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A B S T R A C T   

Third-hand smoke (THS) has been recognized as a main exposure route to the chemical content of tobacco 
products. In the present study, potential exposure of people to primary aromatic amines (PAAs) release from 
indoor settled dusts in smoking and non-smoking cafés were studied for the first time. Nine compounds of PAAs 
in the indoor dust samples of waterpipe, cigarettes and non-smoking cafés in Bushehr were measured by using 
liquid chromatography-mass spectrometry (LC-MS/MS). The mean concentration levels of 

∑
PAAs released 

through settled indoor dusts of waterpipe, cigarettes and non-smoking cafés were 728.23, 331.37 and 66.11 ng 
g− 1, respectively. The results showed that the mean concentration levels of 

∑
PAAs were ranked as: waterpipe 

cafés ˃ cigarette cafés ˃ non-smoking cafés. Among the measured PAAs, aniline (ANL) and 2, 6-dimethylaniline 
(2, 6-DMA) have the highest levels. The findings also showed that the levels of PAAs had a negative and sig-
nificant relationship (P < 0.05) with “the ventilation rate”, “number of window/doors”, and “café area”, but a 
positive and significant relationship with “the number of active smokers” and “the time from last painting” (P <
0.05). The estimated daily intake (EDI) of PAAs in settled indoor dusts for different age groups (infants, toddlers, 
children, teenagers, and adults) were ranged from 52.5 to 3832.8 ng kg− 1-bw day− 1, and EDI value for toddlers 
was higher than others groups. Although all obtained EDI values were lower than acceptable exposure values 
recommended by World Health Organization (WHO) and Environmental Protection Agency (EPA), but chronic 
exposure can be harmful to health. Hence, more comprehensive studies are needed to evaluate different chemical 
contents and potential health effects of THS.   

1. Introduction 

Smoking (cigarettes and waterpipe) has a long history and the WHO 

has introduced smoking as a global epidemic (Ebrahimi Kalan, 2021; 
Asfar, 2005; Arshad, 2019). According to global report on trends in 
prevalence of smoking, 1.18 billion people regularly smoke tobacco. It 
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was reported that smoking killed about 7 million people worldwide in 
2020 (Dai et al., 2022), and tobacco use was the second leading cause of 
mortality (Al-Numair, 2007). The human health effects of smoking are 
depended on the amount of chemicals in tobacco smoke and the rate of 
smoking (Soleimani, 2022; Dobaradaran, 2019; Abadi, 2023). Tobacco 
smoke contains more than 7000 chemicals that are released into the 
environment in the form of gas, suspended particles and/or a combi-
nation of both (Heydari, 2019; Rodgman and Perfetti, 2013; Dobar-
adaran, 2022; Akhbarizadeh, 2021; Dobaradaran, 2017; Dobaradaran, 
2020; Dobaradaran, 2021; Dobaradaran, 2023; Masjedi, 2020; Masjedi, 
2023; Masjedi, 2021; Dobaradaran, 2018; Arfaeinia, 2023). During each 
smoking, chemical contents of tobacco divided among different smoke 
components such as mainstream smoke (MS: which the smoker breathes 
out during the puffs), sidestream smoke (SS: the smoke that is released 
from the end of a burning cigarette), secondhand smoke (SHS: is made 
up of SS (~85 %) and exhaled MS (~15 %) (Hang, 2020), and thirdhand 
smoke (THS: made up of the contaminants that settle indoors after 
smoking in closed environments) (Hang, 2020; Ding, 2006; Vu, 2021; 
Counts, 2005; Ajab, 2014. 2014.; Jacob, 2017). The indoor air of any 
environment is described according to the usage, construction and in-
ternal activities, and from this point of view, the indoor air quality of 
cigarettes and waterpipe cafés is very important due to the presence of 
high amounts of various chemicals that released into the environment 
through tobacco smoke (Cobb, 2013). Unfortunately, the smoke of cig-
arettes and waterpipe remains in the environment and settled on sur-
faces, and residents are continuously exposed to the chemical contents 
of them (Soleimani, 2022; Kelley, 2021; Acuff, 2016; Dobaradaran, 
2021; Ribeiro, 2022; Soleimani, 2023; Soleimani, 2023). Environmental 
tobacco smoke (SHS and THS) which contains various chemicals, can 
cause various health problems including asthma, cardiovascular dis-
eases, and other respiratory problems in smokers and people present in 
those environments as passive smokers (Drago, 2018). Therefore, it is 
necessary to assess the people’s exposure to various particles and 
chemicals emitted from tobacco smoke in smoking cafés. Settled indoor 
dusts in cafés can act as an significant carrier for the transfer of volatile 
and semi-volatile chemicals such as primary aromatic amines (PAAs) 
into people’s bodies (Mercier, 2011; Chinthakindi and Kannan, 2021). 
One of the most important and well-known sources of direct contact of 
people with PAAs is tobacco, cigarette smoke and other related products 
(Dobaradaran, 2022; Dobaradaran, 2023; Luceri, 1993). The US Food 
and Drug Administration published a list of potentially dangerous PAAs 
in tobacco and cigarette smoke including 2, 6-dimethylaniline (2,6- 
DMA), ortho-Toluidine (o-ToL), ortho-Anisidine (o-ASD), 1-Naphthyl-
amine (1-NA), 2-Naphthylamine (2-NA), and 4-Aminobiphenyl (4- 
ABP) (Food and Administration, 2012). These compounds have high 
reactivity with proteins and DNA, which cause mutagenesis in people 
(Brauer and Funke, 2002; Norinder et al., 2018). It has been reported 
that direct contact of people with cigarette smoke and indirect contact of 
workers in different industries such as paint industries with PAAs in-
crease the prevalence of bladder cancer (Richter and Branner, 2002; 
Beland, et al., 2012). Therefore, these compounds are considered as a 
serious threat to human health. Although PAAs have been measured in 
unsmoked cigarette and freshly smoked cigarette butts (Dobaradaran, 
2022) as well as their leachates into water environments (Dobaradaran, 
2023), in cigarette smoke (Saha et al., 2009), and waterpipe smoke 
(Schubert, 2011). But to the best of our knowledge, PAAs have not been 
measured in settled indoor dusts in cigarettes and waterpipe cafés. 
Nowadays, due to the increasing prevalence of smoking, it is important 
to measure the levels of chemicals in settled indoor dusts. For this pur-
pose, in this study, the levels of PAAs in settled indoor dusts emitted 
from waterpipe and cigarette smoke in cafés have been quantified for the 
first time. Our work hypothesizes were: 1) the amounts of PAAs com-
pounds in settled indoor dusts from waterpipe and cigarette cafés are 
considerable. 2) the levels of PAAs in waterpipe cafés is higher than 
cigarette cafés, and 3) the exposure rate of people present in cafés to 
PAAs is significant. 

