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Abstract As they facilitate the cleavage of single and double stranded DNA to relax supercoils,

unwind catenanes, and condense chromosomes in eukaryotic cells, Topoisomerase plays crucial

roles in cellular reproduction and DNA organization. Because the unrepaired single and double

stranded DNA breaks these complexes generate might result in apoptosis and cell death, they

are cytotoxic agents.

In this study, 28 compounds derived from phosphorus-substituted quinoline are subjected to a

quantitative structure–activity relationship (QSAR) using partial least squares, principal compo-

nent regression, and multiple linear regression. The Gaussian 09 software and the Molecular Oper-

ating Environment program were used to calculate molecular descriptors. The anti-proliferative

activity was correlated with a variety of electronic and structural characteristics of the molecules,

such as EHOMO (energy of the highest occupied molecular orbital) and ELUMO (energy of the lowest

unoccupied molecular orbital), which provided evidence for the modeling. The B3LYP/6-31G (d, p)

level of theory’s Density Functional Theory (DFT) approach was used to compute these electronic

properties, and Principal Component Analysis (PCA) was used to test for collinearity between the

descriptors. In fact, three alternative prediction models were created using various 2D and 3D

descriptor counts, and they were each assessed using the statistical metrics of coefficient of determi-

nation (R2) and root mean squared error (RMSE). A MLR model had the best predictive perfor-

mance of all the constructed models, as indicated by R2 and RMSE of 0.865 and 0.316, respectively.

Three proteins (6G77, 2NS2, and 5K47) for lung, ovarian, and kidney malignancies showed

strong binding affinities via hydrophobic interactions and H-bonds with the pertinent chemicals

by crystal structure modeling. Compounds C11, C19 and C26, respectively, showed the highest

binding energy for ovarian, kidney and lung cancer. The outcomes of the molecular dynamic
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MD simulation diagram were produced to support the molecular docking findings from earlier

research, which demonstrated that inhibitors were stable in the active sites of the selected proteins

for 10 ns. This raises the possibility that these chemicals could serve as a valuable model for the

development and synthesis of more effective anticancer prospects.

� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Cancer is a complicated condition that develops when cells
proliferate uncontrollably under the influence of environmen-
tal and genetic factors, invading nearby organs and tissues

and metastasizing to form new tumors (Suzuki et al., 2013).
It is predicted that by 2030, there may be 21.7 million new
cases of cancer and 13 million deaths from it because of the ris-

ing global population and average life expectancy (Torre et al.,
2012). By preventing DNA synthesis, drugs having cytotoxic
effects are effective at delaying cell disclosure, causing the

growth rate of cancer cells to be less than their mortality rate.
Any intervention that attempts to slow this growth is extensive
because cancer cells proliferate considerably more quickly than
healthy cities do (Fekri et al., 2019; Exposito et al., 2019; Istifli

et al., 2019). Viewed from afar, lung cancer continues to be the
most frequently diagnosed cancer for several decades
(American Cancer Society, 2018; Bray et al., 2018). According

to estimates, 2.1 million new cases of lung cancer were diag-
nosed in 2018, making up 12% of all cancer cases worldwide
(American Cancer Society, 2018; Bray et al., 2018). As a result,

efforts to create cytotoxic medications are increasing.
Numerous substances, both naturally occurring and syn-

thesized, include quinoline rings, which are known to be adapt-

able heterocyclic compounds with a variety of reported
pharmacological actions (Abou-Dobara et al., 2019; El-
Sonbati et al., 2019). Examples include antimalarial (Aguiar
et al., 2018), anti-rheumatoid arthritis (Schrezenmeier and

Dörner, 2020), anti-SRAS-Cov-2 (Colson et al., 2020), antimi-
crobials (Katariya et al., 2020; Orhan Puskullu et al., 2020),
antiparasitic (J. Sopková-de Oliveira Santos, P. Verhaeghe,

J.-F. Lohier, P. Rathelot, P. Vanelle, S. J.A.C.S.C.C.S.C.
Rault, Quinoline derivatives: potential antiparasitic and
antiviral agents, 63(11), 2007), anti-tuberculosis (Borsoi

et al., 2020), antidiabetic (Taha et al., 2019), anti-
inflammatory (Gao et al., 2020), antioxidant (Orhan
Puskullu and Tekiner, 2013), anticancer (Mohamed and

Ramadan, 2020), anti-arthritic (Sloboda et al., 1991), and
analgesics (Boteva et al., 2019). Molecular docking and quan-
titative structure–activity relationship (QSAR) are two compu-
tational tools that have made it feasible to produce

pharmaceuticals more quickly, affordably, and effectively
(Surabhi and Singh, 2018).

A QSAR study was conducted to correlate descriptors with

lung cancer activity expressed as IC50 values, which is the con-
centration of test compounds needed to reduce the cell survival
fraction to 50% of control. These were converted to IC50 neg-

ative logarithms (pIC50) to establish a linear relationship with
the independent variables. The foundation of QSAR comput-
ing techniques involves applying statistical data analysis tech-
niques to quantitatively associate molecular descriptors with a

macroscopic object (physical–chemical property or biological
activity) for a variety of related chemical substances

(Lahyaoui et al., 2023). Its objective is to allow the structural
data to be analyzed in order to identify the key determinants
of the property or activity being measured. A key issue in

the QSAR model building process today is how to achieve a
model that is able to clearly predict the activity or property
of a novel chemical (Yousefinejad and Hemmateenejad, Dec.

