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Abstract A series of N0-(substituted)-4-(butan-2-ylideneamino)benzohydrazides (1–21) was syn-

thesized and characterized by physicochemical as well as spectral means. The synthesized com-

pounds were screened for their in vitro antimicrobial and anticancer potentials. The synthesized

compounds displayed higher antifungal potential as compared to antibacterial potential. Besides

having good antifungal potential, the synthesized compounds were having appreciable anticancer

potential and a number of compounds displayed higher anticancer potential than the standard

drug, carboplatin. The results of QSAR studies demonstrated the importance of steric parameter,

molar refractivity (MR), topological parameters, third order molecular connectivity index (3v),
Kier’s first order shape index (j1) in describing the antimicrobial activity of N0-(substituted)-4-

(butan-2-ylideneamino)benzohydrazides.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

One of the key objectives of organic and medicinal chemistry is
to design and synthesize molecules that possess potent thera-
peutic values. The rapid development of resistance to existing

antimicrobial drugs generates a serious challenge to the scien-
tific community. Consequently, there is a vital need for the
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development of new antimicrobial agents with potent activity
against drug resistant microorganisms (Malhotra et al., 2011).

Cancer incidences continue to rise despite the enormous

amount of research and rapid developments during the past
decade. According to the recent statistics, cancer accounts
for about 23% of the total deaths in the USA and is the second

most common cause of death after heart disease (Hou et al.,
2011).

QSAR has been a very useful tool in designing libraries of

various ligands targeted toward particular receptors and to en-
sure increase in the probability of synthesizing therapeutically
active drugs. Therefore, to understand the influence of physio-
chemical and structural properties, QSAR studies have been

carried out (Kashaw et al., 2011).
Literature reports reveal that there are very few reports on

the biological activity of ethyl methyl ketone derivatives viz.

anticonvulsant activity (Nobuyoshi et al., 2010) and analgesic
and anti-inflammatory activity (Sondhi et al., 2009).

Schiff bases are considered to be among the most important

group of compounds in medicinal chemistry due to their pre-
parative accessibility, structural variety andwide biological pro-
file (Rosu et al., 2010). In continuation of our research focused

on synthesis of medicinally potent new chemical entities and
their biological screening (Judge et al., 2012a,b; Sharma et al.,
2012; Sigroha et al., 2012; Narang et al., 2012), the present study
is aimed to carry out synthesis and in vitro antimicrobial, anti-

cancer evaluation and QSAR studies of N0-(substituted)-4-(bu-
tan-2-ylideneamino)benzohydrazides.

2. Materials and methods

2.1. Instrumentation

Starting materials were obtained from commercial sources and
were used without further purification. Reaction progress was

observed by thin layer chromatography making use of com-
mercial silica gel plates (Merck), Silica gel F254 on aluminum
sheets. Melting points were determined in open capillary tubes

on a Sonar melting point apparatus. 1H nuclear magnetic res-
onance (1H NMR) spectra were determined by a BrukerA-
vance II 400 NMR spectrometer in appropriate deuterated
solvents and are expressed in parts per million (d, ppm) down-

field from tetramethylsilane (internal standard) NMR data are
given as multiplicity (s, singlet; d, doublet; t, triplet; m, multi-
plet) and number of protons. Infrared (IR) spectra were re-

corded on an Agilent Resolutions Pro FTIR spectrometer.
Elemental analysis was performed on a Perkin–Elmer 2400
C, H, N analyzer. Mass spectra were recorded using Waters

Micromass Q-Tof micro instrument.

2.1.1. General procedure for the synthesis of N0-(substituted)-4-

(butan-2-ylideneamino)benzohydrazides (1–21)

A solution of ethyl methyl ketone (0.01 mol) was added to the
solution of p-amino benzoic acid (0.01 mol) in ethanol and the
mixture was refluxed for 3–4 h. The resulting solution was

poured on crushed ice and the precipitated solid was dried
and recrystallized from ethanol. 4-(Butan-2-ylideneamino)
benzoic acid (0.02 mol) synthesized as above was added to eth-
anol (0.5 mol) and the mixture was refluxed for 1 h, in the pres-

ence of concentrated sulfuric acid (2.7 ml), cooled and poured
into ice-cold water. The solid ester separated out was filtered,
dried and recrystallized from ethanol (Bhat and Al-omar,
2011). 4-(Butan-2-ylideneamino) benzoate (0.01 mol) and
hydrazine hydrate 99% (0.02 mol) were refluxed in 50 ml eth-

anol. The mixture was then cooled and poured into ice-cold
water. The solid product separated out was filtered, dried
and recrystallized from ethanol (Bhat and Al-omar, 2011 ).

Equimolar quantities of 4-(Butan-2-ylideneamino)benzohyd-
razide (0.01 mol) and substituted aldehydes (0.01 mol) in
ethanol were refluxed in the presence of a few drops of glacial

acetic acid. Then the mixture was cooled and poured into ice-
cold water. The solid product separated out was filtered, dried
and recrystallized from ethanol (Ramachandran and
Maheswari, 2011).

2.2. Evaluation of antimicrobial activity

The antimicrobial activity of synthesized benzohydrazides 1-21

acid derivatives against Gram-positive bacteria: Staphylococcus
aureus, Bacillus subtilis, Gram-negative bacterium: Escherichia
coli and fungal strains: Candida albicans and Aspergillus niger

was determined using the tube dilution method (Cappucino
and Sherman, 1999). Dilutions of test and standard compounds
were prepared in double strength nutrient broth – I.P. (bacteria)

or Sabouraud dextrose broth I.P. (fungi) (Pharmacopoeia of In-
dia, 2007). The samples were incubated at 37 ± 1 �C for 24 h
(bacteria), at 25 ± 1 �C for 7 d (A. niger) and at 37 ± 1 �C
for 48 h (C. albicans), respectively, and the results were recorded

in terms of MIC (the lowest concentration of test substance
which inhibited the growth of microorganisms).

2.3. Evaluation of anticancer activity

The anticancer activity of the synthesized compounds (1–21)
was determined against human colon (HCT116) cancer cell line.

The cell line was cultured in RPMI 1640 (Sigma) supplemented
with 10% heat inactivated fetal bovine serum (FBS) (PAA Lab-
oratories) and 1% penicillin/streptomycin (PAA Laboratories).

Cultures were maintained in a humidified incubator at 37 �C in
an atmosphere of 5% CO2. Anticancer activity of the synthe-
sized compounds at various concentrations was assessed using
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

(MTT) (Sigma) assay, as described byMosmann, but with min-
ormodification, following 72 h of incubation. Assay plates were
read using spectrophotometer at 520 nm. Data generated were

used to plot a dose–response curve from which the concentra-
tion of test compounds required to kill 50% of cell population
(IC50) was determined (Mosmann, 1983).

