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Abstract Inflammatory skin diseases (ISD) cause very severe itchy skin and dryness which is now a

days an important issue which has to be taken care. Nanotechnology plays a main role in manufac-

turing cosmetic ingredients at a nanoscale size. Among different nanoparticles, gold (Au) is one of

the non-toxic materials synthesized organically or inorganically. For synthesizing nanoparticles

(NPs), using inorganic methods may cause some toxicity to cells, but using organic synthesis like

plant extract is less toxic and environmentally friendly. Therefore, we synthesized DK-AuNPs using

Diospyros kaki fruit extract. UPLC-MS/MS was used to evaluate phytochemicals responsible for

converting salt into nanoparticles. The DK-AuNPs were characterized to confirm the formation

of NPs. Furthermore, we analyzed the activity of DK-AuNPs on human keratinocytes (HaCaT

cells). The DK-AuNPs showed 98.2 % cell survival upto 200 mg/mL against HaCaT cells. Addition-

ally, compared to DK treatment, DK-AuNPs therapy decreased ROS production in TNF-a/IFN-c
(T + I) stimulated HaCaT cells by 68.7 %, whereas DK treatment reduced ROS generation by

27.8 %. Moreover, the skin anti-inflammatory potential and moisturizing effect of DK-AuNPs were

analyzed using HaCaT cells. Furthermore, skin inflammatory activity biomarkers were downregu-

lated through the MAPK/NFjB signaling pathway and showed significant inhibition by DK-

AuNPs. Also, the skin moisturizing biomarkers such as HAS (1–3) were upregulated and HYAL
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(1–2) were downregulated by PI3K/AKT/NFjB through HAS2 regulation. Therefore, skin anti-

inflammatory and moisturizing activity were enhanced by treatment with DK-AuNPs. In summary,

we conclude that the DK-AuNPs could be a new alternative for skin disease.

� 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Inflammatory skin disease (ISD) is a chronic, recurring, and acute

inflammatory itchy skin condition that is caused by the breakdown

of the skin barrier which is a complex and composite condition

(Torres et al., 2019). Under pathological conditions trans-epidermal

water loss (TEWL) occurs resulting in dryness, and inflammation

increases, resulting in the release of inflammatory mediators

(Klonowska et al., 2018). Inflammatory mediators including cytokines

and chemokines which are produced by inflammatory macrophages

such as keratinocytes, mast cells, langerhans cells, lymphocytes and

neutrophils, resulting in an anti-dermatitis effect (Asahina & Maeda,

2017). Keratinocytes are essential for skin homeostasis because of its

role in the recruitment of immune cells, including neutrophils, mono-

cytes, and T lymphocytes, via the production of chemokines and

cytokines (Maalej et al., 2022). Therefore, suppression of pro-

inflammatory cytokines and chemokines could be essential in the treat-

ment of ISD.

For decades, nanoparticles (NPs), ranging from 1 to 100 nm in size,

have been widely used in numerous sectors (Cho et al., 2022; Contini

et al., 2020). Because of their excellent targeting ability, nano-drug

delivery systems can be highly beneficial in pharmaceutical and

biotechnological applications (Mirzaei et al., 2016). Several studies

have shown that nanoparticles and nanocarriers have optimum rheo-

logical qualities, antibacterial capabilities, and the potential to repair

skin conditions (Damiani et al., 2019). Several reports have been pub-

lished regarding the use of nanoparticles, nanogels, nanomixtures,

nanoemulsions, and other nanocarrier dermatitis treatments

(Ferreira et al., 2021). According to the current study, nanoparticles

such as silver nanoparticles (Ag-NPs), silver-lipid, and poly (lactic

acid) nanoparticles (PLA-NPs) have been proven for the treatment

and management of people suffering from dermatitis (Rujido-Santos

et al., 2019).

