, 103164.

- Agafonov, A.V., Kudryakova, N.O., Ramenskaya, L.M., Grishina, E.P., 2020. Arab. J. Chem. 13, 9090.
- Omar, I.M.A., Al-Fakih, A.M., Aziz, M., Emran, K.M., 2021. Arab. J. Chem. 14, 102909.
- Lian, C., Jian, D., Liu, H., Wu, J., 2016. J. Phys. Chem. C. 120, 8704.
- Bagheri, H., Karimi, N., Dan, S., Notej, B., Ghader, S., 2021. J. Mol. Liq. 336, 116581.
- Evangelista, N.S., do Carmo, F.R., de Santiago-Aguiar, R.S., de Sant'Ana, H.B., 2014. Ind. Eng. Chem. Res. 53, 9506.
- Xu, X., Peng, C., Liu, H., Hu, Y., 2009. Ind. Eng. Chem. Res. 48, 11189.
- Mohammadzadeh, M., Bagheri, H., Ghader, S., 2020. Arab. J. Chem. 13, 5821.
- Mesquita, F.M.R., Coelho, L.L., Pinheiro, R.S., Ribeiro, C.A.R.C., Feitosa, F.X., de SantAna, H.B., de Santiago-Aguiar, R.S., 2019. J. Chem. Eng. Data. 64, 3316.
- Bagheri, H., Mohebbi, A., 2017. Korean J. Chem. Eng. 34, 2686.
- Tao, H., Lian, C., Liu, H., 2020. Green Energy Environ. 5, 303.
- Bagheri, H., Ghader, S., Hatami, N., 2019. Chem. Chem. Technol. 13, 1.
- Paiva, C.L., Pinheiro, R.S., Feitosa, F.X., de SantAna, H.B., 2019. J. Chem. Eng. Data. 64, 594.
- Bagheri, H., Ghader, S., 2017. J. Mol. Liq. 236, 172.
- Lian, C., Liu, K., Aken, K.L.V., Gogotsi, Y., Wesolowski, D.J., Liu, H.L., Jiang, D.E., Wu, J.Z., 2016. ACS Energy Lett. 1, 21.
- Abumandour, E.S., Mutelet, F., Alonso, D., 2020. Appl. Therm. Eng. 181, 115943.
- Yang, J., Lian, C., Liu, H., 2020. Chem. Eng. Sci. 227, 115927.
- Bagheri, H., Hashemipour, H., Ghalandari, V., Ghader, S., 2021. Particuology. 57, 201.
- Lampreia, I.M., Dias, F.A., Mendonça, Â.F., 2003. Phys. Chem. Chem. Phys. 5, 4869.
- Valderrama, J.O., Zarricuetac, K., 2009. Fluid Phase Equilibr. 275, 145.
- Geppert-Rybczyńska, M., Heintz, A., Lehmann, J.K., Golus, A., 2010. J. Chem. Eng. Data. 55, 4114.
- Bahadur, I., Deenadayalu, N., 2011. J. Solution Chem. 40, 1528.
- Matkowska, D., Hofman, T., 2013. J. Solution Chem. 42, 979.
- Bahadur, I., Deenadayalu, N., Naidoo, P., Ramjugernath, D., 2013. J. Chem. Thermodyn. 57, 203.

- Govinda, V., Reddy, P.M., Bahadur, I., Attri, P., Venkatesu, P., Venkateswarlu, P., 2013. Thermochim. Acta. 556, 75.
- Govinda, V., Attri, P., Venkatesu, P., Venkateswarlu, P., 2013. J. Phys. Chem. B. 117, 12535.
- Singh, S., Bahadur, I., Redhi, G.G., Ramjugernath, D., Ebenso, E.E., 2014. J. Mol. Liq. 200, 160.
- Huang, Y., Zhang, X., Zhao, Y., Zeng, S., Dong, H., Zhang, S., 2015. Phys. Chem. Chem. Phys. 17, 26918.