2.4. QSAR studies

The structures of synthesized benzohydrazide derivatives were

first pre-optimized with the Molecular Mechanics Force Field
(MM+) procedure included in Hyperchem 6.03 (Hyperchem
6.0, 1993) and the resulting geometries are further refined by
means of the semiempirical method PM3 (Parametric Meth-

od-3). We chose a gradient norm limit of 0.01 kcal/Å for the
geometry optimization. The lowest energy structure was used
for each molecule to calculate physicochemical properties

using TSAR 3.3 software for Windows (TSAR 3D Version
3.3, 2000). Further, the regression analysis was performed
using the SPSS software package (SPSS for Windows, 1999).
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3. Results and discussion

3.1. Chemistry

The synthesis of target compounds, N0-(substituted)-4-(butan-
2-ylideneamino)benzohydrazides (1–21) was carried out as out-

lined in Scheme 1.All the compoundswere obtained in apprecia-
ble yield and their physicochemical characteristics are presented
in Table 1. The structures of the synthesized compounds (1–21)

were ascertained on the basis of their consistent IR, NMR and
Mass spectral characteristics in addition to elemental analysis
(C, H, N) which were in full agreement with the assigned molec-
ular structures and the data are given in Table 2.

3.2. Antimicrobial activity

The synthesized compounds were evaluated for their in vitro

antibacterial activity against S. aureus, B. subtilis, E. coli and
antifungal activity against C. albicans and A. niger by tube
dilution method using norfloxacin and fluconazole as reference

standards for antibacterial and antifungal activity, respectively
and the results are presented in Table 3.
O

R-OH
COOHH2N N

COOH

N

N

Comp. R1 R2 R3
1 H H CH3
2 H OCH3 OCH3
3 H Cl H
4 H H N(CH3)2
5 H OCH3 OCH3
6 H H Br
7 H H OCH3
8 H H Cl
9 H H H
10 H H OCH3
11 H H OC2H5
12 H H OH
13 H NO2 H
14 Cl H H
15 H Br H
16 OH H H
17 - - -

18 - - -

19 - - CHO
20 - - -

21 - - -

Scheme 1 Scheme for the synthesis of N0-(substitu
Among the synthesized compounds, N0-(3,4-dimethoxyben-
zylidene)-4-(butan-2-ylideneamino)benzohydrazides (2) was
found to be an effective antibacterial agent against S. aureus

with pMIC values of 1.75 lM/ml. In the case of B. subtilis,
E. coli and C. albicans, N0-(4-bromobenzylidene)-4-(butan-2-
ylideneamino)benzohydrazide (6) was found to be the most

effective with pMIC values of 1.77, 1.47 and 2.07 lM/ml,
respectively (Table 3). N0-(4-hydroxybenzylidene)-4-(butan-2-
ylideneamino)benzohydrazide (12) was found to be most effec-

tive against A. niger with pMIC value of 1.76 lM/ml.
Results of antimicrobial screening indicated that the syn-

thesized compounds were found to have more potent anti-
fungal than antibacterial activity and compound 6 was found

to be the most active antifungal agent against C. albicans
(pMICca = 2.07 lM) which may be taken as lead molecule
for the development of novel antifungal agents.

3.3. Anticancer activity

The in vitro anticancer activity of the synthesized N0-(substi-

tuted)-4-(butan-2-ylideneamino)benzohydrazides against hu-
man colorectal cancer (HCT116) cell line is presented in
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ted)-4-(butan-2-ylideneamino) benzohydrazides.



Table 1 Physicochemical characteristics of the synthesized N0-

(substituted)-4-(butan-2-ylideneamino)benzohydrazides.

Comp. M. formula M. wt. m.p. Rf value
a % Yield

1 C19H21N3O 307 175–178 0.34 93

2 C20H23N3O3 353 144–147 0.22 82

3 C18H18ClN3O 327 101–104 0.32 83

4 C20H24N4O 336 61–64 0.27 79

5 C21H25N3O4 338 167–170 0.26 75

6 C18H18BrN3O 371 189–192 0.23 81

7 C19H21N3O2 323 117–120 0.29 87

8 C18H18ClN3O 327 112–115 0.48 84

9 C18H19N3O 293 95–98 0.34 78

10 C19H21N3O3 339 127–130 0.28 79

11 C20H23N3O3 353 177–180 0.19 80

12 C18H19N3O2 309 250–253 0.21 79

13 C18H18N4O3 338 173–176 0.15 73

14 C18H18ClN3O 327 87–90 0.06 80

15 C18H18BrN3O 372 104–107 0.21b 90

16 C18H19N3O2 309 225–228 0.74 94

17 C20H21N3O 319 89–92 0.38 88

18 C22H21N3O2 359 235–238 0.26 81

19 C19H19N3O2 321 268–271 0.227 80

20 C16H21N3O2 287 96–99 0.41 76

21 C16H17N3O2 283 107–110 0.14 85

a Chloroform: toluene = 7:3.
b Chloroform: toluene = 1:1.
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Table 4. The synthesized compounds exhibited good antican-
cer potential. Compounds 1, 2, 6, 12, 13,14, 15, 19 and 20 were
found to be more potent than the standard drug carboplatin

(IC50 > 100 lM) and compound 14 (IC50 = 37.71 lM) was
found to be the most potent against human colorectal cancer
(HCT116) cell line and may be taken as new lead for the devel-

opment of novel anticancer agents. The synthesized com-
pounds however did not show good activity when compared
to the drugs available in the market which include tetrandrine,

doxorubicin and camptothecin having IC50 values of 1.530,
0.702 and 0.147 lM, respectively.

3.4. Structure activity relationship studies

The SAR for the antimicrobial and anticancer activity of N0-
(substituted)-4-(butan-2-ylideneamino)benzohydrazides can
be summarized as follows.

1. Results of the antimicrobial evaluation indicated that elec-
tron releasing groups (compounds 2 and 12 having 3,4-dime-

thoxy and p-hydroxy) on benzylidene portion improved the
antimicrobial activity of the synthesized compounds against
S. aureus and A. niger, respectively. This is in accordance

with the results obtained by Nandagokula et al. (2013).
2. Presence of electron withdrawing (p-Br) substituent on ben-

zylidene portion improved the antimicrobial activity of
compound 6 against B. subtilis, E. coli and C. albicans.

The role of electron withdrawing groups in improving anti-
bacterial and antifungal activities is supported by the stud-
ies of Mostafa et al. (2008).

