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Abstract Dendrimers achieved great consideration in gene and drug delivery applications because

of having highly administrable architecture. Unambiguous structure of dendrimers might reduce the

unpredictability related to the molecule’s shape and size, and also boost the accuracy of drug deliv-

ery. Dendrimers have exclusive physical and chemical properties due to which they have extensive

range of potential applications like chemical sensors, light harvesting material, enhance the solubil-

ity, antitumer therapy, medical diagnostics, drug delivery system, catalysts, and many more. With

the total p-electron energy, the degree-based topological indices have a lot of iterations.

In this paper, our desideration is to compute the topological aspects of degree based entropy for

fractal and cayley tree type dendrimers. More preciously, we explore two tree type dendrimers

denoted by Fr ant Cm;n. Moreover, entropies are estimated of these two structures by generating

a correlation between degree based topological indices and their entropies.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dendrimers are a modern type of polymeric substances. They
are fabricated three dimensional, maono-disperse structure
having tree like branches (Sampathkumar and Yarema,
2007). Dendrimers are also called arborols and cascade. There
are different kinds of dendrimers like radially layered poly den-

drimers, chiral, liquid crytalline, tacto, hybride, peptide, and
frechet type dendrimers (Singh et al., 2017). In 1985, Tomalia
familiarized the term dendrimer for the first time. It is acquired

from ‘‘dendrimer”, that paraphrase to tree, and ‘‘meros(part)”
(Gardikis et al., 2006).

Dendrimers rose up out of the ocean of polymer sciences in

the mid 1980s as wonderful period. Stretched atoms in the
shape of a star with an extraordinary formation and minimal
polydispersity (Beer et al., 1999; Tomalia et al., 1986). In any
case, the possibility of planning expanded particles was first

imagined by Flory as ahead of schedule as (Flory, 1941). As

http://crossmark.crossref.org/dialog/?doi=10.1016/j.arabjc.2021.103574&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:imrandhab@gmail.com
mailto:sarfrazahmad@cuilahore.edu.pk
mailto:sarfrazahmad@cuilahore.edu.pk
https://doi.org/10.1016/j.arabjc.2021.103574
http://www.sciencedirect.com/science/journal/18785352
https://doi.org/10.1016/j.arabjc.2021.103574
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 M. Imran et al.
on account of different revelations that were relatively revolu-
tionary, the engineered and diagnostic techniques at that time
were not adequately progressed to tentatively backing such a

thought (Lin et al., 2010). In 1978, the principal paper that
depicts the blend of purported course atoms, i.e., minimal
sub-atomic mass dendritic polyamines, was distributed

(Vogtle et al., 1978). Denkewalter, a long time later, used a dif-
ferent approach to protect the synthesis of poly(lysine) den-
drimers until the ninth century (Denkewalter et al., 1982).

Tomalia (Gardikis et al., 2006) published the combination of
poly(amidoamine) (PAMAM) dendrimers up to the ninth cen-
tury and characterised this type of polymers ”dendrimers”,
that straightforwardly interpreted as ”part of a tree”. In the

same year, Newkome initiated dispensing a poly(ether) den-
drimer blend that was up to the third generation (Kono
et al., 2008). Dendrimers are synthesised by two methods,

divergent growth method and convergent growth method
(Munir et al., 2016).

The synthesis of a dendrimer as indicated by the divergent

technique continues step by step beginning from an activated
core, Bn n P 2ð Þ, to whose next dendrimer ages are developed
by means of the consecutive connection of components termed

as monomers (pattern 1). The monomers utilized are some type
of ABn n P 2ð Þ, in which A and Bn mean 2 sorts of useful gath-
erings. The A-useful gathering of the ABn monomer is a
responsive gathering, whereas the Bn-useful gathering is dis-

abled/secured, allowing for restrained development of the den-
drimer. The monomers are joined to a substrate particle (a
developing dendrimer) through a synthetic bond arrangement

between the monomer’s A-utilitarian gathering and one of the
substrate’s activated B-utilitarian gatherings.The linkage of the
B-functionalities with a subsequent particle or the evacuation

of assuring groupings can guide their actuation. Trifunctional
monomers with anAB2structure are the most commonly used
monomers. Following the binding of these monomers to the

centre, a unique dendrimer is formed. The two processes that
follow, which are dependent on the activation of the B-
functionalities on the original dendrimer and their coupling
with another arrangement of monomers, result in a second

age dendrimer (Sowinska and Urbanczyk-Lipkowska, 2014).
Fig. 1 The divergen
The desired greater age dendrimer is attained due to the redun-
dancy of these two steps, see Fig. 1.