2015).
While employing the QSAR model to create new com-

pounds with improved prediction of pharmacological efficacy
that could be useful future drug targets, molecular docking

assesses the binding affinity of docked molecules with recep-
tors via the scoring functions of mathematical algorithms.
Both methods can be employed independently or together

and are well known to be particularly effective in silico drug
development. However, the lung, ovarian, and kidney protein
malignancies, respectively, were put through a molecular dock-

ing investigation to observe the binding mode of phosphorus-
substituted quinoline derivatives bearing anticancer action
in vitro on the active site of 6G77, 2NS2, and 3IG7.

2. Materiel and methods

2.1. Experimental data

Fig. 1 depicts a series of quinoline compounds that were cre-
ated by Concepcion Alonso et al (Alonso et al., 2018), who

also tested the effectiveness of topoisomerase I inhibitors
against human tumor cell line in vitro (lung A549).

2.2. Molecular descriptors

Obtaining a statistically robust model relies heavily on the
ability of the descriptors, derived from a logical and mathe-

matical procedure (Danishuddin, Aug. 2016), to express the
variation of activity with structure. The nature of the informa-
tion quantified by the descriptors generally depends on the

type of molecular representation and the algorithm developed
for calculating and predicting the correlation between the 28
derivatives and their antiproliferative activity.

The 28 structures were submitted to the Gaussian 09W soft-

ware using the DFT method based on B3LYP/6–31 G (p, d) to
find a geometry where the energy is minimal (Becke, 1992;
Becke, 1988; Lee et al., 1988; Adnani and Benjelloun, 2014;

El Assiri and Driouch, 2018, 2019; Reda and Saffaj, 2020).
This was evaluated based on the minimum energy of the
molecular structures, which is established by the absence of

imaginary frequencies and by relating the relevant bond
lengths and dihedral angle values to reference values. Fig. s1
shows the final optimized geometries.

The same software is also used for the extraction of a set of

four quantum-chemical descriptors, namely the energies of the

http://creativecommons.org/licenses/by/4.0/
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most occupied molecular orbital HOMO and the least vacant
orbital LUMO, the total energy of the molecule (Et) and the
dipole moment. However, the nature of the currently used

descriptors and the degree of encryption of the structural
molecular properties linked to some specific physical proper-
ties are the core of any QSAR study (Danishuddin, Aug.

2016). Moreover, in order to correlate the inhibition activity
with the chemical structures of the studied compounds, the
MOE program was also used to calculate the other molecular
Fig. 1 2D molecular structures of t
descriptors and the results have been reported in the annex 3.
The QSAR relationship is built by statistical methods such as
PLS, PCR and MLR to provide a representation of the QSAR

models.

2.3. Statistical analysis

In an effort to build a QSAR model, we picked a set of 28 com-
pounds from previous work that have been reported to have a
he studied quinoline derivatives.



Fig. 1 (continued)
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strong anti-proliferative activity. The XLSTAT program ran-
domly split the entire set into two subsets: a training set (22 com-

pounds) to create the model and a test set (6 compounds) to
assess the validity of the created model. the proposed approach
involves the use of a principal component analysis (PCA) tech-
nique, which checks for redundancy and collinearity between
the descriptors studied (Software, 1987; Hmamouchi et al.,

2014; Wold et al., 1987; David and Jacobs, 2014) and carries
out a comparative statistical study between three mathematical
models namely partial least squares regression (PLS), principal



Fig. 1 (continued)
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component regression (PCR) and multiple linear regression
(MLR); with the view of relating activity tomolecular structure.

After performing the calculations, and using XLSTAT soft-
ware, version 2014. The selected descriptors were used to estab-
lish statistical models that relate the activity of the compounds

to their chemical structures by separating the dataset into a
training set, which are used to establish the three models and a
test set that are exploited to evaluate the performance of these

obtained models.

2.4. External validation

The fundamental phase in QSAR analysis is model calculation,

but it is not sufficient to ensure the model’s validity; it is crucial
to assess the model’s capacity to forecast new compounds (ex-
ternal validation). Additionally, it is crucial to confirm that the

model was not created by chance. In the present test, we imple-
ment the QSAR models developed to predict the activities of
the compounds in the test set. The latter contains compounds

from the series of molecules studied in this work, but not con-
tributed to the development of the QSAR models. The external
ability of the QSAR models to predict the activity of the test

set molecules was evaluated by calculating the R2 coefficient
between the observed pIC50 values and the predicted pIC50
values after addition of the test set. Globarikh and Tropsha
(Golbraikh and Tropsha, 2002) reported the usefulness of

assessing the value of the R2 test in the external validation of
QSAR models. Under this description, when the R2 test value
is greater than 0.5, the model is statistically acceptable for pre-

diction and can be implemented for new external data (Chtita,
2021).
2.5. Molecular docking methodology

Molecular Operating Environment (MOE) software was used
to calculate and report the scores that were achieved during

the molecular docking procedure. Utilizing ChemDraw, the
molecular structures were developed (18.2). The target crystal
structures for lung (RSK4 N-terminal Kinase Domain in Com-
plex with AMP-PNP, PDB code = 6G77), ovarian (Human

spindlin1, PDB code = 2NS2), and kidney cancer (Human
Polycystin-2/PKD2 TRP channel, PDB code = 5 K47) were
retrieved and created using the Protein Data Bank (https://

www.rcsb.org/pdb/welcome.do). All the water-binding cofac-
tors and ligands were separated from the protein structure in
order to achieve optimization, and they were subsequently

fixed with hydrogen atoms. Selectively removing the active
sites to create false atoms. It was switched to assign all param-
eters and charges to the MMFF94x force field. The MOE site
search module was used to set up the alpha site spheres, and

the MOE dock module was used to dock the structural model
of the molecules to the surface of the cancer protein inside. The
dock scoring in the MOE program was carried out using the

London dG scoring function, and the upgrading was then per-
formed using two unrelated refining techniques. The top ten
dock poses that were chosen for analysis to acquire the high

score were then allowed to have self-turning docks. The dock-
ing postures were then matched with the ligand in the co-
crystallized structure using the database browser, and the

RMSD of the docking pose was obtained. Then, to categorize
the binding affinity of the compounds to the investigated pro-
tein molecules, the binding free energy and hydrogen bonds
between the produced molecules and the amino acid residues



Fig. 2 The principal components and their variances.
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of the receptors were computed. The default-docking model
was defined as the interaction types as with the RMSD of

the (native) ligand in the receptor structure.