2. Materials and methods 

2.1. Study design and selection of sampling places 

Fifty-four cafés were randomly selected among available and active 
eighty-three smoking cafés in Bushehr-Iran, by coding (from 1 to 83) and 
using a randomization function in Excel software through the following 
formula (Equation 1):  

0 ≤ 83 × Rand () ≤ 8                                                                      (1) 

Among selected 54 cafés, 35 cafés served waterpipe (waterpipe cafés: 
WPC) and 19 cafés served only cigarette (cigarette cafés: CC). Besides, 
25 smoking-free cafés (SFC) were also selected as the control group. 

For each café, the potential effective parameters such as the area, 
ventilation type, the number of doors/windows, the number of venti-
lators, the ventilation rates, the number of active waterpipe heads and 
the type of tobacco (fruit-flavored or traditional tobacco) also recorded 
via a researcher-made checklist. The indoor settled dust samples (as 
thirdhand smoke) were collected from each café by using a horsetail 
brush and a steel dustpan. The weight of each mixed dust sample was ~ 
5 g. After transferring to the laboratory, the samples were sieved 
through a 150 μm sieve to remove extraneous materials/coarse debris 
and to obtain homogeneous samples (Chinthakindi and Kannan, 2021). 
Then, obtained samples wrapped in aluminum foil, and stored at 4◦C 
until chromatographic analysis. 

2.2. Chemicals and reagents 

Analytical grade standards of nine studied PAAs were purchased 
from Sigma–Aldrich. Other required solutions chemicals including 
methanol, acetonitrile, methyl tert-butyl ether (MTBE), hexane, ethyl 
acetate, dichloromethane (DCM), diethyl ether, formic acid (HCOOH), 
30 % ammonium hydroxide in water (NH4OH), and hydrochloric acid 
(HCl; 37 % v/v) were also purchased from Merck. 

2.3. Extraction and analysis of samples 

In order to extract the PAAs from samples, the proposed method by 
Chinthakindi et al was used (Chinthakindi and Kannan, 2021). Briefly, 
200 mg of settled indoor dust sample was weighed and 10 ng of 5 
isotope-labelled PAAs (including aniline-d5, ortho-toluidine-13C6, para- 
toluidine-d7, 2,6-dimethylaniline-d6 and 4-chloroaniline-13C6) were 
added as internal standards. For extraction, 5 ml MTBE was then added 
to the samples and ultra-sonicated at room temperature (22◦C) with a 
frequency of 40 kHz for 30 min. This process was repeated to achieve 
better extraction efficiency. Finally, the samples were centrifuged at 
3500 rpm for 10 min and the supernatant was transferred to a poly-
ethylene tube and 15 µL of HCl (0.25 M) was added. The obtained so-
lution was dissolved with 200 µL of a mixture of water and methanol (v: 
v, 9:1) and finally transferred to a 300 µL vial. 