Hawker and Frechet first described the convergent

approach in 1989–1990, and it is an optional course for devel-
oping dendrimers. particular dendrimer wedges, known as
dendrons, are orchestrated first and then connected to an acti-

vated core (Scheme 2). The regular AB2 monomer, that has
responsive B-functionalities and disabled/ensured A-
usefulness, is used to direct the combination of dendrons.

The monomer is subjected to a response with a molecule in
the first phase, which will eventually establish the dendrimer’s
outskirts (outside). The presentation of secure bunches on
monomer B-functionalities is frequently the most significant

advancement. As a result, it is possible to make an original
dendron (G1). The actuation of a dendron point of conver-
gence and its coupling with the AB2 monomers are the next

two phases, resulting in a (G2) dendron. Every reiteration of
these two steps results in an increase in the dendron age
(Sowinska and Urbanczyk-Lipkowska, 2014), see Fig. 2.

Assume Z VZ;EZð Þ is a graph with VZ for the vertex set and
EZ for the edge set. The order and size of the graph in Z are
represented by p and q, correspondingly. Any chemical struc-

ture with vertices representing atoms and edges representing
bonds forms a chemical graph. The number of edges associ-
ated with a vertex is called its degree, and it is symbolised byex xð Þ. A topological descriptor is an algorithmic measure

accomplished via a projection. diverse sorts of topological
indices exist. We shall explore degree-based topological
descriptors in this work, which are defined by the degree of a

graph’s terminal vertices. (Siddiqui et al., 2016; Siddiqui
et al., 2016 and Gao and Farahani, 2015; Gao et al., 2017;
Imran et al., 2018) contain more information on topological

indices formulas and their employment respectively.
Shannon (1948) was the first to introduce the concept of

entropy. It is a measure of a system’s information content’s
unpredictability. After this, it’s been employed in chemical net-

works and graphs. Rashevsky entrenched the entropy of a
graph (Rashevsky, 1955). Graph entropy is now employed in
a variety of domains, see (Dehmer and Graber, 2013; Mehler

et al., 2010; Ulanowicz, 2004).
t growth method.



Fig. 2 The convergent growth method.

Fig. 3 Construction of the fractal trees for k ¼ 0; 1; 2; 3.
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Intrinsic and extrinsic graph entropy measurements are
used to correlate probability distributions with graph invari-

ants (vertices, edges, and so on) (Mowshowitz and Dehmer,
2012). Dehmer (2008, 2012) researched the features of graph
entropies, which are established on information functionals.

See (Bonchev, 2003; Dehmer and Mowshowitz, 2011;
Manzoor et al., 2020; Morowitz, 1953; Quastler, 1954;
Rashevsky, 1955; Shannon, 2001; Sol and Valverde, 2004;

Trucco, 1956; Tan and Wu, 2004) for more information.
The information entropy (Chen et al., 2014) based on Shan-

non’s entropy (Shannon, 1948) is described as:

Ew Zð Þ ¼ �
Xm
i¼1

Fi

w xiyið Þ
Td

log2
w xiyið Þ
Td

¼ log Tdð Þ � 1

Td

Xm
i¼1

Fiw xiyið Þlog2w xiyið Þ ð1Þ

Where Td ¼
Pm

i¼1Fiw xiyið Þ denotes the topological descriptor,

m is the number of edge types, Fi is the frequency or number of

repetition, and w xyð Þ is the weight of the edge xy.

2. Structure of fractal tree dendrimer Fr

A geometrical figure that constitute a smaller curve or pattern
that has rigorously the same shape is called Fractal. The way
that the stem of a tree break down into shorter and shorter
branches and limbs is an approximate fractal pattern. There

are many other examples of fractals like Romanesco broccoli,
lightning bolt, angelica flowerhead, and Von Koch snowflake,
etc.