2.6. Molecular dynamic

During molecular dynamics (MD) simulations to determine
the molecular recognition between the ligand and the protein,
the three best-docked ligands with the highest activity were

selected based on the results of molecular docking (Gholami
Rostami and Fatemi, 2018; Er-rajy and El fadili, M., Imtara,
H., Saeed, A., Ur Rehman, A., Zarougui, S., Abdullah, S.A.,
Alahdab, A., Parvez, M.K., Elhallaoui, M. , 2023; Mousavi

and Fatemi, 2019; Gholami Rostami and Fatemi, 2019). The
GROMACS 5.0 program was used to run MDs for 10 ns.
The MD simulation in explicit solvation was performed using

the SOC water model (Stouten et al., 2006). Additional input
parameters were chosen, including the type of triclinic box,
the salt to be neutralized (Na+, Cl), and the SOC water model

(Ghosh et al., 2021). Using canonical NVT and isobaric NPT
settings, the system was equilibrated at 300 K and 1 bar of
pressure, respectively (Schmidt et al., 2009). The MD simula-

tions were run for 10 ns with steady temperature and pressure,
Table 1 Descriptor contributions to the first three principal compo

F1 F2

correlation contribution correlatio

E LUMO 0.143 1.65% 0.977

E HOMO �0.955 11.03% 0.169

E l-h (ev) �0.883 10.20% �0.435

KierFlex �0.718 8.30% 0.124

logP(o/w) �0.393 4.54% �0.133

l �0.683 7.89% 0.686

S �0.788 9.11% �0.377

v 0.683 7.89% �0.686

I 0.955 11.03% �0.169

A �0.143 1.65% �0.977

g 0.883 10.20% 0.435

dens �0.247 2.85% �0.540

dipole �0.171 1.98% �0.760

lip_acc 0.462 5.34% �0.451
a 2 fs time step, and a 1 nm threshold for long-range interac-
tions (El fadili, M., Er-Rajy, M., Kara, M., Assouguem, A.,
Belhassan, A., Alotaibi, A., Mrabti, N.N., Fidan, H., Ullah,

R., Ercisli, S. , 2022).

3. Results and discussion

3.1. Principal component analysis (PCA)

PCA is a qualitative statistical analysis approach used to make
a large data set smaller and uncorrelated. These new variables
are known as principal components. It allows the practitioner

to reduce the number of variables and make the information
less redundant. Therefore, in this work, a PCA was performed
on the fourteen descriptors with the molecular concentration

of the twenty-eight molecules. The nine principal components
obtained are presented in Fig. 2.

The contributory of each descriptor to the principal compo-
nents F1, F2, and F3 were summarized in Table 1. From these

results, the descriptors EHOMO, EL-H, I and ƞ show the largest
contributions to F1, while the descriptors, ELUMO, A and
dipole possess the largest contributions to F2, whereas the

descriptors logP(o/w) and lip_acc present the most significant
contributions to F3.

Based on the projecting of the variables in the plane of the

first three principal components F1, F2 and F3 and their per-
centage contribution in the two correlation circles shown in
Fig. 3, these axes represent 84.44% of variance that is sufficient

to describe the information represented by the data set.
Following the completion of the PCA, the desired descrip-

tors Elumo, Ehomo, KierFlex, logP (o/w), dens, dipole, lip_acc,
and S have been selected as inputs for the development of

QSAR models by several techniques, including MLR. The
eight descriptors mentioned above are retained among four-
teen based on the values of the correlation coefficients. In addi-

tion, the descriptors having the lowest correlation coefficients
between them are selected as shown in the correlation matrix
presented in Table 2. Finally, the resulting database is divided

into two sets (training and test). This division is performed
randomly using the XLSTAT program.
nents F1, F2 and F3.

F3

n contribution correlation contribution

13.74% �0.073 1.66%

2.38% �0.229 5.21%

6.12% �0.148 3.37%

1.75% 0.372 8.47%

1.87% 0.765 17.39%

9.65% �0.224 5.10%

5.31% �0.164 3.74%

9.65% 0.224 5.10%

2.38% 0.229 5.21%

13.74% 0.073 1.66%

6.12% 0.148 3.37%

7.60% 0.406 9.22%

10.70% �0.324 7.37%

6.35% �0.658 14.95%



Table 2 Matrix of the correlation between different descriptors obtained.

Variables pIC50 E

LUMO

E

HOMO

E l-h KierFlex logP (o/

w)

l S v I A g dens dipole lip_acc

pIC50 1

E LUMO 0.045 1

E HOMO 0.441 0.048 1

E l-h 0.342 �0.550 0.808 1

KierFlex 0.541 0.011 0.598 0.493 1

logP (o/

w)

0.267 �0.238 0.203 0.310 0.478 1

l 0.377 0.602 0.826 0.335 0.484 0.028 1

S 0.250 �0.477 0.712 0.877 0.421 0.195 0.300 1

Χ �0.377 �0.602 �0.826 �0.335 �0.484 �0.028 �1.000 �0.300 1

I �0.441 �0.048 �1.000 �0.808 �0.598 �0.203 �0.826 �0.712 0.826 1

A �0.045 �1.000 �0.048 0.550 �0.011 0.238 �0.602 0.477 0.602 0.048 1

Η �0.342 0.550 �0.808 �1.000 �0.493 �0.310 �0.335 �0.877 0.335 0.808 �0.550 1

Dens 0.077 �0.518 0.057 0.353 0.299 0.330 �0.246 0.384 0.246 �0.057 0.518 �0.353 1