- Hosseini, S.M., Papari, M.M., Fadaei-Nobandegani, F., Moghadasi, J., 2013. J. Solution Chem. 42, 1854.
- Abareshi, M., Goharshadi, E.K., Zebarjad, S.M., 2009. J. Mol. Liq. 149, 66.
- Wang, J., Li, Z., Li, C., Wang, Z., 2010. Ind. Eng. Chem. Res. 49, 4420.
- Li, J., He, C., Peng, C., Liu, H., Hu, Y., Paricaud, P., 2011. Ind. Eng. Chem. Res. 50, 7027.
- Shen, C., Li, C.X., Li, X.M., Lu, Y.Z., Muhammad, Y., 2011. Chem. Eng. Sci. 66, 2690.
- Shahriari, R., Dehghani, M.R., Behzadi, B., 2012. Ind. Eng. Chem. Res. 51, 10274.
- Oliveira, M.B., Llovell, F., Coutinho, J.A.P., Vega, L.F., 2012. J. Phys. Chem. B. 116, 9089.
- Hosseini, S.M., Moghadasi, J., Papari, M.M., Nobandegani, F.F., 2012. Ind. Eng. Chem. Res. 51, 758.
- Yousefi, F., 2012. Ionics 18, 769.
- Sheikhi-Kouhsar, M., Bagheri, H., Raeissi, S., 2015. Fluid Phase Equilibr. 395, 51.
- Liu, H., Yang, F., Yang, Z., Duan, Y., 2020. J. Mol. Liq. 308, 113027.
- Kamath, R.S., Biegler, L.T., Grossmann, I.E., 2010. Comput. Chem. Eng. 34, 2085.
- Ghoderao, P.N.P., Dalvi, V.H., Narayan, M., 2019. Chem. Eng. Sci. 3, 100026.
- Coquelet, C., Abbadi, J.E., Houriez, C., 2016. Int. J. Refrig. 69, 418.
- Panayiotou, C., Zuburtikudis, I., Hatzimanikatis, V., 2019. Ind. Eng. Chem. Res. 58, 12787.
- Farrokh-Niae, A.H., Moddarress, H., Mohsen-Nia, M., 2008. J. Chem. Thermodyn. 40, 84.
- Kukreja, N., Ghoderao, P., Dalvi, V.H., Narayan, M., 2021. Fluid Phase Equilibr. 531, 112908.
- Secuianu, C., Feroiu, V., Geană, D., 2008. J. Supercrit. Fluid 47, 109.
- Lopez-Echeverry, J.S., Reif-Acherman, S., Araujo-Lopez, E., 2017. Fluid Phase Equilibr. 447, 39.
- Perdomo, F.A., Khalit, S.H., Adjiman, C.S., Galindo, A., Jackson, G., 2021. AICHE J. 63, 17194.
- Gross, J., Sadowski, G., 2002. Ind. Eng. Chem. Res. 41, 5510.
- Bülow, M., Greive, M., Zaitsau, D.H., Verevkin, S.P., Held, C., 2021. Chemistry Open. 10, 216.
- Qiao, Y., Ma, Y., Huo, Y., Ma, P., Xia, S., 2010. J. Chem. Thermodyn. 42, 852.
- Peng, D., Zhang, J., Cheng, H., Chen, L., Qi, Z., 2017. Chem. Eng. Sci. 159, 58.
- Chen, Y., Kontogeorgis, G.M., Woodley, S.M., 2019. Ind. Eng. Chem. Res. 58, 4277.
- Venkatraman, V., Alsberg, B.K., 2017. J. CO₂ Util. 21, 162.
- Zhang, S., Sun, N., He, X., Lu, X., Zhang, X., 2006. J. Phys. Chem. Ref. Data. 35, 1475.
- Yusuf, F., Olayiwola, T., Afagwu, C., 2021. Fluid Phase Equilibr. 531, 112898.
- Low, K., Kobayashi, R., Izgorodina, E.I., 2020. J. Chem. Phys. 153, 104101.