3. Replacement of phenyl nucleus of benzylidene moiety with
heterocyclic (furan, 21) and alkyl groups (20) resulted in
less active antimicrobial agents, which shows that phenyl

nucleus is essential for antimicrobial activity of the synthe-
sized compounds.
4. Anticancer activity results indicated that presence of o-Cl

substituent on benzylidene portion (14) improved the anti-
cancer activity of the synthesized compounds against
human colorectal cancer (HCT116) cell line.

5. From these results, we may conclude that different struc-
tural requirements are required for a compound to be effec-
tive against different targets. This is similar to the results of
Sortino et al. (2007).

The aforementioned findings are summarized in Fig. 1.

3.5. QSAR studies

In order to identify the substituent effect on the antimicrobial
activity, quantitative structure activity relationship (QSAR)

studies were undertaken, using the linear free energy relation-
ship model (LFER) described by Hansch and Fujita (1964).

In the present study, a dataset of 21 N0-(substituted)-4-(bu-
tan-2-ylideneamino)benzohydrazides (1–21) was used for

QSAR model development. Biological activity data deter-
mined as MIC values were first transformed into pMIC values
(i.e. �log MIC) and used as dependent variable in QSAR

study. The values of selected molecular descriptors used in
the QSAR study are presented in Table 5.

Our earlier studies (Sigroha et al., 2012; Judge et al.,2012a,b;

Narang et al., 2012) indicated that the multi-target QSAR (mt-
QSAR) models are better than one-target QSAR (ot-QSAR)
models in describing the antimicrobial activity. Therefore in

the present studywe developedmuti-target QSARmodels to de-
scribe the antimicrobial activity of the synthesized N0-(substi-
tuted)-4-(butan-2-ylideneamino)benzohydrazides.

According to the ot-QSARmodels one should use five differ-

ent equations with different errors to predict the activity of a new
compound against the fivemicrobial species. The ot-QSARmod-
els, which are almost in the whole literature, become impractical

to use when we have to predict each compound result for more
than one target. In these cases we have to develop one ot-QSAR
for each target. However, very recently the interest has increased

in the development of multi-target QSAR (mt-QSAR) models.
As opposed to ot-QSAR, the mt-QSAR model is a single

equation that considers the nature of molecular descriptors,

which are common and essential in describing the antibacterial
and antifungal activity (Gonzalez-Diaz et al., 2008, 2007;
Cruz-Monteagudo et al., 2007; Gonzalez-Diaz and Prado-
Prado, 2008).

In the present study, we attempted to develop three differ-
ent types of mt-QSAR models viz. mt-QSAR model to describe
antibacterial activity of the synthesized compounds against S.

aureus, B. subtilis and E. coli, mt-QSAR model to describe
antifungal activity of the synthesized compounds against C.
albicans and A. niger as well as a common mt-QSAR model

to describe the antimicrobial (overall antibacterial and anti-
fungal) activity of the synthesized N0-(substituted)-4-(butan-
2-ylideneamino)benzohydrazide derivatives against all the
above mentioned microorganisms.

During the regression analysis studies it was observed that
the response values of compounds 1, 2, 3, 5, 6, 8 and 19 were
outside the limits of response values of other synthesized N0-

(substituted)-4-(butan-2-ylideneamino)benzohydrazides. Thus,
these compounds were designated as outliers and were not in-
volved in the data set for QSAR model generation. In



Table 2 Spectral studies of N0-(substituted)-4-(butan-2-ylideneamino)benzohydrazides.

Comp. IR (KBr pellets, cm�1) 1H NMR (MEOD) 13C NMR (MEOD) Analytical data calcd. (found) MS ES + (ToF): m/z

[M+ + 1]

1 IR (KBr pellets) cm�1 3066 (C–H str., Ar), 1590

(C‚C skeletal str., phenyl), 1624 (C‚O str., sec.

amide), 1677 (C‚N str., N‚CH), 2826 (C–H

sym. str., Ar–CH3), 2955 (C–H assym. str., R–

CH3), 933 (N–N str., N–NH)

1H NMR (MEOD): 7.349–8.356

(m, 8H, Ar–H), 8.706 (s, 1H,

N‚CH), 2.503 (s, 3H, Ar–CH3),

1.219 (m, 2H, CH2 of C2H5),

0.871 (s, 3H, CH3)

23.7, 8.0, 171.9, 22.6, 152.8, 122.2,

128.5, 132.9, 128.8, 122.1, 163.3,

130.6, 129.4, 129.0, 140.5, 129.1,

129.4, 143.3, 24.2

C19H21N3O: C, 74.24; H, 6.89; N,

13.67 (C, 74.19, H, 6.91; N, 13.62)

308

2 IR (KBr pellets) cm�1 3076 (C–H str., Ar), 1597

(C‚C skeletal str., phenyl), 1621 (C‚O str., sec.

amide), 1663 (C‚N str., N‚CH), 2960 (C–H

assym. str., R–CH3), 957 (N–N str., N–NH), 3120

(C–H str., �OCH3), 1237 (C–O–C assym. str.,

Ar–O–CH3)

1H NMR (MEOD): 7.096–7.531

(m, 8H, Ar–H), 8.663 (s, 1H,

N‚CH), 1.241 (m, 2H, CH2 of

C2H5), 0.849 (s, 3H, CH3), 3.874

(s, 6H, OCH3)

23.5, 8.1, 171.6, 22.4, 152.5, 122.4,

128.0, 132.7, 128.4, 122.5, 163.6,

127.4, 122.8, 115.6, 152.3, 149.5,

114.7, 143.3, 56.5, 56.0

C20H23N3O3: C, 67.97; H, 6.56; N,

11.89 (C, 67.99; H, 6.52; N, 11.93)

354

3 IR (KBr pellets) cm�1 3060 (C–H str., Ar), 1596

(C‚C skeletal str., phenyl), 1627 (C‚O str., sec.

amide), 1684 (C‚N str., N‚CH), 2956 (C–H

assym. str., R–CH3), 955 (N–N str., N–NH), 709

(C–Cl str., C6H5Cl)

1H NMR (MEOD): 7.340–8.018

(m, 8H, Ar–H), 8.64. (s, 1H,

N‚CH), 1.299 (m, 2H, CH2 of

C2H5), 0.896 (s, 3H, CH3)

23.2, 8.5, 171.2, 22.0, 152.7, 122.2,

128.3, 132.6, 128.1, 122.7, 163.4,

135.5, 127.7, 130.6, 131.0, 134.5,

129.4, 143.1

C18H18ClN3O: C, 65.95; H, 5.53; N,

12.82 (C, 65.91; H, 5.57; N, 12.86)

328

4 IR (KBr pellets) cm�1 3070 (C–H str., Ar), 1582

(C‚C skeletal str., phenyl), 1597 (C‚O str., sec.