Dipole �0.103 �0.724 0.121 0.528 �0.065 �0.002 �0.311 0.264 0.311 �0.121 0.724 �0.528 0.232 1

lip_acc �0.536 �0.303 �0.381 �0.140 �0.485 �0.653 �0.475 �0.072 0.475 0.381 0.303 0.140 �0.050 0.447 1

Fig. 3 Correlation circles between the principle compounds F1–F2 and F1–F3.
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3.2. Partial least square PLS

Quantitative assessment of the compounds by improving the
structure–activity relationship was also viewed using partial
least squares. The correlation coefficient (R2), MSE and

RMSE were used to evaluate and validate the developed
model.

pIC50 = � 0.42–0.24 * ELUMO + 0.08 * EHOMO + 0.50 *
KierFlex � 0.43 * logP (o/w) + 3.40 * dens + 0.01 * dipole
� 0.94 * lip_acc � 0.51 * S

N = 22; R2 = 0.789; MSE = 0.093; RMSE = 0.305

The role that the selected descriptors play in the developed

model is very imperative and these have been graphically rep-
resented in Fig. 4.
The statistical values observed for PLS indicated that the
developed model proved to be reliable and predictive as shown

in Table 3. In addition, the undifferentiated distribution of
residuals on both sides of zero as shown in Fig. 5 revealed that
the developed model had no relative inaccuracy. The calcu-

lated R2 for PLS indicated that the predicted pIC50 matched
well with the observed pIC50, which demonstrates the reliabil-
ity of the developed model (Fig. 6).Table 4.

3.3. Principal components regression (PCR)

In order to boost the quality of the prediction between activity
and molecular structure, the selected descriptors were used to

evaluate a principal component regression PCR. Their equa-
tion obtained along with the statistical parameters calculated
using the following ANOVA table is expressed in as:



Fig. 4 Standardized coefficients versus variables in the proposed PLS model.

Table 3 ANOVA for PCR model.

Source DF Sum of squares Mean squares F Pr > F

Model 7 7.58 1.083 7.472 0.001

Error 14 2.029 0.145

Corrected Total 21 9.608

Fig. 5 The residuals against observed pIC50.
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pIC50 = � 2.46 + 0.50 * ELUMO + 0.37 * EHOMO + 0.22
* KierFlex � 0.19 * logP(o/w) + 6.22 * dens � 0.56 *
dipole � 0.13 * lip_acc + 1.29 * S

N = 22; R2 = 0.789; R2
adj = 0.683; MSE = 0.145;

RMSE = 0.381

The analysis of variance results are summarized in ANOVA
Table 3:

The statistical results obtained by PCR show good quality
and improved prediction of activity as well as PLS. It is qual-
ified by quite significant values of the coefficient of determina-

tion (R2 = 0.789) and adjusted coefficient of determination
(R2

adj = 0.683) and low value of MSE 0.147. The resulting val-
ues of the predicted pIC50 are adjusted with the experimental

pIC50 in Fig. 7.
In order to improve the relationship between the predicted

activities obtained by the QSAR models developed via PLS,
PCR techniques and the eight molecular descriptors; a new

QSAR model developed using the MLR technique.



Fig. 6 Experimental vs. calculated pIC50 obtained by the PLS model.

Table 4 Observed and predicted pIC50 values of PLS, PCR and MLR models.

compounds pIC50 PLS model PCR model MLR model

Pred (pIC50) Residual Pred (pIC50) Residual Pred (pIC50) Residual

1 �0.236 0.043 �0.279 �0.187 �0.048 �0.251 0.016

2 �0.430 0.197 �0.627 0.162 �0.591 0.038 �0.468

3 0.301 0.311 �0.010 0.296 0.005 0.306 �0.005

4 �0.580 �0.355 �0.225 �0.327 �0.253 1.585 �2.165

5 0.678 �0.510 1.187 0.247 0.431 �0.341 1.019

6 �0.553 �0.266 �0.287 �0.235 �0.317 �0.491 �0.062

7 0.602 0.322 0.280 0.367 0.235 0.290 0.312

8 �0.079 0.066 �0.145 �0.046 �0.033 �0.196 0.117

9 �0.083 �0.382 0.299 �0.362 0.763 �0.531 0.448

10 �0.354 �0.263 �0.091 �0.578 0.224 �0.293 �0.062

11 �0.013 �0.106 0.094 0.111 �0.124 �0.086 0.073

12 �0.467 �0.819 0.352 �0.839 0.372 �0.544 0.077

13 �0.493 �0.985 0.493 �0.369 �0.124 �0.459 �0.033

14 �0.801 �0.748 �0.052 �0.800 0.000 �0.617 �0.184

15 �0.582 �0.124 �0.458 �0.139 �0.393 �0.064 �0.518

16 �0.884 �0.431 �0.453 �0.680 �0.203 �0.611 �0.273

17 0.222 0.484 �0.262 0.330 �0.109 0.453 �0.231

18 �1.209 0.796 �2.004 0.831 �2.451 1.081 �2.289

19 1.097 0.762 0.335 0.855 0.242 1.106 �0.009

20 0.959 0.459 0.500 0.467 0.465 0.514 0.445

21 0.602 0.588 0.014 0.718 �0.116 0.771 �0.169

22 �0.394 �0.117 �0.277 �0.155 �1.350 0.438 �0.832

23 0.796 0.780 0.016 0.774 0.513 0.774 0.022

24 0.658 1.077 �0.419 1.311 �0.654 1.132 �0.474

25 0.569 0.901 �0.332 0.620 �0.051 1.010 �0.441

26 1.097 1.042 0.055 0.902 0.195 1.206 �0.109

27 0.569 0.362 0.206 0.239 0.330 0.371 0.198

28 1.523 1.018 0.505 0.932 0.591 1.186 0.337
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3.4. Multiple linear regression (MLR)

Based on theMLRmethod, four criteria are used: the coefficient
of determination (R2), the coefficient of fit (R2

adj), the root mean
square error (RMSE) and the Fisher ratio value (F). The out-
comes of theMLR that contain the corresponding standardized
coefficients of the descriptors and the correlation between the

observed and predicted activities are provided in Figs. 8 and 9
respectively. In addition, the established model is represented
by the following equation with the statistical parameter values.