- Valderrama, J.O., Sanga, W.W., Lazzús, J.A., 2008. Ind. Eng. Chem. Res. 47, 1318.
- Danesh, A., 1998. PVT and phase behaviour of petroleum reservoir fluids. Elsevier.
- Green, D.W., Southard, M.Z., 2019. Perry's chemical engineers' handbook. McGraw-Hill Education.

- Mokhtarani, B., Sharifi, A., Mortaheb, H.R., Mirzaei, M., Mafi, M., Sadeghian, F., 2009. J. Chem. Thermodyn. 41, 323.
- Wang, J.Y., Zhang, X.J., Hu, Y.Q., Liang, L.Y., 2012. J. Chem. Thermodyn. 45, 43.
- Rilo, E., Pico, J., García-Garabal, S., Varela, L.M., Cabeza, O., 2009. Fluid Phase Equilibr. 285, 83.
- Solanki, S., Hooda, N., Sharma, V.K., 2013. J. Chem. Thermodyn. 56, 123.
- Bhagour, S., Solanki, S., Hooda, N., Sharma, D., Sharma, V.K., 2013. J. Chem. Thermodyn. 60, 76.
- Bhattacharjee, A., Varanda, C., Freire, M.G., Matted, S., Santos, L. M., Marrucho, I.M., Coutinho, J.A., 2012. J. Chem. Eng. Data. 57, 3473.
- Wang, J.Y., Zhao, F.Y., Liu, Y.M., Wang, X.L., Hu, Y.Q., 2011. Fluid Phase Equilibr. 305, 114.
- Bhujrajh, P., Deenadayalu, N., 2007. J. Solution Chem. 36, 631.
- Quijada-Maldonado, E., Van der Boogaart, S., Lijbers, J.H., Meindersma, G.W., De Haan, A.B., 2012. J. Chem. Thermodyn. 51, 51.
- Rodriguez, H., Brennecke, J.F., 2006. J. Chem. Eng. Data. 51, 2145.
- Wang, J.Y., Jiang, H.C., Liu, Y.M., Hu, Y.Q., 2011. J. Chem. Thermodyn. 43, 800.
- Zhao, F.Y., Liang, L.Y., Wang, J.Y., Hu, Y.Q., 2012. Chin. Chem. Lett. 23, 1295.
- Vercher, E., Orchilles, A.V., Miguel, P.J., Martínez-Andreu, A., 2007. J. Chem. Eng. Data. 52, 1468.
- Sadeghi, R., Shekaari, H., Hosseini, R., 2009. Int. J. Thermophys. 30, 1491.
- Tong, J., Liu, Q.S., Guan, W., Yang, J.Z., 2009. J. Chem. Eng. Data. 54, 1110.
- Iglesias-Otero, M.A., Troncoso, J., Carballo, E., Romaní, L., 2008. J. Chem. Thermodyn. 40, 949.
- Gao, H., Qi, F., Wang, H., 2009. J. Chem. Thermodyn. 41, 888.
- Patel, H., Vaid, Z.S., More, U.U., Ijardar, S.P., Malek, N.I., 2016. J. Chem. Thermodyn. 99, 40.
- Domańska, U., Pobudkowska, A., Wiśniewska, A., 2006. J. Solution Chem. 35, 311.
- Kumar, B., Singh, T., Rao, K.S., Pal, A., Kumar, A., 2012. J. Chem. Thermodyn. 44, 121.
- Mokhtarani, B., Mojtahedi, M.M., Mortaheb, H.R., Mafi, M., Yazdani, F., Sadeghian, F., 2008. J. Chem. Eng. Data. 53, 677.
- Matkowska, D., Hofman, T., 2013. J. Mol. Liq. 177, 301.
- Gao, H., Yu, Z., Wang, H., 2010. J. Chem. Thermodyn. 42, 640.
- Jiang, H., Zhao, Y., Wang, J., Zhao, F., Liu, R., Hu, Y., 2013. J. Chem. Thermodyn. 64, 1.