Dendrimers are macro-molecules with a ramification struc-
ture. These are also called fractal polymers. Fr where r � 0,
stands for the anticipated fractal tree dendrimers in this work,

and is the number of iterations. F0 consists of an edge associ-
ating two vertices. Fr is made from Fr�1 by taking two steps on
each of the ongoing edges in Fr�1. In the first stage, a three-

linked path with the same terminal points is built. In the sec-
ond stage, each of the two intervening vertices in the path is
used to construct l new vertices, join them to the neighboring
vertices after that.

The Fig. 3 illustrates the structure for different values of l.
In Fig. 4a) and Fig. 4(b), F3 and F4 are sketched. Firstly, we
calculate above mentioned entropies by using degree-based
topological indices for Fr. Edge partitioning and graph theo-
retical approaches are employed in this case. There are

42lr� 28lþ 14r� 8 pendent vertices in Fr. The vertices having
degree 4 are 7r� 5 and the vertices having degree lþ 2 are
42r� 28 in numbers. The edge set of Fr consists of three types
of edges based on the degree of end vertices.

The edge partition of Fr is illustrated in Table 1.

2.1. Results for fractal tree dendrimer Fr

The entropies of the structure of the fractal tree dendrimer Fr

are listed in this section.
The M1 index is

M1 Zð Þ ¼ 42l2rþ 210lr� 28l2 � 140lþ 294r� 200

Eq. (1) and Table 1 gives

EM1
Frð Þ ¼ log 42l2rþ 210lr� 28l2 � 140lþ 294r� 200

� �
� 42lr� 28lþ 14r� 8ð Þ � lþ 3ð Þ log lþ 3ð Þ

42l2rþ 210lr� 28l2 � 140lþ 294r� 200
� �

� 28r� 20ð Þ � lþ 6ð Þ log lþ 6ð Þ
42l2rþ 210lr� 28l2 � 140lþ 294r� 200
� �

� 21r� 14ð Þ � 2lþ 4ð Þ log 2lþ 4ð Þ
42l2rþ 210lr� 28l2 � 140lþ 294r� 200
� �

The M2 index is

M2 Zð Þ ¼ 63l2r� 42l2 þ 294lr� 200lþ 336r� 232



Fig. 4 (a) Fractal tree F3 for l ¼ 2, (b) Fractal tree F4 for l ¼ 3.

Table 1 Edge partition of Fr established on degrees of

terminal vertices of every edge.

ex xð Þ; ex yð Þ
� �

Number of Repetition Kind of Edges

1; 2þ lð Þ 42lr� 28lþ 14r� 8 E1Z

4; 2þ lð Þ 28r� 20 E2Z

2þ l; 2þ lð Þ 21l� 14 E3Z
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Eq. (1) and Table 1 gives