2.4. Instrumental and quality assurance 

Liquid chromatography with tandem mass spectrometry (LC-MS/ 
MS, (Waters Corporation, USA)) was used to analyze PAAs in the 
extracted samples. The separation of the target analytes was done with 
LC attached to the column (100 mm × 2.1 mm, 5 μm) with an injection 
volume of 5 µL. The mobile phases with a flow rate of 0.3 ml min− 1 

contained 0.1 % formic acid (A) in a mixture of water and methanol 
(95:5 V:V) and 0.1 % formic acid in methanol (B), respectively. The 
concentration and time program were as follow: 0.0 min (95 % A), 
0.01–2.50 min (95–58 % A), 2.50–6.50 min (58 %-25 % A), 6.50–8.70 
min (25–5 % A, hold for 1 min), and 8.70–10.0 min (5–95 % A, hold for 
2.50 min). The total time of measuring was 12.5 min and the tempera-
ture of the LC column was programmed according to the room 
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temperature (22 ◦C). 
The quality control samples were reagent blanks, procedural blanks, 

and matrix blanks. HPLC grade water was used in the place of dust for 
the reagent blank and a settled dust sample collected from a café in 
Bushehr city was used for procedural and matrix blanks. In order to 
determine recoveries, the blank samples were stimulated with analytes 
and passed through whole analytical process. A 9-point matrix matched 
calibration standard, at concentrations of 0.1–50 ng mL− 1 with 10 ng 
mL− 1 each of internal standards was prepared by stimulating the matrix 
blanks. The repeatability of sample extraction was determined by 5 
replicate analysis of 10 randomly samples. The limit of detection (LOD) 
was determined according to the lowest acceptable calibration standard. 
The analytical method validation parameters including retention times 
(RT), regression coefficient (r) of the calibration curve, limit of detection 
(LOD) and limit of quantification (LOQ), accuracy and precision are 
provided in Table S1. The LOD and LOQ values of PAAs were in the 
range of 0.085–0.15 ng.g− 1 and 0.32–0.53 ng g− 1, respectively. The 
recovery rate and the accuracy of PAAs analysis in indoor dust were in 
the range of 92.1–––112 % and 1.67––10.2 %, respectively. Excellent 
correlation coefficient (0.9991–0.9998) was observed for target com-
pounds (Table S1). The chromatograms of PAAs in a sample are depicted 
in Fig S1. As can be seen, the signal intensity of several PAAs are shown 
in this chromatogram. 

2.5. Assessing the risk of exposure to PAAs through ingestion 

The estimated daily intake (EDI) of PAAs via people present in cig-
arettes /waterpipe cafés through settled indoor dusts was estimated. The 
age groups considered to calculate the exposure of people to these 
compounds were infants (<1 year), toddlers (1–5 years), children 
(>5–11 years), teenagers (>11–19 years), and adults (≥20 years). EDI 
(ng kg− 1-bw day− 1) was calculated through the following formula 
(Equation (2): 

EDI =
C × DIR

BW
(2) 

C is the mean concentration levels of PAAs (ng g− 1), DIR is the rate of 
ingestion of settled indoor dusts (mg d− 1) and BW is the weight of people 
(kg). The weight of people in the different age groups of infants, tod-
dlers, children, teenagers, and adults were considered as 5, 19, 29, 53, 
and 63 kg, respectively (Chinthakindi and Kannan, 2021; Zhu and 
Kannan, 2018). Also, the mean value of DIR for infants, toddlers, chil-
dren, teenagers, and adults were considered as 20, 100, 50, 50, and 50 
mg day− 1, respectively (Zhu and Kannan, 2018). 

2.6. Statistical analyses 

The statistical analysis of the data was done by using SPSS Statistics 
22.0-IMB software. The normality of the obtained data was evaluated 
using the Kolmogorov-Smirnov test and Q-Q plots. One-way analysis of 
variance (ANOVA) and Tukey Post Hoc tests were used to determine 
statistically significant differences between PAAs concentrations in 
different cafes (WPC, CC and SFC). Mann-Whitney, Spearman and 
Kruskal-Wallis tests were used to investigate the effect of the investi-
gated factors on the PAAs concentration. The p-value of less than 0.05 
was considered as a criterion for comparison and significance of 
differences. 

3. Results and discussion 

3.1. The concentration levels of PAAs in the settled indoor dusts of 
smoking cafes 

The concentration levels of nine measured PAAs and their total levels 
in the settled indoor dusts of smoking cafes (WPC, CC and SFC) are 
shown in Table 1 and Fig. 1. As seen, the concentration levels of 

∑
PAAs 

Table 1 
Descriptive statistics of primary aromatic amines (PAAs) concentrations (ng/g) in indoor dusts collected from waterpipe café’ (WCC, n = 18), cigarette cafés (CC, n =
14) and smoking-free cafés (SFC, n = 18).  

Compound Abbreviation Sampling area Mean ± SD Percentiles Min Max p-value* 

25th Median 75th 

Aniline ANL WPC 360.96 ± 220.20  170.53  272.73  582.55  123.29 780.26 <0.001 
CC 225.90 ± 118.55  151.38  183.76  326.92  67.35 459.77 
SFC 40.11 ± 20.55  23.47  37.28  37.28  17.78 87.56 

Ortho-Toluidine o-TOL WPC 12.82 ± 9.10  5.64  11.73  20.99  0.05 30.48 <0.001 
CC 8.08 ± 5.90  4.09  6.76  12.44  0.05 17.83 
SFC 1.97 ± 2.06  0.05  2.01  2.93  0.05 7.61 

Para-Toluidine p-TOL WPC 18.58 ± 11.97  8.24  17.66  27.92  0.05 45.44 <0.001 
CC 9.70 ± 6.94  5.41  7.88  14.80  0.05 21.21 
SFC 2.04 ± 1.63  0.05  2.55  2.88  0.05 490 