- Singh, S., Aznar, M., Deenadayalu, N., 2013. J. Chem. Thermodyn. 57, 238.
- Pau, S., Panda, A.K., 2012. Colloids Surf. A Physicochem. Eng. Asp. 404, 1.
- Wandschneider, A., Lehmann, J.K., Heintz, A., 2008. J. Chem. Eng. Data. 53, 596.
- Zhong, Y., Wang, H., Diao, K., 2007. J. Chem. Thermodyn. 39, 291.
- Fan, W., Zhou, Q., Sun, J., Zhang, S., 2009. J. Chem. Eng. Data. 54, 2307.
- Pal, A., Kumar, B., 2011. J. Mol. Liq. 163, 128.
- Pal, A., Gaba, R., Singh, T., Kumar, A., 2010. J. Mol. Liq. 154, 41.
- Kermanpour, F., Sharifi, T., 2012. Thermochim. Acta. 527, 211.
- Kermanpour, F., 2012. J. Mol. Liq. 169, 156.
- Kermanpour, F., Niakan, H.Z., 2012. J. Chem. Thermodyn. 48, 129.
- Pal, A., Kumar, B., 2012. Fluid Phase Equilibr. 334, 157.
- Zhu, A., Wang, J., Liu, R., 2011. J. Chem. Thermodyn. 43, 796.
- Gomez, E., Gonzalez, B., Domínguez, Á., Tojo, E., Tojo, J., 2006. J. Chem. Eng. Data. 51, 696.
- Malek, N.I., Singh, A., Surati, R., Ijardar, S.P., 2014. J. Chem. Thermodyn. 74, 103.
- Ijardar, S.P., Malek, N.I., 2014. J. Chem. Thermodyn. 71, 236.
- Akbar, M.M., Murugesan, T., 2013. J. Mol. Liq. 177, 54.
- Akbar, M.M., Chemat, F., Arunagiri, A., Murugesan, T., 2016. J. Therm. Anal. Calorim. 123, 785.

- González, E.J., Domínguez, Á., Macedo, E.A., 2012. J. Chem. Thermodyn. 47, 300.
- Pereiro, A.B., Tojo, E., Rodriguez, A., Canosa, J., Tojo, J., 2006. J. Chem. Thermodyn. 38, 651.
- Pereiro, A.B., Rodriguez, A., 2007. J. Chem. Thermodyn. 39, 978.
- Jiang, H., Wang, J., Zhao, F., Qi, G., Hu, Y., 2012. J. Chem. Thermodyn. 47, 203.
- Bagheri, H., Mansoori, G.A., Hashemipour, H., 2018. J. Mol. Liq. 261, 174.
- Soave, G., 1984. Chem. Eng. Sci. 39, 357.
- Redlich, O., Kwong, J.N., 1949. Chem. Rev. 44, 233.
- Soave, G., 1972. Chem. Eng. Sci. 27, 1197.
- Soave, G., Barolo, M., Bertucco, A., 1993. Fluid Phase Equilibr. 91, 87.
- Peng, D.Y., Robinson, D.B., 1976. Ind. Eng. Chem. Fundam. 15, 59.
- Gaffney, J.A., Hu, S.X., Arnault, P., Becker, A., Benedict, L.X., Boehly, T.R., Celliers, P.M., Ceperley, D.M., Čertík, O., Clérouin,
- J., Collins, G.W., 2018. High Energ. Dens. Phys. 28, 7. Bagheri, H., Hashemipour, H., Mirzaie, M., 2019. J. Mol. Liq. 281,
- 490. Yang, F., Liu, Q., Duan, Y., Yang, Z., 2018. Chem. Eng. Sci. 192, 565.
- Yokozeki, A., Shiflett, M.B., 2010. J. Supercrit. Fluid 55, 846.
- Bagheri, H., Hashemipour, H., Ghader, S., 2019. Comput. Part. Mech. 6, 721.
- Kumar, A., Upadhyay, R., 2021. Chem. Eng. Sci. 229, 116045.