EM2
Frð Þ ¼ log 63l2r� 42l2 þ 294lr� 200lþ 336r� 232

� �
� 42lr� 28lþ 14r� 8ð Þ � lþ 2ð Þ log lþ 2ð Þ

63l2r� 42l2 þ 294lr� 200lþ 336r� 232
� �

� 28r� 20ð Þ � 4lþ 8ð Þ log 4lþ 8ð Þ
63l2r� 42l2 þ 294lr� 200lþ 336r� 232
� �

� 21r� 14ð Þ � l2 þ 4lþ 4
� �

log l2 þ 4lþ 4
� �

63l2r� 42l2 þ 294lr� 200lþ 336r� 232
� �

The Hyper Zagreb index is

HM Zð Þ ¼ 42l3r� 28l3 þ 378l2r� 252l2 þ 1134lr� 764l

þ 1470r� 1016

Eq. (1) with Table 1 gives

EHM Frð Þ ¼ log 42l3r� 28l3 þ 378l2r� 252l2 þ 1134lr � 764lþ 1470r� 1016
� �

�
42lr� 28lþ 14r� 8ð Þ � lþ 3ð Þ2

h i
log lþ 3ð Þ2
h i

42l3r� 28l3 þ 378l2r� 252l2 þ 1134lr � 764lþ 1470r� 1016
� �

�
28r� 20ð Þ � lþ 6ð Þ2

h i
log lþ 3ð Þ2
h i

42l3r� 28l3 þ 378l2r� 252l2 þ 1134lr � 764lþ 1470r� 1016
� �

�
21r� 14ð Þ � 2lþ 4ð Þ2

h i
log 2lþ 4ð Þ2
h i

42l3r� 28l3 þ 378l2r� 252l2 þ 1134lr � 764lþ 1470r� 1016
� �

The Forgotten index is
F Zð Þ ¼ 42l3r� 28l3 þ 252l2r� 168l2 þ 546lr� 364lþ 794r

� 552

Eq. (1), with Table 1 gives

EF Frð Þ ¼ log 42l3r� 28l3 þ 252l2r� 168l2 þ 546lr� 364lþ 794r� 552
� �

� 42lr� 28lþ 14r� 8ð Þ � l2 þ 4lþ 5
� �

log l2 þ 4lþ 5
� �

42l3r� 28l3 þ 252l2r� 168l2 þ 546lr� 364lþ 794r� 552
� �

� 28r� 20ð Þ � l2 þ 4lþ 20
� �

log l2 þ 4lþ 20
� �

42l3r� 28l3 þ 252l2r� 168l2 þ 546lr� 364lþ 794r� 552
� �

� 21r� 14ð Þ � 2l2 þ 8lþ 8
� �

log 2l2 þ 8lþ 8
� �

42l3r� 28l3 þ 252l2r� 168l2 þ 546lr� 364lþ 794r� 552
� �

The Balaban index is

J Zð Þ ¼ 42lr� 28lþ 63r� 42ð Þ 42lr� 28lþ 14r� 8ffiffiffiffiffiffiffiffiffiffi
lþ 2

p þ 28r� 20

2
ffiffiffiffiffiffiffiffiffiffi
lþ 2

p þ 21r� 14

lþ 2

� �

Eq. (1) with Table 1 gives

EJ Frð Þ ¼ log J Zð Þð Þ � 42lr� 28lþ 14r� 8ð Þ
J Zð Þð Þ

� 42lr� 28lþ 63r� 42ffiffiffiffiffiffiffiffiffiffi
lþ 2

p
	 


log
42lr� 28lþ 63r� 42ffiffiffiffiffiffiffiffiffiffi

lþ 2
p

� �
� 28r� 20ð Þ

J Zð Þð Þ

� 42lr� 28lþ 63r� 42

2
ffiffiffiffiffiffiffiffiffiffi
lþ 2

p
	 


log
42lr� 28lþ 63r� 42

2
ffiffiffiffiffiffiffiffiffiffi
lþ 2

p
� �

� 21r� 14ð Þ
J Zð Þð Þ

� 42lr� 28lþ 63r� 42

lþ 2

	 

log

42lr� 28lþ 63r� 42

lþ 2

� �
The Redefined first Zagreb index is

ReZG1 Zð Þ ¼ 42lr� 28lþ 14r� 8ð Þ lþ 3ð Þ
lþ 2ð Þ þ 28r� 20ð Þ lþ 6ð Þ

4 lþ 2ð Þ

þ 21r� 14ð Þ 2lþ 4ð Þ
lþ 2ð Þ2

Eq. (1) with Table 1 gives

EReZG1
Frð Þ ¼ log ReZK1 Zð Þð Þ � 42lr�28lþ14r�8ð Þ

ReZK1 Zð Þð Þ � lþ3
lþ2

� �
log lþ3

lþ2

h i
� 28r�20ð Þ

ReZK1 Zð Þð Þ � lþ6
4lþ8

� �
log lþ6

4lþ8

h i
� 21r�14ð Þ

ReZK1 Zð Þð Þ � 2lþ4

lþ2ð Þ2
� �

log 2lþ4

lþ2ð Þ2
h i

The Redefined second Zagreb index is
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ReZG2 Zð Þ ¼ 42lr� 28lþ 14r� 8ð Þ lþ 2ð Þ
lþ 3ð Þ þ 28r� 20ð Þ 4lþ 8ð Þ