Fig. 7 Experimental vs. Calculated pIC50 obtained by the PCR model.

Fig. 8 Modeling characterization by the normalized coefficients.

Fig. 9 The correlation between the observed and the predicted activities.
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pIC50 = � 2.95 + 0.25 * ELUMO + 0.68 * EHOMO + 0.25

* KierFlex � 0.36 * logP(o/w) � 1.83 * S + 9.98 *
dens + 0.13 * dipole � 0.41 * lip_acc
N = 22; R2 = 0.865; R2

adj = 0.783; RMSE = 0.316;

F = 10.448

Following the coefficient normalization plot, we saw that
the built model had three most important descriptors (EHomo,

S and dens) correlated with pIC50. The high value of the coef-
ficient of determination (R2 = 0.865), the lower value of the
mean square error (MSE = 0.100) and the high value of the

statistical confidence (F = 10.448), indicate that the QSAR
model is statistically acceptable. Also, the obtained p-value,
which is less than 0.05 (Pr less than 0.0002) points out that

the QSAR model equation is statistically significant with a
level higher than 95%. In Fig. 9, we remark that the distribu-
tion of observed and predicted pIC50 values are significantly
correlated, which is a result of the low MSE value obtained.

In this way, it is clear that the experimentally obtained values
and the values predicted by the QSAR model are correlated.

To check the reliability of the predictive ability of the

obtained QSAR models, we proceed to an external validation.
In the coming paragraph, we report the results of the test
performed.

3.5. External validation

We carry out the outside validation test by testing the ability of

the QSAR models to predict the pIC50 activity values of the
molecules involved in the test set by calculating the coefficient
of the correlation R2 test. Which represents an important cri-
terion in evaluating the performance of externally validated

models in predicting the activities of the molecules not
involved in the model development. The achieved values of
the R2

test are 0.696, 0.622, and 0.762 for the PLS, PCR, and

MLR models, respectively. These values are also greater than
Table 5 Docking score and energy of the compounds and 6G77 pr

mol S rmsd_refine E_conf

11 �6.88 2.10 166.68

�6.33 1.17 173.06

�6.10 5.21 165.14

�5.84 1.25 178.50

�4.60 1.93 196.02

19 �6.11 5.12 116.80

�6.00 3.62 111.56

�5.30 4.06 105.61

�5.25 2.69 147.14

�5.17 1.35 105.28

26 �6.92 1.47 172.77

�6.81 1.30 174.36

�5.97 5.20 157.03

�5.51 2.67 168.97

�5.34 3.00 163.55

28 �6.83 2.21 166.39

�6.73 4.22 152.22

�6.05 6.23 149.87

�6.03 6.56 156.16

�5.95 2.92 149.78
0.5. This external validation of the QSAR models ensures the
high power of these models to predict ICp50 values.

3.6. Molecular DOCKING

Molecular Docking is an efficient method to calculate and
assume the type of interaction and binding sites with interact-

ing molecules. MOE modeling software was implemented to
visualize and calculate the binding sites and their docking
scores of the encoded compounds C11, C19, C26 and C28

for each of the three encoded cancer protein enzymes 6G77
for lung, 2NS2 for ovary, and 5 K47 for KIDNEY, respec-
tively. From all the calculated energies, the lowest binding

energy showed the highest activity, which could be observed
by the ranking poses generated by the scoring functions that
are given in Tables 5, 7 and 9, respectively. The highest score
was obtained by C26 in lung, C11 in ovarian and C19 in kid-

ney cancer and the results were �6.92, �5.73 and �4.87 kcal/-
mol, respectively. The hydrogen-bonding list between the
compounds and the selected protein coenzymes is given in

Tables 6, 8 and 10, respectively. The best-fitting poses that
were adopted by the enzyme-calmed compounds, namely
6G77, 2NS2, and 5 K47, are displayed in Figs. 10, 11, and

12, respectively. Molecular Operating Environment (MOE)
stands as main mechanism of molecular docking employed
to recognize a precise docking study between the compounds
and the target proteins. The docking position and interaction

types were aligned and in agreement with the experimental
LD10 of these compounds against the three cancer proteins.
For 6G77 protein, compound C26 revealed a high docking

score through hydrogen p-stacking with the 6-membered ring
of Gln 81, Gly 80, and Asp 159. The interaction distance ran-
ged from 3.62 to 4.68A� and the energy stabilization from �0.6

to �1.4 Kcal/mol. While in the case of 2NS2 protein, com-
pound C11 had a strong docking score due to the cation p-
stacking with the 6-membered ring of Lys 214 at 4.16 A from
otein cancer of lung cancer protein.