Meta -Toluidine m-TOL WPC 11.72 ± 9.96  4.46  8.16  15.78  0.05 34.38 <0.001 
CC 2.86 ± 2.54  1.09  2.09  4.19  0.05 8.59 
SFC 2.15 ± 2.26  0.05  2.32  3.28  0.05 8.62 

Ortho-Anisidine o-ASD WPC 41.16 ± 30.01  19.56  31.43  57.83  0.08 109.27 <0.001 
CC 26.20 ± 23.54  4.48  23.58  44.76  0.08 64.12 
SFC 6.44 ± 6.42  0.08  5.67  12.45  0.08 17.91 

2,6-Dimethylaniline 2,6-DMA WPC 211.82 ± 153.53  118.15  164.22  255.00  53.29 677.26 <0.001 
CC 30.94 ± 8.27  21.88  36.03  61.34  9.78 124.27 
SFC 18.42 ± 19.77  0.05  14.33  25.23  0.05 72.20 

2-Naphthylamine 2-NA WPC 31.15 ± 30.42  11.74  24.72  41.14  0.03 124.27 <0.001 
CC 5.12 ± 5.03  1.75  3.62  6.90  0.03 18.55 
SFC 2.15 ± 2.33  0.03  1.98  4.08  0.03 7.43 

Para-Cresidine PCD WPC 33.52 ± 22.52  15.34  30.51  50.73  0.03 75.63 <0.001 
CC 9.33 ± 7.48  3.96  7.66  12.79  0.03 25.21 
SFC 3.42 ± 3.39  0.03  2.37  6.50  0.03 9.70 

4-Chloroaniline 4-CA WPC 6.49 ± 7.62  2.44  4.57  6.62  0.05 32.89 <0.001 
CC 1.47 ± 0.97  0.94  1.42  2.04  0.05 3.95 
SFC 0.65 ± 0.68  0.05  0.41  0.96  0.05 2.19 

Total primary aromatic amines 
∑

PAAs WPC 728.28 ± 377.72  395.10  620.82  927.53  315.13 1687.83 <0.001 
CC 331.42 ± 129.35  232.32  303.45  413.17  150.42 596.72 
SFC 66.26 ± 38.02  34.69  65.12  92.40  3.83 150.11 

* Kruskal Wallis test. 
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in the settled indoor dusts of cafes were in the order of WPC˃CC˃SFC 
with the mean levels of 728.28, 331.42 and 66.26 ng g− 1 (p-value <
0.001), respectively. The highest level of 

∑
PAAs was 1687.8 ng g− 1 (in 

a WPC café) and the lowest level was 0.03 ng g− 1 (in a SFC café). The 
distribution of aniline (ANL) and 2, 6-dimethylaniline (2, 6-DMA) levels 
were significantly higher than other measured PAAs in the cafes with 
different uses (Fig. 2). The concentration levels of each measured PAA 
among different settled indoor dusts of smoking cafes (WPC, CC and 
SFC) were significantly different (p-value < 0.001) (Table 1). Multiple/ 
Post Hoc group comparisons of PAAs (ng/g) in settled indoor dusts of 
WPC, CC and SFC are presented in Table S2. In addition, as shown in 
Table 2, the multiple linear regression models showed significant posi-
tive associations between the WCC and CC cafes than SFC cafes for all 
PAAs (p-value < 0.05). 

3.2. Factors influencing PAAs level 

The effects of different parameters such as ventilation rate, number 
of window/door, number of active smoker, café area, café floor, and 
time from last painting on the indoor dust bounded PAAs level were 
evaluated by Spearman correlation, Mann–Whitney U and 

Kruskal–Wallis nonparametric tests. As seen in Tables 3 and 4, ventila-
tion rate and number of windows/doors had a significant and negative 
correlation with the concentrations of ANL, o-TOL, p-TOL, 2,6-DMA and 
2-NA congeners. In other words, with higher number of ventilator and 
windows & doors in cafes, the concentration of indoor dust bounded of 
aforementioned PAAs diminished (p-value < 0.05). Based on Spear-
man’s correlation test results (Fig. 3, Table 3), the 

∑
PAAs level had a 

negative relationship with ventilation rate (r = -0.549, p-value = 0.001), 
café area (r = -0.503, p-value = 0.003), and doors/windows numbers (r 
= -0.532, p-value = 0.001). In addition, there was a significant positive 
correlation between the number of smokers (r = 0.752, p-value < 0.001) 
and the concentration of total 

∑
PAAs (Fig. 3). Indeed, with increase in 

number of active smokers, the concentration of 
∑

PAAs increased 
significantly (p-value < 0.001, Table 3). 

Table 4 shows a significant association between the tobacco type and 
the concentration of m-TOL, 2,6-DMA, 2-NA, PCD, 4-CA and 

∑
PAAs (p- 

value < 0.05). Based on the Kruskal Wallis analysis, the mean levels of 
all PAAs compounds (except for PCD) in the waterpipe cafés with fruit- 
flavored tobacco was significantly higher than the regular tobacco and 
cigarette cafés. As well as, a significant differences were observed be-
tween floor level (grounded/basement), time of last paint with the mean 

Fig. 1. Comparison the concentration levels of total aromatic amines (
∑

PAAs) in settled indoor dusts of waterpipe cafés (WPC), cigarette cafés (CC) and smoking- 
free cafés (SFC). 