lþ 6

þ 21r� 14ð Þ lþ 2ð Þ2
2lþ 4

Eq. (1) with Table 1 gives

EReZG2
Frð Þ ¼ log ReZK2 Zð Þð Þ � 42lr�28lþ14r�8ð Þ

ReZK2 Zð Þð Þ � lþ2
lþ3

� �
log lþ2

lþ3

h i
� 28r�20ð Þ

ReZK2 Zð Þð Þ � 4lþ8
lþ6

� �
log 4lþ8

lþ6

h i
� 21r�14ð Þ

ReZK2 Zð Þð Þ � lþ2ð Þ2
2lþ4

� �
log lþ2ð Þ2

2lþ4

h i
The Redefined third Zagreb index is

ReZG3 Zð Þ ¼ 84l3r� 56l3 þ 588l2r� 396l2 þ 1722lr� 1184l

þ 1764r� 1232

Eq. (1) with Table 1 gives

EReZG3
Frð Þ ¼ log ReZK3 Zð Þð Þ � 42lr�28lþ14r�8ð Þ

ReZK3 Zð Þð Þ � l2 þ 5lþ 6
� �

log l2 þ 5lþ 6
� �

� 28r�20ð Þ
ReZK3 Zð Þð Þ � 4l2 þ 32lþ 48

� �
log 4l2 þ 32lþ 48
� �

� 21r�14ð Þ
ReZK3 Zð Þð Þ � 2 lþ 2ð Þ3 log 2 lþ 2ð Þ3

h i
3. Structure of cayley tree type dendrimer Cm;n

A cayley tree is one in which each non-leaf graph vertex has a

defined number of branches. The star graph is a one-of-a-kind
m-cayley tree with mþ 1 nodes. The cayley tree, also known as
Bathelallice, is a type od dendrimers. To construct the cayley

tree Cm;n where m � 3; n � 0, we use iterative method.Here m

represents the nodes at first iteration. Cm;0 consists of only a

central vertex. Cm;1 is achieved by creating m nodes and using
Fig. 5 (a) The Molecular graph Cayley tree C4

Table 2 Cm;n edge partitioning established on degrees of terminal v

ex xð Þ; ex yð Þ
� �

Number of repetition

1; mð Þ m� 1ð Þn � m
m�1

m; mð Þ m
Pn

j¼1 �1þmð Þj�1 � �1þmð Þn�1
� �
an edge to connect them to the central vertex. Cm;n is obtained

from Cm;n�1 by generating n� 1 nodes and join them to every

pendent vertex of Cm;n. C4;3 Is shown in Fig. 5. The number of

pendent vertices is m m� 1ð Þn�1
, while the number of vertices

with degree m is

2
Xn
j¼1

m� 1ð Þj�1 � m� 1ð Þn�1

The Cm;n edge set has two sorts of edges based on the degree of

end vertices. Table 2 shows the edge partition of Cm;n.

2
Xn
j¼1

m� 1ð Þj�1 þ m� 1ð Þn

and

m
Xn
j¼1

m� 1ð Þj�1

are the total number of vertices and edges in Cm;n respectively.

3.1. Results for Cayley tree type dendrimer Cm;n

The entropies of the structure of the Cayley tree dendrimer
Cm;n are listed in this section.

The first Zagreb index is

M1 Zð Þ ¼ m 2m
Xn
j¼1

�1þmð Þj�1 � �1þmð Þn
 !

Eq. (1) with Table 2 gives
;3, (b) The representation of Cayley tree C4;3.

ertices.

Different sorts of edge

E1Z

E2Z
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EM1
Cm;nð Þ ¼ log m 2m

Xn
j¼1

�1þmð Þj�1 � �1þmð Þn
 ! !

� �1þmð Þn�1 mþm2ð Þ log mþ1ð Þ

m 2m

Xn
j¼1

�1þmð Þj�1� �1þmð Þn

 ! !

�
2m2

Xn
j¼1

�1þmð Þj�1� �1þmð Þn�1

 !
log 2mð Þ

m 2m

Xn
j¼1

�1þmð Þj�1� �1þmð Þn

 ! !