- Schmidt, G., Wenzel, H., 1980. Chem. Eng. Sci. 35, 1503.
- Patel, N.C., Teja, A.S., 1982. Chem. Eng. Sci. 37, 463.
- Ghalandari, V., Hashemipour, H., Bagheri, H., 2020. Fluid Phase Equilib. 508, 112433.
- El shafiee, C.E., El-Nagar, R.A., Nessim, M.I., Khalil, M.M.H., Shaban, M.E., Alharthy, R.D., Ismail, D.A., Abdallah, R.I., Moustafa, Y.M., 2021. Arab. J. Chem. 14, 103123.
- Elbro, H.S., Fredenslund, A., Rasmussen, P., 1991. Ind. Eng. Chem. Res. 30, 2576.
- Mchaweh, A., Alsaygh, A., Nasrifar, K., Moshfeghian, M., 2004. Fluid Phase Equilibr. 224, 157.
- Gunn, R.D., Yamada, T., 1971. AIChE J. 17, 1341.
- Hankinson, R.W., Thomson, G.H., 1979. AIChE J. 25, 653.

- B. E. Poling, J. M. Prausnitz, J. P. O'connell, The properties of liquids and gases. New York. 2001.
- Sandler, S.I., 2017. Chemical, biochemical, and engineering thermodynamics. John Wiley & Sons.
- Kontogeorgis, G.M., Folas, G.K., 2009 Dec 1. Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories. John Wiley & Sons.
- Nasrifar, K., Moshfeghian, M., 1998. Fluid Phase Equilibr. 153, 231. Rabari, D., Patel, N., Joshipura, M., Banerjee, T., 2014. Chem. Eng.
- Data. 59, 571.
- Mathias, P.M., Copeman, T.W., 1983. Fluid Phase Equilibr. 13, 91. Memarzadeh, R., Zadeh, H.G., Dehghani, M., Riahi-Madvar, H., Seifi, A., Mortazavi, S.M., 2020. Sci. Total Environ, 716, 137007.
- Ali, M., Deo, R.C., Downs, N.J., Maraseni, T., 2018. Atmos. Res. 213, 450.
- Nguyen-Huy, T., Deo, R.C., Mushtaq, S., An-Vo, D.A., Khan, S., 2018. Eur. J. Agron. 98, 65.
- Xu, X., Liang, T., Zhu, J., Zheng, D., Sun, T., 2019. Neurocomputing. 328, 5.
- Riahi-Madvar, H., Seifi, A., 2018. Arab. J. Geosci. 11, 1.
- Loey, M., Manogaran, G., Taha, M.H.N., Khalifa, N.E.M., 2021. Measurement. 167, 108288.
- Mueller, J.P., Massaron, L., 2021. Machine learning for dummies. John Wiley & Sons.
- Lajiness, M., Watson, I., 2008. Curr. Opin. Chem. Biol. 12, 366.
- Kennard, R.W., Stone, L.A., 1969. Technometrics 11, 137.
- Riahi-Madvar, H., Dehghani, M., Seifi, A., Singh, V.P., 2019. Water Resour. Manag. 33, 905.
- Wu, W., Walczak, B., Massart, D.L., Heuerding, S., Erni, F., Last, I. R., Prebble, K.A., 1996. Chemometr. Intell. Lab. 33, 35.
- Singh, A., 2019. Eng. Manag. J. 10, 713.
- Mirjalili, S., Lewis, A., 2016. Adv. Eng. Softw. 95, 51.
- Liakos, K.G., Busato, P., Moshou, D., Pearson, S., Bochtis, D., 2018. Sensors. 18, 2674.
- Kotsiantis, S.B., Zaharakis, I.D., Pintelas, P.E., 2006. Artif. Intell. Rev. 26, 159.
- Dutton, D.M., Conroy, G.V., 1997. Knowl. Eng. Rev. 12, 341.
- Maxwell, A.E., Warner, T.A., Fang, F., 2018. Int. J. Remote Sens. 39, 2784.