Fig. 2. Comparison the distribution rate (%) of primary aromatic amines (PAAs) in indoor dust of waterpipe cafés (WPC), cigarette cafés (CC) and smoking-free cafés 
(SFC). ANL: Aniline, o-TOL: ortho-Toluidine, p-TOL: para-Toluidine, m-TOL: meta -Toluidine, o-ASD: ortho-Anisidine, 2,6-DMA: 2,6-dimethylaniline, 2-NA: 2- 
Naphthylamine, pCD: para-Cresidine, 4-CA: 4-Chloroaniline. 
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levels of all 
∑

PAAs compounds. 

3.3. EDI of AAs in settled indoor dusts of smoking cafes 

The EDI values of PAAs through settled indoor dusts of smoking cafes 
for different age groups (infant, toddler, children, teenager, and adult) 
were determined and the results are summarized in Table 5. The results 
showed that the age groups are exposed to PAAs in the order of toddlers˃ 
infants˃ children˃ teenagers˃ adults. The highest and lowest values of 
EDI were related to the age group of toddlers when attending WPC 
(3832.8 ng kg− 1-bw day− 1) and adult group in SFC (52.8 ng kg− 1-bw 
day− 1), respectively. 

4. Discussion 

Considering the presence of PAAs in all three types of cafes, espe-
cially WPC and CC, it can be said that long time being in these envi-
ronments can have a high health risk for people. The results of previous 
studies on the presence of other chemicals such as heavy metals, BTEX 
(benzene, toluene, ethylbenzene and xylene) and polycyclic aromatic 
hydrocarbons (PAHs) in the indoor air of WPC and CC are also consistent 
with our results and have shown a high health risk for people (Heydari, 
2020; Arfaeinia, 2022; Rostami, 2019). 

Smokers believe that using waterpipe has less health effects than 
cigarette and is not addictive, therefore the possibility of waterpipe 
smoking in cafes is more than cigarette smoking (Akl, 2010). As reported 
before, the number of people visiting waterpipe cafes and the type of 
tobacco consumed in the cafes are effective in the release of dusts, which 
increases the release of PAAs (Heydari, 2019; Naddafi, 2019). The dis-
tribution of aniline (ANL) and 2, 6-dimethylaniline (2, 6-DMA) levels 
were significantly higher than other measured PAAs in the cafes with 
different uses. These two compounds (ANL and 2, 6-DMA) are known 
with possible carcinogenic effects (group 2A and 2B, respectively); 
therefore, reducing exposure to these compounds can reduce the po-
tential health effects. The lowest concentration level among all nine 
measured PAAs in different cafes was related to the 4-chloroaniline (4- 
CA). In a research, 9 PAAs congeners (m-PDA, ANL, 4,4-ODA, o-ASD, 4- 
CA, 2-ANP, 1-ANP, 3,5-DCA, and 2-ABP) observed in the waterpipe 
smoke, and ANL had the highest level (31.3 ng per smoking session) 
(Schubert, 2011). In a study by Dobaradaran et al., (Dobaradaran, 2023) 
the levels of PAAs released from cigarette butts in distilled water and 
river water were 569 and 556 ng/L, respectively. Also, ANL had the 
highest release rate in both distilled water (525 ng/L) and river (516 ng/ 
L) water samples (Dobaradaran, 2023). Dobaradaran et al. (Dobar-
adaran, 2022), also reported that the ΣPAAs average concentration in as 
freshly smoked cigarette butts > aged cigarette butts > unsmoked 
cigarette with the levels of 3.43, 2.12 μg g− 1, and 0.28 μg g− 1, respec-
tively. In a study by Palmiotto et al. (2001), the concentration levels of 
ANL in indoor and outdoor air were found in the range of 53 ng m− 3 in 
office of non-smokers to 1930 ng m− 3 in discotheque (Palmiotto, 2001). 

In Chinthakindi et al. study, 
∑

10 PAAs were found in > 80 % of the 
indoor dust samples at concentration ranges of 29.1–19,200 ng g− 1 and 
ANL was the predominant detected PAA in all dust samples (Chintha-
kindi, 2022). In another study in Italy the amounts of 9 PAAs in indoor 
environments (residential homes, hospitals and offices) were measured. 
ANL levels ranged from 53 to 1929 ng/m3 in different environments 
(Palmiotto, 2001). However, no significant difference was observed 
between the concentration levels of ANL and other measured com-
pounds. The results of the mentioned study also showed that the con-
centration levels of PAAs in residential houses with smoker (15–33 ng 
m− 3) was significantly higher than houses without smokers (5–11 ng 
m− 3) (Palmiotto, 2001). In another study, 29 PAAs in indoor settled dust 
of residential houses in 10 different countries were measured. The re-
sults showed that the concentration levels of ANL and 2–6-DMA were 

Table 2 
Adjusted multiple linear regression models of the association between primary 
aromatic amines (PAAs) in indoor settled dust and the type of cafe.  