amide), 1654 (C‚N str., N‚CH), 2971 (C–H

assym. str., R–CH3), 938 (N–N str., N–NH), 1346

(C–N str., Aryl 3� amine)

1H NMR (MEOD): 7.438–7.617

(m, 8H, Ar–H), 8.536 (s, 1H,

N‚CH), 1.232 (m, 2H, CH2 of

C2H5), 0.874 (s, 3H, CH3), 2.532

(s, 6H, N–(CH3)2)

23.0, 8.4, 171.7, 22.3, 152.9, 122.2,

128.5, 132.6, 128.4, 122.9, 163.4,

123.7, 130.4, 114.1, 151.5, 114.8,

130.5, 143.3, 40.7, 40.1

C20H24N4O: C,71.40; H, 7.19; N,

16.65 (C,71.37; H, 7.23; N, 16.61)

337

5 IR (KBr pellets) cm�1 3079 (C–H str., Ar), 1577

(C‚C skeletal str., phenyl), 1621 (C‚O str., sec.

amide), 1693 (C‚N str., N‚CH), 2953 (C–H

assym. str., R–CH3), 946 (N–N str., N–NH), 3011

(C–H str., –O–CH3), 1230 (C–O–C assym. str.,

Ar–O–CH3)

1H NMR (MEOD): 7.236–7.908

(m, 8H, Ar–H), 8.693 (s, 1H,

N‚CH), 1.277 (m, 2H, CH2 of

C2H5), 0.918 (s, 3H, CH3), 3.786

(s, 9H, OCH3)

23.5, 8.7, 171.3, 22.3, 152.6, 122.2,

128.9, 132.8, 128.4, 122.8, 163.9,

128.4, 106.9, 150.5, 141.7, 150.6,

106.5, 143.3, 56.2, 56.5, 56.0

C21H25N3O4: C, 65.78; H, 6.57; N,

10.96 (C, 65.80; H, 6.61; N, 10.92)

339

6 IR (KBr pellets) cm�1 3046 (C–H str., Ar), 1582

(C‚C skeletal str., phenyl), 1624 (C‚O str., sec.

amide), 1680 (C‚N str., N‚CH), 2940 (C–H

assym. str., R–CH3), 931 (N–N str., N–NH), 595

(C–Br str., C6H5Br)

1H NMR (MEOD): 7.259–7.864

(m, 8H, Ar–H), 8.760 (s, 1H,

N‚CH), 1.232 (m, 2H, CH2 of

C2H5), 0.851 (s, 3H, CH3)

23.3, 8.5, 171.7, 22.5, 152.9, 122.5,

128.7, 132.6, 128.3, 122.5, 163.4,

132.5, 131.7, 131.9, 125.2, 131.6,

131.3, 43.4

C18H18BrN3O: C, 58.08; H, 4.87; N,

11.29 (C, 58.05; H, 4.92; N, 11.33)

372

7 IR (KBr pellets) cm�1 2979 (C–H str., Ar), 1573

(C‚C skeletal str., phenyl), 1627 (C‚O str., sec.

amide), 1680 (C‚N str., N‚CH), 2937 (C–H

assym. str., R–CH3), 933 (N–N str., N–NH), 1255

(C–O–C assym. str., Ar–O–CH3)

1H NMR (DMSO): 6.553–7.987

(m, 8H, Ar–H), 8.564 (s, 1H,

N‚CH), 1.249 (m, 2H, CH2 of

C2H5), 0.873 (t, 3H, CH3), 3.843

(s, 3H, OCH3)

23.8, 8.6, 171.4, 22.0, 152.6, 122.4,

128.5, 132.2, 128.6, 122.5, 163.4,

126.5, 130.4, 114.8, 163.3, 114.1,

163.5, 114.7, 130.4, 143.2, 55.6

C19H21N3O2: C, 70.57; H, 6.55; N,

12.99 (C, 70.61; H, 6.71; N, 12.93)

324

8 IR (KBr pellets) cm�1 3067 (C–H str., Ar), 1596

(C‚C skeletal str., phenyl), 1615 (C‚O str., sec.

amide), 1677 (C‚N str., N‚CH), 2957 (C–H

assym. str., R–CH3), 936 (N–N str., N–NH), 744

(C–Cl str., C6H5Cl)

1H NMR (DMSO): 7.351–8.196

(m, 8H, Ar–H), 8.888 (s, 1H,

N‚CH), 1.353 (m, 2H, CH2 of

C2H5), 0.900 (t, 3H, CH3)

23.2, 8.0, 171.1, 22.0, 152.5, 122.4,

128.5, 132.4, 128.6, 122.2, 163.0,

131.6, 130.2, 129.3, 136.8, 129.3,

130.5, 143.4

C18H18ClN3O: C, 65.95; H, 5.53; N,

12.82 (C, 65.91; H, 5.50; N, 12.85)
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9 IR (KBr pellets) cm�1 3067 (C–H

str., Ar), 1592 (C‚C skeletal str.,

phenyl), 1623 (C‚O str., sec.

amide), 1677 (C‚N str.,

N‚CH), 2955 (C–H assym. str.,

R–CH3), 935 (N–N str., N–NH)

1H NMR (DMSO): 7.337–8.008

(m, 9H, Ar–H), 8.655 (s, 1H,

N‚CH), 1.298 (m, 2H, CH2 of

C2H5), 0.900 (t, 3H, CH3)

23.6, 8.5, 171.4, 22.4, 152.8, 122.4,

128.7, 132.4, 128.6, 122.5, 163.3,

133.5, 129.6, 128.7, 131.3, 128.5,

129.4, 143.1

C18H19N3O: C, 73.69; H, 6.53; N,

14.32 (C, 73.65; H, 6.50; N, 14.35)

294

10 IR (KBr pellets) cm�1 3002 (C–H

str., Ar), 1600 (C‚C skeletal str.,

phenyl), 1624 (C‚O str., sec.

amide), 1681 (C‚N str.,

N‚CH), 2957 (C–H assym. str.,

R–CH3), 968 (N–N str., N–NH)

1238 (C–O–C assym. str., Ar–O–

CH3), 1315 (O–H in plane

bending, phenol), 1223 (C–O str.,

phenol)

1H NMR (DMSO): 6.870–7.897

(m, 7H, Ar–H), 8.324 (s, 1H,

N‚CH), 1.243 (m, 2H, CH2 of

C2H5), 0.885 (t, 3H, CH3), 3.981

(s, 3H, OCH3), 5.829 (s, 1H, OH)

23.9, 8.3, 171.1, 22.4, 152.9, 122.4,

128.7, 132.4, 128.6, 122.5, 163.3,

127.3, 116.1, 145.6, 153.9, 115.8,

122.5, 143.2, 56.5

C19H21N3O3: C, 67.24; H, 6.24; N,

12.38 (C, 67.29; H, 6.20; N, 12.40)