In recent years, the use of gold nanoparticles (AuNPs) in biolog-

ical applications (Akhtar et al., 2022; Gessner et al., 2022; Iranpour

Anaraki et al., 2022), such as drug delivery, antibacterial, and anti-

cancer agent, has become popular (Ahati et al., 2022; Nagaraj

et al., 2022; Qu et al., 2022; Sekar et al., 2022). AuNPs have a ther-

apeutic drug delivery mechanism that includes anti-inflammatory and

immune response modulation. These mechanisms indicate prospective

applications for AuNPs as ‘‘drugs” to treat a variety of skin disorders

(Ko et al., 2022). Wang et al. reported AuNPs synthesized using Rosa

rugosa extract could able to supprelss skin inflammation in HaCaT

Keratinocytes (Wang et al., 2022). Similary, Xu et al. showed that

ani-dermatitis effect was enhanced by treating AuNPs mediated by

plant extract (Xu et al., 2022). Therefore, AuNPs have become a

major topic in the field of nanosystem development and use for topi-

cal drug administration becasuse their biocompatibility, tunability in

size and surface chemistry, and distinctive plasmonic characteristic

(Chen & Feng, 2022). However, inadequate research has been per-

formed on the anti-dermatitis effects of nano drugs containing gold

nanoparticles for inflammatory skin conditions and skin moisturizing

effects. Synthesis of AuNPs typically occurs via various traditional

physical and chemical processes, many of which involve the use of

hazardous substances that possesses risks to human health and con-

tribute to the environmental pollution (Mishra et al., 2020). Com-

pared to nanomaterials produced by chemical synthesis,

nanoparticles produced through biosynthesis have gained consider-
ably more attention (Botteon et al., 2021; Song et al., 2022; Zayadi

& Bakar, 2020). Biosynthesis methods involve the use of naturally

available metabolites from plants and microorganisms such as bacte-

ria, fungi, and algae for synthesizing AuNPs in an environmentally

friendly manner (Sanjeevram et al., 2021 Xu et al., 2021). The plant

extract was used to synthesize NPs (Doan et al., 2021), which have

been demonstrated to be more promising than those that are synthe-

sized using inorganic procedures in terms of biocompatibility and

bioactivity (Marcelino et al., 2021). Plant extracts contain various

macromolecules from complex characteristic categories, including

alkaloids, polysaccharides, vitamins, amino acids, proteins, enzymes,

tannins, phenolic acids, saponins, and naturally occurring substances

(Vandarkuzhali et al., 2021). Additionally, the plant extract’s sec-

ondary metabolites concurrently stabilised and capping the zero-

valent species of Au0, resulting in the production of AuNPs (M.

Wang et al., 2021). Based on the findings of several studies, research-

ers have proved that the vast majority of the above molecules are

environmentally friendly, which are responsible for biosynthesis of

nanoparticles (Pradeep et al., 2021).

Diospyros kaki (DK; persimmon) is a well-known and widely culti-

vated plant species. Its fruit is recognized as one of the most important

fruits in terms of both quantity and economic importance. In recent

years, interest in investigating the chemical and bioactive content of

DK fruit has grown worldwide. Several studies have been conducted

on the impact of DK fruits and their compounds on human health.

The main components of DK fruit are carbohydrates, organic acids,

phenolic compounds, carotenoids, and tannins, which impart antioxi-

dant, anticancer, and pharmacological properties to the fruit. More-

over, it has several macro and micronutrients with excellent

bioavailability (Matheus et al., 2020). It was reported that both the

fruit and the leaves of the DK have significant biological importance,

including anti-inflammatory properties, protection against atheroscle-

rosis, reduction in cholesterol levels, resistance to free radicals, protec-

tion against diabetes, treatment of cancer, and prevention of cancer.

Lydia Ferrara gave a clear and brief description of the DK signifi-

cance, both in terms of the nutritional advantages and the potential

pharmaceutical uses (Ferrara, 2021). Direito et al. demonstrated that

the administration of DK extract attenuates the degree of chronic

inflammation and tissue damage typical of CIA in rats (Direito

et al., 2020). The current attention in dermatological and cosmeceutical

disciplines has been directed towards the utilization of natural bioac-

tive substances in several therapeutic and beautifying applications. Sci-

entific evidence has shown DK exhibited benifits in the fields of

dermatology and cosmetics, which makes it a desirable alternative.

The DK fruit contains a variety of essential micronutrients, including

potassium, sodium, iron, and calcium. The fruit has been a main com-

ponent in various commercially available cosmetic goods, such as

soaps, body lotions that cleanse and fragrance, body washes, skin

tones, and body serums (Kashif et al., 2017).

Therefore, In this research, we aimed to biosynthesize AuNPs con-

taining DK fruit extract (DK-AuNPs) and evaluating their effects on

dermatitis symptoms, such as inflammation and dehydration. In addi-

tion, the mechanism underlying its anti-inflammatory effects and hya-

luronic acid (HA) synthesis in HaCaT cells has been examined.