Compound Sampling 
area 

β (95 % CI) SE R2 p- 
value 

ANLa SFC REF – – – 
WPC 3.53(2.26 to 4.80) 0.626 0.617 <0.001 
CC 3.41(2.10 to 4.71) 0.646 <0.001 

o-TOL SFC REF – – – 
WPC 2.47(1.17 to 3.78) 0.644 0.430 <0.001 
CC 2.10(0.76 to 3.45) 0.664 0.003 

p-TOL SFC REF – – – 
WPC 2.83(1.52 to 4.13) 0.645 0.445 <0.001 
CC 1.84(0.50 to 3.19) 0.665 0.008 

m-TOL SFC REF – – – 
WPC 2.16(0.94 to 3.39) 0.604 0.439 0.001 
CC 1.11(-0.14 to 

2.37) 
0.623 0.081 

o-ASD SFC REF – – – 
WPC 3.35(1.94 to 4.76) 0.697 0.473 <0.001 
CC 1.34(-0.10 to 

2.80) 
0.719 0.473 

2,6-DMA SFC REF – – – 
WPC 3.41(2.16 to 4.67) 0.619 0.584 <0.001 
CC 2.22(0.93 to 3.52) 0.639 0.001 

2-NA SFC REF – – – 
WPC 2.91(1.03 to 4.79) 0.930 0.280 0.003 
CC 1.56(-0.37 to 

3.50) 
0.959 0.112 

PCD SFC REF – – – 
WPC 2.96(1.38 to 4.54) 0.782 0.439 0.001 
CC 1.57(-0.05 to 

3.20) 
0.806 0.058 

4-CA SFC REF – – – 
WPC 2.49(1.38 to 3.59) 0.546 0.511 <0.001 
CC 1.26(0.12 to 2.40) 0.563 0.030 

∑
PAAs SFC REF – – – 

WPC 2.43(1.98 to 2.88) 0.223 0.810 <0.001 
CC 1.80(1.34 to 2.27) 0.230 <0.001  

a Adjusted for number of ventilation, number of window& door, café area,, 
orientation of the building, floor level and time from last paint., The level of 
individual PAAs compounds were log10-transformed, REF: this category is set to 
reference level, Bold values are statistically significantly; *significantly at p <
0.05. 

Table3 
Correlation test between the measured primary aromatic amines (PAAs) of indoor dust and café characteristics (ventilation rate, number of window & door, number of 
active smokers, and café area).  

PAAs Ventilation rate Number of window & Door Number of active smokers Café area 

ANLa  − 0.434*  − 0.296  0.633*  − 0.361 
o-TOL  − 0.400*  − 0.423*  0.015  − 0.200 
p-TOL  − 0.387*  − 0.237  0.343  − 0.270 
m-TOL  − 0.325  − 0.645*  0.562*  − 0.301 
o-ASD  − 0.309  − 0.196  0.100  − 0.155 
2,6-DMA  − 0.557*  − 0.583*  0.623*  − 0.485* 
2-NA  − 0.350*  − 0.354*  0.446*  − 0.154 
PCD  − 0.203  − 0.227  0.362*  − 0.422* 
4-CA  − 0.293  − 0.301  0.479*  − 0.538* 

*Correlation is significant at the 0.05 level (2-tailed). 
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significantly higher than the other measured PAAs (Chinthakindi and 
Kannan, 2021). The highest levels of ANL and 2,6-DMA were 334 and 
87.5 ng m− 3, respectively, that were related to the collected samples of 
suspended particles from South Korea (Chinthakindi and Kannan, 
2021), which is lower than the measured levels of these compounds in 
WPC and CC dust samples in the present study. According to the results 
of the mentioned study, one of the main sources of the PAAs is smoking 

cigarette and waterpipe that release these compounds into the indoor air 
(Chinthakindi and Kannan, 2021). However, it should be noted that 
PAAs in different environments have various emission sources, which 
requires more studies to determine the exposure level of people in 
different environments via different sources of PAAs. 

Previous studies have studied different compounds at diverse 
matrices as THS (Soleimani, 2022; Matt, 2021; Sleiman, 2010; Sleiman, 

Table 4 
Association between the measured primary aromatic amines (PAAs) of indoor dust and café characteristics (tobacco type, floor level, and the time from last paint).  

Variables ANL o-TOL p-TOL m-TOL o-ASD 2,6-DMA 2-NA PCD 4-CA ∑PAAs 

Type tobacco Fruit 
Regular 
Cigarette  

406.38 ±
227.58 
201.98 ±
83.78 
225.90 ±
118.55  

12.53 ±
8.99 
13.87 ±
10.81 
8.08 ±
5.90  

20.91 ±
11.56 
10.42 ±
10.90 
9.70 ±
6.94   

11.97 ±
10.45 
10.85 ±
9.34 
2.86 ±
2.54   

46.06 ±
31.96 
24.00 ±
13.15 
26.20 ±
23.54  

233.28 ±
166.99 
136.74 ±
55.45 
42.72 ±
30.94  

32.88 ±
34.23 
25.09 ±
10.17 
5.12 ±
5.03  

31.13 ±
23.85 
41.90 ±
16.99 
9.33 ±
7.48  

7.58 ±
8.30 
2.68 ±
2.29 
1.47 ±
0.97  

802.74 ±
392.18 
467.55 ±
159.63 
331.42 ±
129.35 

p-value* 0.051 0.403 0.015 0.003 0.170 <0.001 0.007 0.003 0.001 <0.001 
Floor level Grounded 