340

11 IR (KBr pellets) cm�1 3090 (C–H

str., Ar), 1581 (C‚C skeletal str.,

phenyl), 1598 (C‚O str., sec.

amide), 1629 (C‚N str.,

N‚CH), 2969 (C–H assym. str.,

R–CH3), 930 (N–N str., N–NH),

3121 (C–H str., Ar–O–CH3),

1245 (C–O–C assym. str., Ar–O–

CH3), 1345 (O–H in plane

bending, phenol), 1198 (C–O str.,

phenol)

1H NMR (DMSO): 6.878–7.700

(m, 7H, Ar–H), 8.552 (s, 1H,

N‚CH), 1.243 (m, 2H, CH2 of

C2H5), 0.905 (t, 3H, CH3), 1.365

(t, 3H, CH3 of OC2H5), 3.993 (m,

2H, CH2 of OC2H5)

23.4, 8.7, 171.6, 22.3, 152.4, 122.3,

128.5, 132.4, 128.2, 122.0, 163.3,

126.5, 115.8, 145.7, 150.2, 115.6,

122.3, 143.2, 65.0, 14.5

C20H23N3O3: C, 67.97; H, 6.56; N,

11.89 (C, 67.93; H, 6.52; N, 11.94)

354

12 IR (KBr pellets) cm�1 3027 (C–H

str., Ar), 1596 (C‚C skeletal str.,

phenyl), 1622 (C‚O str., sec.

amide), 1660 (C‚N str.,

N‚CH), 2951 (C–H assym. str.,

R–CH3), 963 (N–N str., N–NH),

1303 (O–H in plane bending,

phenol), 1222 (C–O str., phenol)

1H NMR (DMSO): 6.696–7.941

(m, 8H, Ar–H), 8.394 (s, 1H,

N‚CH), 1.240 (m, 2H, CH2 of

C2H5), 0.900 (t, 3H, CH3), 5.832

(s, 1H, OH)

23.5, 8.5, 171.9, 22.3, 152.0, 122.3,

128.7, 132.4, 128.7, 122.0, 163.5,

126.7, 130.9, 116.3, 160.5, 116.1,

130.4, 143.2

C18H19N3O2: C, 69.88; H, 6.19; N,

13.58 (C, 69.83; H, 6.22; N, 13.61)

310

13 IR (KBr pellets) cm�1 2958 (C–H

str., Ar), 1574 (C‚C skeletal str.,

phenyl), 1625 (C‚O str., sec.

amide), 1671 (C‚N str.,

N‚CH), 2928 (C–H assym. str.,

R–CH3), 922 (N–N str., N–NH),

842 (C–N str., Ar–NO2), 1520

(NO2 str., Ar–NO2)

1H NMR (DMSO): 7.608–8.774

(m, 8H, Ar–H), 8.851 (s, 1H,

N‚CH), 1.289 (m, 2H, CH2 of

C2H5), 0.900 (t, 3H, CH3)

23.4, 8.1, 171.6, 22.2, 152.0, 122.6,

128.7, 132.9, 128.2, 122.0, 163.9,

134.9, 135.5, 129.6, 123.2, 148.5,

124.4, 143.3

C18H18N4O3: C, 63.89; H, 5.36; N,

16.56 (C, 63.92; H, 5.40; N, 16.52)

339
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Table 2 (Continued)

Comp. IR (KBr pellets, cm�1) 1H NMR (MEOD) 13C NMR (MEOD) Analytical data calcd. (found) MS ES + (ToF): m/z

[M+ + 1]

14 IR (KBr pellets) cm�1 3068 (C–H

str., Ar), 1588 (C‚C skeletal str.,

phenyl), 1614 (C‚O str., sec.

amide), 1678 (C‚N str.,

N‚CH), 2952 (C–H assym. str.,

R–CH3), 936 (N–N str., N–NH),

709 (C–Cl str. C6H5Cl)

1H NMR (DMSO): 7.243–7.991

(m, 8H, Ar–H), 8.886 (s, 1H,

N‚CH), 1.294 (m, 2H, CH2 of

C2H5), 0.882 (t, 3H, CH3)

23.3, 8.5, 171.3, 22.2, 152.0, 122.5,

128.7, 132.4, 128.2, 122.0, 163.3,

133.5, 130.0, 127.3, 132.7, 129.5,

134.4, 143.1

C18H18ClN3O: C, 65.95; H, 5.53; N,

12.82 (C, 65.91; H, 5.50; N, 12.87)
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15 IR (KBr pellets) cm�1 2996 (C–H

str., Ar), 1593 (C‚C skeletal str.,

phenyl), 1624 (C‚O str., sec.

amide), 1682 (C‚N str.,

N‚CH), 2959 (C–H assym. str.,

R–CH3), 940 (N–N str., N–NH),

550 (C–Br str. C6H5Br)

1H NMR (DMSO): 7.464–7.949

(m, 8H, Ar–H), 8.732 (s, 1H,

N‚CH), 1.292 (m, 2H, CH2 of

C2H5), 0.903 (t, 3H, CH3)

23.7, 8.2, 171.8, 22.5, 152.4, 122.7,

128.9, 132.7, 128.2, 122.0, 163.6,

136.4, 128.1, 131.3, 134.6, 123.5,

132.9, 143.2

C18H18BrN3O: C, 58.08; H, 4.87; N,

11.29 (C, 58.05; H, 4.83; N, 11.33)

373

16 IR (KBr pellets) cm�1 2959 (C–H

str., Ar), 1598 (C‚C skeletal str.,

phenyl), 1620 (C‚O str., sec.

amide), 1678 (C‚N str.,

N‚CH), 2817 (C–H sym. str.,

R–CH3), 941 (N–N str., N–NH),

1318 (O–H in plane bending,

phenol), 1206 (C–O str., phenol)

1H NMR (DMSO): 6.737–7.716

(m, 8H, Ar–H), 8.035 (s, 1H,

N‚CH), 1.249 (m, 2H, CH2 of

C2H5), 0.898 (t, 3H, CH3), 5.436

(s, 1H, OH)

23.9, 8.0, 171.5, 22.5, 152.5, 122.3,

128.4, 132.7, 128.2, 122.3, 163.1,

118.7, 130.9, 121.3, 132.5, 116.2,

161.4, 143.1

C18H19N3O2: C, 69.88; H, 6.19; N,

13.58 (C, 69.84; H, 6.22; N, 13.60)

310

17 IR (KBr pellets) cm�1 2967 (C–H

str., Ar), 1599 (C‚C skeletal str.,

phenyl), 1629 (C‚O str., sec.