The second Zagreb index is

M2 Zð Þ ¼ m2 m
Xn
j¼1

�1þmð Þj�1 � �1þmð Þn
 !

Eq. (1) with Table 2 gives

EM2
Cm;nð Þ ¼ log m2 m

Xn
j¼1

�1þmð Þj�1 � �1þmð Þn
 ! !

� �1þmð Þn �m2 log mð Þ
�1þm

m2 m

Xn
j¼1

�1þmð Þj�1� �1þmð Þn

 ! !

�
2m3

Xn
j¼1

�1þmð Þj�1� �1þmð Þn�1

 !
log m2ð Þ

m2 m

Xn
j¼1

�1þmð Þj�1� �1þmð Þn

 ! !

The Hyper Zagreb index is

F Zð Þ ¼ m 2m2
Xn
j¼1

�1þmð Þj�1 � mþ 1ð Þ �1þmð Þn
 !

Eq. (1) with Table 2 gives

EF Cm;nð Þ¼ log m 2m2
Xn
j¼1

�1þmð Þj�1� mþ1ð Þ �1þmð Þn
 ! !

� �1þmð Þn �
m m2þ1ð Þ log 1þm2ð Þ

�1þm

m 2m2

Xn
j¼1

�1þmð Þj�1� mþ1ð Þ �1þmð Þn

 ! !

�
2m3

Xn
j¼1

�1þmð Þj�1� �1þmð Þn�1

 !
log 2m2ð Þ

m 2m2

Xn
j¼1

�1þmð Þj�1� mþ1ð Þ �1þmð Þn

 ! !

The hyper Zagreb index is

HM Zð Þ ¼ m 4m2
Xn
j¼1

�1þmð Þj�1 � 1� 3m2 þ 2m
� � �1þmð Þn�1

 !

Eq. (1) with Table 2gives
EHM Cm;nð Þ ¼ log m 4m2
Xn
j¼1

�1þmð Þj�1 � 1� 3m2 þ 2mð Þ �1þmð Þn�1

 ! !

� mþm3ð Þ �1þmð Þn�1 log 1þm2ð Þ
m 4m2

Xn
j¼1

�1þmð Þj�1� 1�3m2þ2mð Þ �1þmð Þn�1

 ! !

�
4m3

Xn
j¼1

�1þmð Þj�1� �1þmð Þn�1

 !
log 4m2ð Þ

m 4m2

Xn
j¼1

�1þmð Þj�1� 1�3m2þ2mð Þ �1þmð Þn�1

 ! !

The Balaban index is

J Cm;nð Þ¼
m
Xn
j¼1

�1þmð Þj�1

m�2ð Þ
Xn
j¼1

�1þmð Þj�1 � �1þmð Þn þ2

ffiffiffiffi
m

p �1
� � �1þmð Þn�1 þ

Xn
j¼1

�1þmð Þj�1

" #

EJ Cm;nð Þ ¼ log J Zð Þð Þ �
q
ffiffi
m

p �1þmð Þn�1

q�pþ2

� �
log

qffiffi
m

p
q�pþ2ð Þ

h i
J Zð Þð Þ

�

q�m
Xn
j¼1

�1þmð Þj�1� �1þmð Þn�1

 !
m q�pþ2ð Þ

266664
377775 log

q
m q�pþ2ð Þ
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The Redefined first Zagreb index is
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Table 3 Comparison of first Zagreb entropy and second

Zagreb entropy for Fr.

r; l½ � ENTM1
ENTM2

1; 1½ � 1:5303 1:4622

2; 2½ � 2:3808 2:1916

3; 3½ � 2:7346 2:5261

4; 4½ � 2:9778 2:7521

5; 5½ � 3:1652 2:9239

6; 6½ � 3:3183 3:0628

7; 7½ � 3:4478 3:1793

8; 8½ � 3:5603 3:2798

9; 9½ � 3:6559 3:3680

10; 10½ � 3:7488 3:4467

Table 4 Comparison of EHM;EF, and EJ Entropies for Fr.