Basement  257.77 ±
167.07 
386.05 ±
217.64  

8.68 ±
5.28 
14.71 ±
11.03  

9.95 ±
6.99 
23.76 ±
11.52  

6.62 ±
8.13 
10.17 ±
9.87  

27.88 ±
19.14 
47.47 ±
37.65  

98.42 ±
99.22 
213.10 ±
186.15  

14.92 ±
19.00 
29.01 ±
35.70  

16.92 ±
16.06 
34.42 ±
25.67  

2.79 ±
2.77 
7.16 ±
9.51  

443.99 ±
264.66 
765.88 ±
416.43 

p-value** 0.042 0.190 0.001 0.165 0.204 0.034 0.292 0.047 0.084 0.020 
Time last paint 

≤5 years > 5 years  219.51 ±
101.32 
459.10 ±
230.44  

9.70 ±
7.47 
12.75 ±
9.23  

11.73 ±
8.91 
20.36 ±
12.47  

6.03 ±
7.88 
11.30 ±
9.72  

27.68 ±
22.81 
47.84 ±
33.08  

89.01 ±
63.41 
231.07 ±
203.04  

14.18 ±
13.93 
30.42 ±
39.51  

24.96 ±
22.26 
19.08 ±
19.48  

2.42 ±
2.12 
7.86 ±
9.46  

405.26 ±
166.63 
839.82 ±
443.23 

p-value** 0.007 0.321 0.054 0.020 0.088 0.034 0.512 0.538 0.022 0.004  

Fig. 3. Correlation between the 
∑

PAAs and café characteristics (Ventilation rate (a), Number of window & door (b), Number of active smokers (c), and Café 
area (d)). 
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2014; Figueiró et al., 2016). For example, in Figueiró et al study, the 
concentration level of nicotine in the dust from non-smokers’ homes was 
10 times lower than in smokers’ homes (Figueiró et al., 2016). In 
another study by Sleiman et al., the levels of tobacco-specific nitrosa-
mines (TSNAs) in indoor surfaces were in the range of 0.00031–5 μg m− 2 

(Sleiman, 2010) and the level of acrolein in smoker’s home was 3 times 
higher than in outdoor air (Sleiman, 2014). The concentration level of 
nicotine in air samples of smoker cars was 2.2 times higher than non- 
smoker cars (Matt, 2013) and in the case of surface dust samples, the 
level of nicotine in smoker cars was 2.7 times higher than non-smoker 
cars (Matt, 2013). Another study showed that the concentration levels 
of heavy metals in house dust samples were significantly different 
depending on the area and nicotine was also identified in all samples and 
the level of this compound in surface samples was 3.5 times higher than 
in dust samples (Matt, 2021). Although THS is a main source of exposure 
to chemical compounds and is counted as a major risk of indoors 
exposure to tobacco associated chemicals (Sleiman, 2014), but a 
comprehensive and reliable data about chemical contents of THS is 
limited. Hence, more studies are needed to evaluate different chemical 
contents and potential health effects of THS. 

The 
∑

PAAs level had a negative relationship with ventilation rate, 
café area, and doors/windows numbers. These findings recommend that 
the ventilation rate could be a key factor for the pollutant levels in in-
door air of smoking cafés. Similar results was also reported by Hashemi 
et al study (Hashemi, 2020). In addition, there was a significant positive 
correlation between the number of smokers and the concentration of 
total PAAs. Indeed, with increase in number of active smokers, the 
concentration of 

∑
PAAs increased significantly (p-value < 0.001). In 

previous studies, it was reported that during the smoking session, PAAs 
are released into surrounding environment which were present in the 
first- hand, second hand as well as third-hand smokes (Saha et al., 2009; 
Smith et al., 2003; Zhang, 2022). 

The higher level of PAAs in flavored waterpipe cafés might be 
justified through the time needed to smoke this type of tobacco. 
Smoking fruit- flavored tobacco last at least four times more than the 
regular one (Masjedi, 2019). The possible reason for the higher level of 
PAAs in flavored waterpipe cafés is that the soft/tasty smoke of flavored 
tobacco as well as the tendency of young smokers to be more time on 
smoking of this type of tobacco. In addition, flavored tobaccos contain 
huge amounts of organic substances, flavoring additives and sweeteners 
which are added to this types of tobacco during the processing step 
(Fazlzadeh, 2015). As seen in Table 4, cafés situated in the basement had 
a higher level of PAAs (e.g., ANL, p-TOL, DMA, and PCD) than those 
located in the ground floor. Basements are usually confined places with 
walls without any holes and very limited natural ventilation. Since 
ventilation is an influential variable in refreshing the indoor air of cafés, 
the smoking cafés situated in underground floors suffered from more 
contaminants concentrations, as expected (Heydari, 2019). With regard 
to last painting of café, it was found that the PAAs concentrations in 
indoor dust increased with the longer time since the last painting of cafés 
wall. This means that the painting of cafes walls removes these com-
pounds from the surfaces of the surrounding walls. Although, previous 

studies reported that the paints utilized for wall painting contain large 
amounts of aromatic amines and these compounds can be released from 
freshly painted walls into indoor air as well as indoor dust (Palmiotto, 
2001; Zeegers, 2001). 