E_place E_score1 E_refine E_score2

�91.71 �10.63 –22.58 �6.88

�85.00 �10.49 �11.60 �6.33

�93.38 �10.77 –23.76 �6.10

�100.17 �11.88 �3.75 �5.84

�41.34 �10.77 7.09 �4.60

�53.06 �9.88 �19.12 �6.11

�74.85 �10.36 �15.82 �6.00

�70.95 �10.14 �19.21 �5.30

�16.57 �9.56 2.89 �5.25

�86.18 �9.51 �12.66 �5.17

�60.42 �8.82 �9.72 �6.92

�94.11 �9.65 �11.98 �6.81

�86.54 �8.71 �18.41 �5.97

�71.31 �9.22 �11.04 �5.51

�70.77 �9.37 �10.85 �5.34

�64.87 �8.39 �12.52 �6.83

�59.37 �9.36 �14.82 �6.73

�86.61 �8.31 �19.81 �6.05

�30.66 �7.79 �16.73 �6.03

�71.62 �8.40 �18.90 �5.95



Table 6 Interaction table between the compounds and 6G77 protein cancer of lung cancer protein.

compounds Ligand receptor interaction distance E (kcal/mol)

11 6-ring NZ LYS 105 pi-cation 4.38 �0.6

CD2 LEU 205 pi-H 4.14 �0.6

19 6-ring CG1 VAL 87 pi-H 3.95 �0.8

26 6-ring CA GLY 80 pi-H 4.25 �0.6

N GLN 81 3.62 �1.4

N ASP 159 4.68 �0.7

28 S 40 CA GLY 158 H-acceptor 3.83 �1.1

N ASP 159 H-acceptor 3.2 �1.2

6-ring CA GLY 80 pi-H 9.84 �0.7

CG1 VAL 87 pi-H 4.07 �0.7

Table 7 Docking score and energy of the compounds and 2NS2 protein cancer of ovarian cancer protein.

mol S rmsd_refine E_conf E_place E_score1 E_refine E_score2

11 �5.73 2.39 166.13 �56.03 �9.33 �21.08 �5.73

�5.57 2.66 169.39 �49.89 �9.47 �21.25 �5.57

�5.25 2.11 170.16 �42.92 �9.40 �17.87 �5.25

�5.25 1.73 167.37 �54.46 �9.30 �12.43 �5.25

�5.14 3.29 162.80 �38.82 �9.19 �18.59 �5.14

19 �5.60 1.65 110.18 �74.39 �9.33 �19.44 �5.60

�5.42 2.34 105.37 �43.87 �9.54 �19.19 �5.42

�5.39 2.64 104.12 �75.82 �9.50 �19.59 �5.39

�5.38 2.99 106.34 �37.70 �9.31 �19.75 �5.38

�5.29 2.38 103.80 �53.21 �9.18 �19.01 �5.29

26 �5.43 2.56 151.54 �36.79 �9.58 �19.76 �5.43

�5.13 2.39 151.73 �45.43 �9.48 �17.54 �5.13

�5.09 2.09 153.38 �36.66 �9.51 �16.76 �5.09

�5.08 2.20 150.50 �76.08 �9.73 �17.29 �5.08

�4.97 2.15 151.11 �67.76 �9.29 �16.75 �4.97

28 �5.55 2.36 146.26 �61.69 �9.87 �17.78 �5.55

�5.51 1.54 141.88 �48.77 �9.18 �18.18 �5.51

�5.42 1.94 144.08 �63.98 �9.27 �17.36 �5.42

�5.39 1.78 143.31 �58.28 �8.88 �21.00 �5.39

�5.36 1.79 143.00 �34.54 �8.97 �19.37 �5.36

Table 8 Interaction table between the compounds and 2NS2 protein cancer of ovarian cancer protein.

compounds Ligand receptor interaction distance E (kcal/mol)

11 F 40 NZ LYS 235 H-acceptor 2.94 �1.6

6-ring NZ LYS 214 pi-cation 4.16 �1

19 6-ring NE ARG 127 pi-cation 4.2 �0.7

26 S 42 NE ARG 127 H-acceptor 4.06 �5

NH2 ARG 127 H-acceptor 4.17 �4.6

6-ring NZ LYS 214 pi-cation 3.95 �1.2

28 6-ring NE ARG 127 pi-cation 4.23 �0.6

NZ LYS 214 pi-cation 3.56 �1.6
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the target by �1.6 K cal/mol and via hydrogen bonding of the
Fluor atom to the Lys 235 amino acid residue. This hydrogen

bonding is about 2.94A� away and energy stabilization equal
�1.6 Kcal/mol. Besides, it is observed that compound C19

achieved a high docking score based on its interaction with

protein 5 k47 via hydrogen p-stacking with the 6-membered
ring of Glu residue in a 3.63 A� of target with �0.7 Kcal/mol.
These bonds obtained with the key amino acid residues of the
binding pockets identified based on the above results helped
stabilize the structure of the target receptor. All docked poses

with the lowest binding energy have the highest affinity, hence
are assumed the best-docked conformation. As well, in light of
these vital interactions at the molecular level, the docking pro-

gram (MOE) made it possible to match the experimentally
observed binding modes, thereby identifying the particular
conformation of the target and ligand.