r; l½ � EHM EF EJ

1; 1½ � 1:4622 1:5085 1:5251

2; 2½ � 2:0916 2:3711 2:2736

3; 3½ � 2:4261 2:7293 2:6272

4; 4½ � 2:6521 2:9743 2:8707

5; 5½ � 2:8239 3:1626 3:0584

6; 6½ � 2:9628 3:3161 3:2119

7; 7½ � 3:0793 3:4358 3:3418

8; 8½ � 3:2298 3:5585 3:4546

9; 9½ � 3:4351 3:6583 3:5543

10; 10½ � 3:5253 3:7476 3:6437

Table 5 Comparison of the Redefined Zagreb Entropies for

Fr.

r; l½ � EReZK1
EReZK2

EReZK3

1; 1½ � 1:5169 1:4092 1:3998

2; 2½ � 2:2621 2:1347 2:0240

3; 3½ � 2:6151 2:4698 2:2471

4; 4½ � 2:8588 2:6983 2:4602

5; 5½ � 3:0470 2:8734 2:6193

6; 6½ � 3:2060 3:0158 2:7461

7; 7½ � 3:3316 3:1361 2:9015

8; 8½ � 3:4450 3:2401 3:0115

9; 9½ � 3:5451 3:3319 3:1201

10; 10½ � 3:6350 3:4139 3:2201

Fig. 6 The graphical comparison of the first Zagreb entropy and

the second Zagreb entropy for Fr.

Fig. 7 Graphical comparison of the forgotten and the hyper

Zagreb entropies for Fr.

Fig. 8 Graphical representation of the Balaban entropy for Fr.

Fig. 9 Graphical comparison of redefined Zagreb entropies for
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The Redefined third Zagreb index is

ReZG3 Cm;nð Þ ¼ � �1þmð Þn�2 þ 2m4
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Eq. 1 with Table 2 gives
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Fr.



Fig. 11 Graphical comparison of the forgotten and the hyper

Zagreb entropies for Cm;n.

Fig. 12 Graphical representation of the Balaban entropy for

Cm;n.

Fig. 13 Graphical comparison of redefined Zagreb entropies for
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4. Comparisons and Discussion for Fractal tree type dendrimer

Fr

Entropy is a structural descriptor that may be used to measure

the complexity of chemical structures quickly. In research,
degree-based entropy offers a wide range of uses characteristi-
cally in software engineering and pharmaceutical. Substantial

properties of biological frameworks(strain energy, melting
point etc) are confederated with the biological functions of
the frameworks via topological indices. Degree-based indices
can be used to carry out these assessments because they have

a clear decision-making process and are quick. Because molec-
ular structures are so complicated, several molecular descrip-
tors and their entropy metrics are utilised to predict the most

structural information. As a result, some degree-based entro-
pies for diverse estimations of l; r for Fr have been calculated
arithmetically in this articulation. For the assembly of Fr, we

create Tables 3–5 for degree-based entropy to arithmetical cor-
relation. For this, we utilized Maple software and MATLAB
software. Diagrammatic illustrations are in Fig. 6, Fig. 7,

Fig. 8 and Fig. 9 for distinct considerations of l; r. The entropy
function of a fractal tree type dendrimer grew as the generation
size increased. As a system’s entropy rises, so does the uncer-
tainty about its reaction. When the chemical structure Fr

expands, the first Zagreb entropy develops more quickly than
other entropy measurements of Fr, however the redefined third
Zagreb entropy grows slowly.

5. Comparisons and Discussion for Cm;n

Computational techniques combined with different scientific

fields provide a consistent strategy to better recognize a scien-
tific subject. It is rare to be able to comprehend a problem
based solely on one science discipline. As a result, incorporat-

ing some computational methodologies into the investigation
may produce a clear image that aids in furthering our under-
standing of the underlying phenomenon. Creating a mathe-

matical model to depict the dynamics of items in a research
is a very practical way to approach and examine the problem.
In this segment, for distinct considerations, we have quantita-
tively catalogued all degree-based entropies. This could be a

quick technique to comprehend the molecular structure Cm;n

by looking at its chemical graph structure attributes. Numeri-

cally and visually results are shown in Tables 6–8 and Fig. 10–
13. We can observe from these calculations that the entropy
values grew as the number of unit cells increased. Further-
Fig. 10 The graphical comparison of first and second Zagreb

entropies for Cm;n.