amide), 1668 (C‚N str.,

N‚CH), 2923 (C–H assym. str.,

R–CH3), 974 (N–N str., N–NH),

1599 (C‚C str., CH‚CH), 1312

(C–H in plane bending

CH‚CH)

1H NMR (DMSO): 6.926–8.158

(m, 9H, Ar–H), 7.575 (d, 1H,

N‚CH), 1.282 (m, 2H, CH2 of

C2H5), 0.883 (t, 3H, CH3)

23.6, 8.2, 171.3, 22.2, 152.7, 122.4,

128.6, 132.9, 128.2, 122.3, 163.7,

137.6, 126.5, 139.3, 135.0, 126.1,

128.9, 128.3, 128.9, 126.6

C20H21N3O: C, 75.21; H, 6.63; N,

13.16 (C, 75.25; H, 6.66; N, 13.11)

320

18 IR (KBr pellets) cm�1 3058 (C–H

str., Ar), 1578 (C‚C skeletal str.,

phenyl), 1621 (C‚O str., sec.

amide), 1677 (C‚N str.,

N‚CH), 2958 (C–H assym. str.,

R–CH3), 932 (N–N str., N–NH),

1306 (O–H in plane bending,

phenol), 1210 (C–O str., phenol).

1H NMR (DMSO): 7.291–7.965

(m, 10H, Ar–H), 8.051 (s, 1H,

N‚CH), 1.289 (m, 2H, CH2 of

C2H5), 0.904 (t, 3H, CH3), 5.832

(s, 1H, OH)

23.4, 8.5, 171.0, 22.5, 152.9, 122.1,

128.4, 132.6, 128.6, 122.1, 163.5,

143.3, 111.6, 161.5, 126.2, 137.4,

121.3, 126.1, 121.5, 126.8, 126.5,

127.6

C22H21N3O2: C, 73.52; H, 5.89; N,

11.69 (C, 73.47; H, 5.91; N, 11.73)
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multivariate statistics, it is common to define three types of
outliers (Furusjo et al., 2006).

1. X/Y relation outliers are substances for which the relation-
ship between the descriptors (X variables) and the depen-
dent variables (Y variables) is not the same as in the (rest

of the) training data.
2. X outliers are substances whose molecular descriptors do

not lie in the same range as the (rest of the) training data.

3. Y outliers are only defined for training or test samples.
They are substances for which the reference value of
response is invalid.

There was no difference in the activity (Table 3) as well as
the molecular descriptor range (Table 5) of the outliers (1, 2, 3,
5, 6, 8 and 19) when compared to other N0-(substituted)-4-(bu-

tan-2-ylideneamino)benzohydrazides. This indicated the fact
that the outliers belong to the category of Y outliers (sub-
stances for which the reference value of response is invalid).

In order to develop mt-QSAR models, initially we calcu-
lated the average antibacterial activity, antifungal activity
and antimicrobial activity values of N0-(substituted)-4-(bu-

tan-2-ylideneamino)benzohydrazides which are presented in
Table 3. These average antifungal activity values correlated
with molecular descriptors of the synthesized compounds (Ta-
ble 6). In general, high colinearity (r > 0.5) was observed be-

tween different parameters (Table 6). The high
interrelationship was observed between Kier’s first order shape
index (j1) and W (r= 0.975), and low interrelationship was

observed between energy of lowest unoccupied molecular orbi-
tal (LUMO) (r= 0.044, Table 6).

From the correlation matrix (Table 6), it was observed that

the steric parameter, molar refractivity (MR) was found to be
most effective in describing the antifungal activity of the syn-
thesized compounds (Eq. (1)).

3.5.1. LR mt-QSAR model for antifungal activity

pMICaf ¼ 0:018MR� 0:078

n ¼ 14 r ¼ 0:808 q2 ¼ 0:533 s ¼ 0:088 F ¼ 22:50
ð1Þ

Here and thereafter, n – number of data points, r – correlation
coefficient, q2 – cross validated r2 were obtained by leave one
out method, s – standard error of the estimate and F – Fischer

statistics.
The coefficient of molar refractivity (MR) is positive in

QSAR model developed to describe the antifungal activity of

the synthesized N0-(substituted)-4-(butan-2-ylideneamino)ben-
zohydrazides (Eq. (1)), which indicated that there is a positive
correlation between antifungal activity and molar refractivity
(MR) i.e. antifungal potential of the synthesized compounds

will increase with increase in their MR values and vice versa.
This is evidenced by high antifungal activity of compound 12

(pMICaf = 1.91 lM/ml, Table 3) having high MR value

(MR= 107.38, Table 5) and minimum antifungal activity of
compound 20 (pMICaf = 1.35 lM/ml, Table 3) having least
MR value (MR = 81.63, Table 5).

The developed QSAR model (Eq. (1)) was cross validated
by q2 value (q2 = 0.533) obtained by leave one out (LOO)
method. The value of q2 (more than 0.5) indicated that the

developed model is a valid one. Further, the observed and pre-
dicted values are close to each other (Table 7), the mt-QSAR



Table 3 Antimicrobial activity (pMIC in lM/ml) of the synthesized N0-(substituted)-4-(butan-2-ylideneamino)benzohydrazides.

Comp. pMICsa pMICbs pMICec pMICca pMICan pMICab pMICaf pMICam

1 1.69 1.69 1.39 1.99 1.39 1.59 1.69 1.63

2 1.75 1.75 1.45 1.75 1.75 1.65 1.75 1.69

3 1.42 1.72 1.42 2.02 1.72 1.52 1.87 1.66

4 1.73 1.43 1.43 2.03 1.43 1.53 1.73 1.61

5 1.43 1.43 1.43 2.03 1.43 1.43 1.73 1.55

6 1.47 1.77 1.47 2.07 1.47 1.57 1.77 1.65

7 1.41 1.71 1.11 1.71 1.41 1.41 1.56 1.47

8 1.42 1.72 1.42 1.72 1.12 1.52 1.42 1.48

9 1.41 1.71 1.11 2.01 1.41 1.41 1.71 1.53

10 1.37 1.67 1.07 1.97 1.37 1.37 1.67 1.49

11 1.43 1.73 1.43 1.73 1.43 1.53 1.58 1.55

12 1.46 1.76 0.86 2.06 1.76 1.36 1.91 1.58

13 1.45 1.75 1.15 2.05 1.75 1.45 1.90 1.63

14 1.39 1.39 1.39 1.69 1.39 1.39 1.54 1.45

15 1.43 1.73 1.43 1.73 1.43 1.53 1.58 1.55

16 1.42 1.42 1.42 1.72 1.42 1.42 1.57 1.48

17 1.47 1.47 1.17 1.77 1.47 1.37 1.62 1.47

18 1.41 1.71 1.11 1.71 1.71 1.41 1.71 1.53

19 1.36 1.66 1.06 1.66 1.36 1.36 1.51 1.42

20 1.35 1.66 1.05 1.35 1.35 1.35 1.35 1.35

21 1.39 1.39 1.39 1.69 1.69 1.39 1.69 1.51

S.D. 0.12 0.14 0.19 0.19 0.17 0.09 0.15 0.09

Std. 2.61a 2.61a 2.61a 2.64b 2.64b – – –

a Norfloxacin.
b Fluconazole.