Table 9 Docking score and energy of the compounds and 5 K47 protein cancer of kidney cancer protein.

mol S rmsd_refine E_conf E_place E_score1 E_refine E_score2

11 �4.58 2.32 189.78 �40.18 �11.38 2.78 �4.58

�4.35 2.34 169.50 �16.28 �9.57 �0.76 �4.35

�4.33 7.10 166.79 �77.14 �10.46 �13.78 �4.33

�4.10 6.48 163.39 �20.75 �9.18 �12.49 �4.10

�3.69 3.57 162.16 �29.43 �9.37 �10.20 �3.69

19 �4.87 6.27 109.02 �58.83 �9.19 �14.63 �4.87

�4.69 5.36 106.65 �37.52 �9.98 �15.94 �4.69

�4.22 2.32 105.62 �40.35 �8.91 �13.46 �4.22

�3.62 2.04 110.46 �62.01 �9.22 �1.36 �3.62

�3.56 2.77 128.66 �45.47 �9.63 15.21 �3.56

26 �4.65 8.26 148.96 �28.54 �8.24 �13.63 �4.65

�3.68 1.21 195.72 �41.86 �8.86 16.89 �3.68

�0.12 1.46 274.49 �61.98 �8.26 57.22 �0.12

0.64 2.96 182.53 �36.15 �9.01 50.75 0.64

2.58 1.24 208.43 �88.24 �12.21 86.12 2.58

28 �4.70 2.04 141.90 �29.06 �7.44 �15.48 �4.70

�4.68 1.87 141.55 �37.40 �8.57 �13.66 �4.68

�4.47 2.71 141.39 �51.81 �7.33 �14.75 �4.47

�4.36 2.10 140.69 �4.91 �8.04 �13.30 �4.36

�4.28 2.40 142.49 –33.27 �7.70 �14.14 �4.28

Table 10 Interaction table between the compounds and 5 K47 protein cancer of kidney cancer protein.

compounds Ligand receptor interaction distance E (kcal/mol)

11 6-ring OH TYR 465 pi-H 3.61 �1

CA SER 530 pi-H 3.99 �0.7

19 6-ring CB GLU 533 pi-H 3.63 �0.7

28 6-ring CE2 TYR 465 pi-H 4.47 �0.6

Fig. 10 3D docking and 2D of compound C26 and 6G77 protein cancer of lung cancer protein.
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3.7. Molecular dynamics simulation

In order to test the stability of the three most active ligands
(molecules C11, C19 and C26), dynamic molecular modeling

was performed for 10 ns. Fig. 13 displays the conformational
changes of the three ligands.
Using three complexes 11, 19, and 26 designated respec-

tively 2NS2-C11, 5 K47-C19, and 6G77-C26 built for the tar-
get protein to assure the projected binding stability of the
complex system, a 10 ns molecular dynamic simulation of

the interactions between three docked molecules was run.
Fig. 13 shows that during the MD simulations, the RMSD
of the complex 11 ranged between 2.2 and 2.5 Å, with the aver-



Fig. 11 3D docking and 2D of compound C11 and 2NS2 protein cancer of ovarian cancer protein.

Fig. 12 3D docking and 2D of compound C19 and 5 K47 protein cancer of kidney cancer protein.

Fig. 13 RMSD and RMSF of molecular dynamics results.
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age RMSD from 0 to 3 ns being found to be 1 Å. After the

complex’s curve slightly increased to a value of about
2.45 Å, the complex’s system became equilibrated for the
remaining time. According to the RMSD analysis, the target

protein for complexes 19 and 26 ranged between 1 and 1.9 Å
over the MD simulations, with an average RMSD of 1.5 Å.
As a result, the Rg figure demonstrates that following mole-

cule binding, the target protein’s folding compactness has not
significantly changed Fig. 14. The outcomes after reviewing the
MD simulation diagram supported the earlier molecular dock-

ing outcomes. Since there was little fluctuation in the proper-
ties of the three selected ligands, they were able to build



Fig. 14 The radius of gyration of the molecular dynamics

results.
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dynamically stable connections with their proteins for the sim-

ulation time of 10 ns.

4. Conclusion

In the present work, the proliferative activity of Topoiso-
merase I Inhibitors in a series of 28 phosphorus substituted
quinoline derivatives was investigated and electronic descrip-

tors in addition to Lipinski parameters were used to relate
them to biological activity. The stability and predictive power
was confirmed by internal and external validation. It is worth
mentioning that the docking study was made to investigate the

interaction of the most active compounds with three proteins:
6G77, 2NS2 and 5 K47. The findings show that hydrogen and
pi-cation interactions with the ester function and the tri-

ofluromethyl group (-CF3) have a great effect on the activity
values studied, which confirms the experimental results. Based
on the computational analyses, compounds C11, C19 and C26

were found to have maximum binding affinity to the target
proteins of ovarian, kidney and lung cancers, respectively.
The three chosen ligands created dynamically stable connec-
tions with respective proteins during the 10 ns simulation time.
Based on the above facts, the three compounds may be offered
to be key structures for the design and synthesis of newer and

more powerful anti-cancer drugs.

Appendix A. Annex 1:
Abbreviation of molecular

descriptors
description
E LUMO
 Highest occupied molecular orbital

energy
E HOMO
 Lowest unoccupied molecular

orbital energy
lip_acc
 Lipinski acceptor count
logP (o/w)
 Log octanol/water partition