The estimated daily intake (EDI) of PAAs in settled indoor dusts for 
different age groups (infants, toddlers, children, teenagers, and adults) 
were ranged from 52.5 to 3832.8 ng kg− 1-bw day− 1, and EDI value for 
toddlers was higher than others groups. The lowest values of EDI were 
related to the adult group in SFC. One of the reasons for the difference in 
exposure levels of people is the difference in their body weight and the 
amount of particulate matter ingestion. Although the probability of the 
presence of infants and toddlers in WPC and CC is considered lower than 
other age groups, but nowadays it is possible to use tobacco in some non- 
smoking cafes and/or restaurants and there is an exposure possibility of 
this group to pollutants as well. In addition, the presence of smokers in 
residential houses and other closed environments may expose the infants 
and toddler groups to PAAs in settled dusts. Acceptable daily intake 
(ADI) values recommended by WHO for the compound of 4–CA is 2.0 
mg kg− 1-bw day− 1 (Epa, 1984; Who, 2013). Based on these values, all 
EDIs calculated for different age groups in this study are lower than the 
recommended values by WHO. However, exposure to PAAs from other 
sources should not be ignored because the health risk from PAAs may 
increase as the release of these compounds increases by other sources as 
well. Based on our best knowledge, so far, the exposure of people to 
PAAs in the indoor air of smoking and non-smoking cafes for different 
age groups has not been investigated. However the level of people’s 
exposure to 29 PAAs in suspended particles has been reported for 
different age groups in the indoor air of residential houses in ten 
countries. The highest value of EDI (3.032 ng kg− 1-bw day− 1) was 
related to the group of toddler in South Korea (Chinthakindi and 
Kannan, 2021) and the lowest value (0.019 ng/kg-bw/day) was related 
to the group of teenager in Kenya (Chinthakindi, 2022). In another study 
by Chinthakindi et al, the EDI value of PAAs through dust ingestion 
ranged from 0.349 for adults to 6.62 ng kg− 1-bw day− 1 for toddlers 
(Chinthakindi, 2022). Naddafi et al. also calculated the excess lifetime 
cancer risk (ELCR) and hazard quotient (HQ) from inhalation of par-
ticulate matters in the indoor air of waterpipes cafes for people aged 
from 11 to 61 years. Their results showed that the HQ value related to 
PM2.5 for age group of older than 16 years was higher than the accept-
able value (HQ˃1) (Naddafi, 2019). Also, the ELCR value related to 
PM2.5 (4.6 × 10− 6 − 44.5 × 10− 6) for all age groups was higher than the 
recommended range by USEPA (<1 × 10− 6) (Naddafi, 2019). Therefore, 
considering the high carcinogenic risk of suspended particles in the in-
door air of WPC, increasing contact with suspended particles with PAAs 
compounds will increase the health effects caused by them. However, 
future and additional studies are needed for a complete evaluation of 
PAAs health effects in settled dusts in smoking cafes as THS. 

5. Conclusion 

In the present study, the concentration levels of PAAs in settled in-
door dusts of waterpipe/cigarette cafes and non-smoking cafes, and the 
levels of people exposure to PAAs in settled indoor dusts as THS for 
different age groups were investigated for the first time. The results 
showed that the concentration levels of 

∑
PAAs in settled indoor dusts of 

WPC is higher than other cafes (CC and SFC). The results confirmed that 
settled indoor dusts of waterpipe/cigarette cafes is as a source of THS 
and should be considered as one of the main sources of PAAs com-
pounds. Among the nine measured AAs compounds in settled indoor 
dusts of smoking and smoking-free cafes, ANL and 2,6-DMA were the 
most predominant ones. Moreover, considerably higher concentration of 
THS-related PAAs was quantified in the waterpipe cafés serving flavored 
tobacco than those served traditional tobacco. As well as, the EDI value 
for toddlers was higher than others groups. Finally it’s highly necessary 
in the further studies to focus on the exposure level to PAAs from other 
sources and diverse contact routes should also be considered. As well as, 

Table 5 
The values of daily exposure (EDI) of different age groups to total primary ar-
omatic amines (

∑
PAAs) through the ingestion of settled indoor dusts in smoking 

and smoking-free cafes.  

Café type EDI (ng/kg-bw/day) 
Age groups 

Infants Toddlers Children Teenagers Adults 

Waterpipe Cafés 
(WPC)  

2912.92  3832.79  1255.569  687.01  577.96 

Cigarette Cafés 
(CC)  

1325.48  1744.05  571.33  312.61  262.99 

Smoking-free 
Cafés (SFC)  

264.44  347.95  113.98  62.37  52.47  
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more comprehensive studies are needed to evaluate the other chemical 
contents of THS to accurately estimate health effects of this global 
concern. 
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