Table 4 Anticancer activity (IC50 in lM) of the synthesized

N0-(substituted)-4-(butan-2-ylideneamino)benzohydrazides.

Compound IC50 (HCT116, lM)

1 96.64

2 74.59

3 243.64

4 163.69

5 209.08

6 79.06

7 216.72

8 152.91

9 178.6

10 141.59

11 173.74

12 89.55

13 60.15

14 37.71

15 88.71

16 184.47

17 156.74

18 158.77

19 87.23

20 95.23

21 181.38

Tetrandrine 1.53

Doxorubicin 0.70

Camptothecin 0.15

Carboplatin >100
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model for antibacterial activity Eq. (1) is a valid one (Gol-

braikh and Tropsha, 2002). The plot of predicted pMICaf

against observed pMICaf (Fig. 2) also favors the developed
model expressed by Eq. (1). The plot of observed pMICaf vs
residual pMICaf (Fig. 3) indicated that there was no systemic
error in model development as the propagation of error was

observed on both sides of zero (Kumar et al., 2007).
The topological parameter, third order molecular connec-

tivity index (3v) was found to be effective in describing the anti-

bacterial activity of the synthesized compounds (Eq. (2)).

3.5.2. LR mt-QSAR model for antibacterial activity

pMICab ¼ 0:2253vþ 1:117

n ¼ 14 r ¼ 0:637 q2 ¼ 0:156 s ¼ 0:051 F ¼ 8:174
ð2Þ

The molecular connectivity index, an adjacency based topolog-
ical index proposed by Randic is denoted by v and is defined as
sum over all the edges (ij) as per following

v ¼
Xn

i¼1
ðViVjÞ�1=2

where Vi and Vj are the degrees of adjacent vertices i and j and
n are the number of vertices in a hydrogen suppressed molec-

ular structure (Lather and Madan, 2005). The topological in-
dex, v signifies the degree of branching, connectivity of
atoms and unsaturation in the molecule which accounts for
variation in activity (Gupta et al., 2003).

The addition of topological parameter, Kier’s third order
shape index (j3) to the topological parameter, third order
molecular connectivity index (3v), significantly improved the

value of regression coefficient from 0.637 to 0.778 (Eq. (3)).

3.5.3. MLR mt-QSAR model for antibacterial activity

pMICab ¼ 0:1993vþ 0:053j3 þ 0:787

n ¼ 14 r ¼ 0:778 q2 ¼ 0:296 s ¼ 0:043 F ¼ 8:46
ð3Þ
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Figure 1 Structural requirements for antimicrobial and anticancer activities of the synthesized N0-(substituted)-4-(butan-2-

ylideneamino)benzohydrazides.

Synthesis, in vitro antimicrobial, anticancer evaluation and QSAR studies 457
The validity and predictability of the QSARmodel for antibac-
terial activity i.e. Eq. (3) were cross validated by q2 value
(q2 = 0.296) obtained by leave one out (LOO) method. The va-
lue of q2 less than 0.5 indicated that the developed model is an

invalid one. But one should not forget the recommendations
of Golbraikh and Tropsha (2002) who reported that the only
way to estimate the true predictive power of a model is to test

their ability to predict accurately the biological activities of com-
pounds. As the observed and predicted values are close to each
other (Table 7), the mt-QSAR model for antibacterial activity

Eq. (3) is therefore a valid one (Golbraikh and Tropsha, 2002).
A set of very useful topological indices of the second gener-

ation is composed of the kappa indices of molecular shape and

flexibility (Kier et al., 1999). According to Kier, the shape of a
molecule may be partitioned into attributes, each describable
by the count of bonds of various path lengths. The basis for
devising a relative index of shape is given by the relationship

of the number of path of length l in the molecule i, lPi, to some
reference values based on molecules with a given number of
atoms, n, in which the values of lP are maximum and mini-

mum, lPmax and lPmin.
The modified kappa shape indices are given by:
Table 5 Values of selected parameters used in the QSAR studies o

Comp. log P MR 2v 3v j1

1 4.95 94.28 9.56 1.39 19.33

2 3.98 102.17 10.45 1.43 22.29

3 5.00 94.04 9.58 1.39 19.33

4 4.28 102.95 10.46 1.60 21.30

5 3.73 108.63 11.18 1.57 24.27

6 5.28 96.86 9.56 1.39 19.33

7 4.23 95.70 9.73 1.30 20.31

8 5.00 94.04 9.56 1.39 19.33

9 4.89 99.48 9.65 1.10 20.31

10 4.49 89.24 8.94 1.10 18.34

11 3.95 97.40 10.26 1.50 21.30

12 5.20 107.38 11.37 1.57 21.70

13 4.29 102.15 10.67 1.52 22.29

14 4.20 90.93 9.56 1.39 19.33

15 4.44 96.56 10.47 1.60 21.30

16 5.00 94.04 9.46 1.30 19.33

17 5.28 96.86 9.58 1.39 19.33

18 4.16 95.83 9.73 1.30 20.31

19 4.16 95.83 9.73 1.30 20.31

20 3.43 81.63 8.59 1.10 17.36

21 4.20 90.93 9.46 1.30 19.33
ja1 ¼ ðnþ aÞðnþ a� 1Þ2=ð1Pi þ aÞ2ja2

¼ ðnþ a� 1Þðnþ a� 2Þ2=ð2Pi þ aÞ2ja3

¼ ðnþ a� 1Þðnþ a� 3Þ2=ð3Pi þ aÞ2n isoddja3

¼ ðnþ a� 3Þðnþ a� 2Þ2=ð3Pi þ aÞ2n is even:

The antimicrobial activity of N0-(substituted)-4-(butan-2-ylide-
neamino)benzohydrazides is best described by the topological
parameter, Kier’s first order shape index (j1, Eq. (4)).

3.5.4. LR mt-QSAR model for antimicrobial activity

pMICam ¼ 0:0463j1 þ 0:5825

n ¼ 14 r ¼ 0:907 q2 ¼ 0:741 s ¼ 0:0309 F ¼ 55:79

ð4Þ
The validity of QSAR model for antimicrobial activity (Eq.
(4)) is indicated by their high q2 value (0.741) as well as the
low residual values (Table 7). The high residual values

observed in case outliers (1, 2, 3, 5, 6, 8 and 19) justify their
removal while developing QSAR models.