Cm;n.
more, When the chemical structure Cm;n expands, the redefined

third Zagreb entropy develops more quickly than other
entropy measurements of Cm;n, however the redefined second

Zagreb entropy grows slowly.

6. Conclusion

The physico-chemical features of dendrimer molecules and
aggregates are based on chemical structures with regular

branching. Theoretically and experimentally, regular den-
drimers have been examined. The information entropy tech-
nique is used to examine regular dendrimer aggregates in this



Table 6 Comparison of First Zagreb Entropy and second

Zagreb Entropy for Cm;n.

m; n½ � EM1
EM2

3; 1½ � 0:4771 0:47712

4; 2½ � 1:1938 1:1031

5; 3½ � 2:0092 1:7856

6; 4½ � 2:9591 2:7555

7; 5½ � 4:0250 3:7959

8; 6½ � 5:1842 4:8965

9; 7½ � 6:4399 6:1058

10; 8½ � 7:7206 7:3563

11; 9½ � 9:0774 8:6554

12; 10½ � 10:4838 10:1531

Table 7 Comparison of EHM;EF, and EJ Entropies for Cm;n.

m; n½ � ENTF ENTHM ENTJ

3; 1½ � 0:47712 0:4771 0:4511

4; 2½ � 1:2848 1:1592 1:1891

5; 3½ � 2:0009 1:6683 2:0025

6; 4½ � 2:9520 2:6154 2:9527

7; 5½ � 4:0190 3:5805 4:0190

8; 6½ � 5:2991 4:7901 5:1786

9; 7½ � 6:5159 6:0164 6:4147

10; 8½ � 7:8177 7:2781 7:7155

11; 9½ � 9:2957 8:7511 9:0726

12; 10½ � 10:5817 10:0437 10:4792

Table 8 Comparison of the Redefined Zagreb Entropies for

Cm;n.

m; n½ � EReZK1
EReZK2

EReZK3

3; 1½ � 0:47712 0:2348 1:0399

4; 2½ � 1:1938 0:8774 1:8329

5; 3½ � 2:0092 1:5781 2:8147

6; 4½ � 2:9591 2:4105 3:9325

7; 5½ � 4:0250 3:3709 5:1442

8; 6½ � 5:1842 4:4378 6:4280

9; 7½ � 6:4199 5:5926 7:7715

10; 8½ � 7:7206 6:8213 9:1668

11; 9½ � 9:0774 8:1137 10:6080

12; 10½ � 10:4838 9:4619 12:0905
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paper. As demonstrated above, the information entropy of a
regular fractal and Cayley tree type dendrimer grows with

the number of generations. As a result, the system’s informa-
tion capacity must be temporarily increased to transfer it from
one informational stable condition to another. Information

storage with nano patterned materials (Rosen et al., 2009) is
one of the potential applications of dendrimers and a mate-
rial’s information storage is determined by its information

entropy (Chawla et al., 2020). The dendrimer’s subsequent
frameworks have a greater number of equivalent building
blocks. It produces the dendrimer structure more homoge-
neous with each subsequent generation, and homogeneity is

achieved faster with larger generation values, as entropy values
indicate. Fascinatingly, in the class of dendrimers, increased
information entropy corresponds to structures with minimal
branching. The information entropy, of fractal and tree type
dendrimer structures, represents the balance between order
and disorder, and it may be used to measure this balance

numerically in structural design. This could be advantageous
if dendrimers are used as energy storage materials (Bar-Haim
et al., 1997). In addition, the correlation between the entropy

values and other branching parameters must be examined
(Bonchev and Trinajstic, 1978). Configuration entropy of
glass-forming liquids (Champion and Thurieau, 2020) or ther-

modynamic entropy of enzyme-substrate complexions (Graf
et al., 2013; Putz et al., 2006) are examples of thermodynamic
entropy used in molecular dynamics investigations on complex
chemical systems. Analogously, a new step in this direction

could be to use information entropy as a critical structural
criterion.
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