coefficient
E l-h
 Energy gap
KierFlex
 Molecular flexibility
l
 Dipole moment
S
 Softness
v
 Electronegativity
I
 Ionization potential
A
 Electron affinity
g
 Hardness
dens
 Density
Annex: 2
Abbreviation
 description
S
 The finale score of GBVI/WSA binding free energy
Rmsd_refine
 The mean square deviation after refinement
E_place
 Score of the placement phase
E_conf
 Energy conformer
E_refine
 Score refinement
E_scor1
 Score the first step of notation
Annex 3: Values of molecular descriptors.
Compounds
 pIC50
 E LUMO
 E HOMO
 E l-h
 KierFlex
 logP (o/w)
 l
 S
 v
 I
 A
 g
 dens
 dipole
 lip_acc
1
 �0.24
 �1.69
 �5.93
 �4.24
 4.77
 7.68
 �3.81
 0.24
 3.81
 5.93
 1.69
 2.12
 0.98
 1.14
 2.00
2
 �0.43
 �1.77
 �5.94
 �4.18
 4.93
 7.83
 �3.86
 0.24
 3.86
 5.94
 1.77
 2.09
 1.02
 0.97
 2.00
3
 0.30
 �2.65
 �3.63
 �0.98
 5.48
 8.61
 �3.14
 1.02
 3.14
 3.63
 2.65
 0.49
 1.07
 0.98
 2.00
4
 �0.58
 �1.09
 �3.33
 �2.24
 4.74
 6.41
 �2.21
 0.45
 2.21
 3.33
 1.09
 1.12
 1.00
 1.79
 3.00
5
 0.68
 �1.71
 �5.87
 �4.17
 5.38
 7.63
 �3.79
 0.24
 3.79
 5.87
 1.71
 2.08
 0.99
 1.39
 3.00
6
 �0.55
 �2.05
 �5.57
 �3.51
 4.94
 8.90
 �3.81
 0.28
 3.81
 5.57
 2.05
 1.76
 0.99
 1.15
 2.00
7
 0.60
 �1.82
 �5.99
 �4.16
 5.10
 7.98
 �3.90
 0.24
 3.90
 5.99
 1.82
 2.08
 1.04
 1.23
 2.00
8
 �0.08
 �1.87
 �5.57
 �3.70
 4.99
 7.98
 �3.72
 0.27
 3.72
 5.57
 1.87
 1.85
 0.98
 1.17
 2.00
9
 �0.08
 �1.80
 �6.03
 �4.23
 4.28
 8.25
 �3.92
 0.24
 3.92
 6.03
 1.80
 2.11
 0.99
 1.25
 2.00
10
 �0.35
 �1.85
 �6.02
 �4.17
 4.44
 8.40
 �3.94
 0.24
 3.94
 6.02
 1.85
 2.08
 1.02
 1.24
 2.00
11
 �0.01
 �2.03
 �6.31
 �4.28
 4.98
 9.18
 �4.17
 0.23
 4.17
 6.31
 2.03
 2.14
 1.08
 1.30
 2.00
12
 �0.47
 �1.88
 �6.15
 �4.27
 4.25
 7.17
 �4.01
 0.23
 4.01
 6.15
 1.88
 2.14
 1.01
 0.98
 3.00
13
 �0.49
 �1.67
 �5.74
 �4.06
 4.86
 8.20
 �3.70
 0.25
 3.70
 5.74
 1.67
 2.03
 1.00
 1.30
 3.00
14
 �0.80
 �1.83
 �5.61
 �3.78
 4.49
 9.47
 �3.72
 0.26
 3.72
 5.61
 1.83
 1.89
 1.00
 1.27
 2.00
15
 �0.58
 �1.91
 �6.07
 �4.16
 4.60
 8.55
 �3.99
 0.24
 3.99
 6.07
 1.91
 2.08
 1.05
 0.87
 2.00
(continued on next page)
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(continued)
Compounds
 pIC50
 E LUMO
 E HOMO
 E l-h
 KierFlex
 logP (o/w)
 l
 S
 v
 I
 A
 g
 dens
 dipole
 lip_acc
16
 �0.88
 �1.76
 �5.99
 �4.23
 4.49
 8.55
 �3.88
 0.24
 3.88
 5.99
 1.76
 2.12
 0.99
 1.28
 2.00
17
 0.22
 �0.48
 �5.32
 �4.83
 4.72
 8.05
 �2.90
 0.21
 2.90
 5.32
 0.48
 2.42
 0.96
 0.16
 1.00
18
 �1.21
 �0.70
 �5.38
 �4.68
 5.43
 8.99
 �3.04
 0.21
 3.04
 5.38
 0.70
 2.34
 1.04
 0.47
 1.00
19
 1.10
 �0.59
 �5.18
 �4.59
 5.05
 8.36
 �2.89
 0.22
 2.89
 5.18
 0.59
 2.30
 1.02
 0.33
 1.00
20
 0.96
 �0.48
 �5.03
 �4.55
 4.94
 8.35
 �2.75
 0.22
 2.75
 5.03
 0.48
 2.28
 0.95
 0.20
 1.00
21
 0.60
 �0.53
 �5.10
 �4.57
 5.10
 8.50
 �2.81
 0.22
 2.81
 5.10
 0.53
 2.29
 0.98
 0.43
 1.00
22
 �0.39
 �0.44
 �4.97
 �4.53
 5.56
 8.31
 �2.71
 0.22
 2.71
 4.97
 0.44
 2.26
 0.96
 0.43
 2.00
23
 0.80
 �1.73
 �4.18
 �2.45
 5.24
 8.88
 �2.95
 0.41
 2.95
 4.18
 1.73
 1.22
 0.98
 1.44
 1.00
24
 0.66
 �2.06
 �4.42
 �2.36
 5.96
 9.81
 �3.24
 0.42
 3.24
 4.42
 2.06
 1.18
 1.06
 1.17
 1.00
25
 0.57
 �1.76
 �4.23
 �2.47
 5.41
 9.03
 �2.99
 0.41
 2.99
 4.23
 1.76
 1.23
 1.01
 1.26
 1.00
26
 1.10
 �1.88
 �4.34
 �2.46
 5.57
 9.22
 �3.11
 0.41
 3.11
 4.34
 1.88
 1.23
 1.05
 1.25
 1.00
27
 0.57
 �1.85
 �4.18
 �2.32
 5.38
 10.14
 �3.01
 0.43
 3.01
 4.18
 1.85
 1.16
 0.99
 1.42
 1.00
28
 1.52
 �1.81
 �4.27
 �2.46
 5.57
 9.18
 �3.04
 0.41
 3.04
 4.27
 1.81
 1.23
 1.04
 1.08
 1.00
Appendix B. Supplementary data

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.arabjc.2023.104783.
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