It was observed from mt-QSAR models (Eqs. (1)–(4)) that

the antibacterial activity, antifungal activity and overall
f N0-(substituted)-4-(butan-2-ylideneamino)benzohydrazides.

j3 W Te LUMO HOMO

6.79 1504.00 �3661.11 �0.46 �8.66
7.16 2092.00 �4456.81 �0.47 �8.33
6.79 1488.00 �3865.33 �0.48 �8.95
7.26 1924.00 �4036.90 �0.29 �8.02
7.34 2491.00 �4932.58 �0.53 �8.59
6.79 1504.00 �3844.85 �0.60 �8.90
7.04 1713.00 �3981.12 �0.45 �8.50
6.79 1504.00 �3865.35 �0.56 �8.85
7.84 1777.00 �3788.40 �0.53 �8.56
6.57 1318.00 �3505.24 �0.47 �8.80
6.91 1874.00 �4301.68 �0.49 �8.44
5.99 2194.00 �4365.36 �0.72 �8.78
7.51 2051.00 �4457.34 �0.38 �8.59
6.79 1504.00 �3825.86 �0.47 �8.57
7.26 1876.00 �4336.33 �1.02 �9.30
6.43 1472.00 �3865.21 �0.45 �9.07
6.79 1488.00 �3844.83 �0.55 �8.97
7.04 1713.00 �3953.48 �0.78 �9.06
7.04 1713.00 �3953.48 �0.78 �9.06
5.95 1151.00 �3540.85 �0.51 �8.61
6.43 1472.00 �3825.82 �0.54 �8.67
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Figure 3 Plot of observed pMICaf against residual pMICaf for

the linear regression model developed by Eq. (1).

Table 6 Correlation matrix for antifungal activity of N0-(substituted)-4-(butan-2-ylideneamino)benzohydrazides.

log P MR 3v j1 j3 J W Te LUMO pMICaf

log P 1.000

MR 0.561 1.000
3v 0.155 0.683 1.000

j1 0.227 0.893 0.794 1.000

j3 0.063 0.415 0.161 0.526 1.000

J �0.491 �0.458 �0.157 �0.207 0.338 1.000

W 0.290 0.930 0.754 0.975 0.425 �0.409 1.000

Te �0.149 �0.761 �0.861 �0.933 �0.303 0.190 �0.899 1.000

LUMO �0.147 �0.060 �0.194 �0.151 0.044 0.348 �0.185 0.276 1.000

pMICaf 0.477 0.808 0.428 0.702 0.277 �0.367 0.740 �0.558 �0.001 1.000

Table 7 Comparison of observed and predicted antimicrobial activity obtained by mt-QSAR models.

Comp. pMICab pMICaf pMICam

Obs. Pre. Res. Obs. Pre. Res. Obs. Pre. Res.

1 1.59 1.43 0.17 1.69 1.62 0.07 1.63 1.48 0.15

2 1.65 1.45 0.20 1.75 1.76 �0.01 1.69 1.62 0.07

3 1.52 1.43 0.09 1.87 1.62 0.25 1.66 1.48 0.18

4 1.53 1.49 0.04 1.73 1.78 �0.04 1.61 1.57 0.04

5 1.43 1.49 �0.06 1.73 1.88 �0.14 1.55 1.71 �0.16
6 1.57 1.43 0.15 1.77 1.67 0.11 1.65 1.48 0.17

7 1.41 1.42 �0.01 1.56 1.64 �0.08 1.47 1.52 �0.05
8 1.52 1.43 0.09 1.42 1.62 -0.20 1.48 1.48 0.00

9 1.41 1.42 �0.02 1.71 1.71 0.00 1.53 1.52 0.00

10 1.37 1.36 0.01 1.67 1.53 0.14 1.49 1.43 0.06

11 1.53 1.45 0.08 1.58 1.68 -0.09 1.55 1.57 �0.02
12 1.36 1.42 �0.06 1.91 1.86 0.05 1.58 1.59 �0.01
13 1.45 1.49 �0.04 1.90 1.76 0.14 1.63 1.62 0.01

14 1.39 1.43 �0.03 1.54 1.56 �0.02 1.45 1.48 �0.03
15 1.53 1.49 0.04 1.58 1.66 �0.08 1.55 1.57 �0.02
16 1.42 1.39 0.03 1.57 1.62 �0.05 1.48 1.48 0.00

17 1.37 1.43 �0.05 1.62 1.67 �0.04 1.47 1.48 �0.01
18 1.41 1.42 �0.01 1.71 1.65 0.06 1.53 1.52 0.01

19 1.36 1.42 �0.06 1.51 1.65 �0.14 1.42 1.52 �0.10
20 1.35 1.32 0.03 1.35 1.39 �0.04 1.35 1.39 �0.03
21 1.39 1.39 0.00 1.69 1.56 0.14 1.51 1.48 0.03
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antimicrobial activity of the synthesized N0-(substituted)-4-
(butan-2-ylideneamino)benzohydrazides are governed by the
steric parameter, molar refractivity (MR) and topological

parameters, Kier’s first order shape index (j1) third order
molecular connectivity index (3v).

Generally for QSAR studies, the biological activities of

compounds should span 2–3 orders of magnitude. But in the
present study the range of antimicrobial activities of the syn-
thesized compounds is within one order of magnitude. This

is in accordance with results suggested by Bajaj et al. (2005)
who stated that the reliability of the QSAR model lies in its
predictive ability even though the activity data are in the nar-
row range. When biological activity data lie in the narrow

range, the presence of minimum standard deviation of the bio-
logical activity justifies its use in QSAR studies (Narasimhan
et al., 2007). The minimum standard deviation (Table 3) ob-

served in the antimicrobial activity data justifies its use in
QSAR studies.
4. Conclusion

In the present study, a series of N0-(substituted)-4-(butan-2-
ylideneamino)benzohydrazides (1–21) was synthesized

(Scheme 1) and screened for its in vitro antimicrobial and anti-
cancer potentials. The results of antimicrobial studies indi-
cated the synthesized compounds were more potent toward

C. albicans than other microbial strains tested and compound
6 was found to be the most active antifungal agent (pMIC-

ca = 2.07 lM/ml). Anticancer activity revealed that compound
14 (IC50 = 37.71 lM) was found to be the most potent. The

results of QSAR studies demonstrated the importance of steric
parameter, molar refractivity (MR), topological parameters,
third order molecular connectivity index (3v), Kier’s first order

shape index (j1) in describing the antimicrobial activity of N0-
(substituted)-4-(butan-2-ylideneamino)benzohydrazides.
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