Therefore, according to the findings of our research, this is the first

study to demonstrate the properties of AuNPs mediating DK fruit

extract that are capable of reducing inflammation and hydrating the

skin.

http://creativecommons.org/licenses/by/4.0/
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2. Materials and methods

2.1. Extraction of DK and synthesis of DK-AuNPs

2.1.1. DK extract phytochemical identification and DK-AuNPs

synthesis

The fresh DK fruits were gathered from the farm of Sanju
aram dried persimmon farming association (Gyeongbuk,

South Korea) in the year 2020. After that, the fruits were
allowed to air-dry at room temperature for up to sixty days.
Then 3 kg of dry DK were washed with water to eliminate
any surface impurities, and refluxing at 107 �C for 4 h in a

commercial biofeedback extractor manufactured by Daehan
Media Co., ltd. (Gunpo, South Korea). Finally, DK was
lyophilization using a freeze-dryer (Ilshin Biobase Co., ltd.,

Dongducheon, South Korea) and a brief description was
given in our previous study (Hwang et al., 2021; Shin
et al., 2022). Analytical methods and conditions for identify-

ing secondary metabolites in DK using ultra-performance liq-
uid chromatography-tandem mass spectrometry (UPLC-MS/
MS; LTQ Orbitrap XL) manufactured by Thermo Electron
(Waltham, MA, USA), according to standard analytical

methods and conditions (Hwang et al., 2021; Kim et al.,
2021). DK-AuNPs were biosynthesized and optimized under
various conditions, including different gold salt concentra-

tions; DK fruit extract concentrations; and reaction parame-
ters such as pH, temperature, and time. DK concentrations
of 6 mg/mL–9 mg/mL and HAuCl4�3 H2O concentrations

of 1–5 mM. We performed the synthesis under temperatures
ranging from 50 to 80 �C and reaction times varying from 5
to 20 min. The synthesized DK-AuNPs were collected,

washed thrice with autoclaved water, and centrifuged for
15 min at 13,000 rpm. For subsequent experiments, the
DK-AuNPs were stored at 4 �C. The reduction of the metal
ions was measured using ultraviolet–visible spectroscopy

(Optizen POP; Mecasys, Daejeon, Korea) at wavelengths
between 300 and 800 nm.

2.1.2. Physicochemical characterization of DK-AuNPs

An X-ray diffractometer (XRD, D8 Advance (Bruker), Karl-
sruhe, Germany) with an operating temperature range of 20–
80 �C was used for obtaining an XRD pattern of the synthe-

sized DK-AuNPs sample. The organic compounds encapsu-
lated on the exterior of the DK-AuNPs were classified using
Fourier-transform infrared (FT-IR, Spectrum One System

(Perkin-Elmer), Waltham, MA, USA) spectroscopy in the
range of 4,000–500 cm�1 and at a resolution of 4 cm�1. Struc-
tural and compositional analyses, selected area electron

diffraction (SAED), and energy-dispersive X-ray (EDX) spec-
troscopy of the gold nanoparticles were performed using trans-
mission electron microscopy (TEM, JEM-2100F, Tecnai G2
Spirit, FEI Company, USA) with negative staining of the gold

nanoparticles. Droplets of pure nanoparticles dispersed in
water were placed on a carbon-coated copper grid and dried
at room temperature before TEM imaging. The size and dis-

persal nature of the nanoparticles were determined using a
dynamic light scattering (DLS, ELS-2000ZS, Otsuka Electron-
ics, Shiga, Japan) particle analyzer.
2.2. Assessment of DK-AuNPs cytotoxicity

2.2.1. Cytotoxic effect of DK-AuNPs in HaCaT cells

HaCaT cells (human keratinocytes) were provided by CLS

Cell Line Service (Eppelheim, Heidelberg, Germany). The cells
were seeded in Dulbecco’s Modified Eagle Medium (DMEM)
with 10 % heat-inactivated FBS and 1 % PS and maintained at
37 �C in a humidified incubator under 5 % CO2. A standard

MTT test was performed for determining the cytotoxicity. In
a 96-well plate, cells were seeded at an initial density of
1 � 105 cells/well and stabilized. The cells were treated with

varying concentrations (10 – 800 mg/mL) of DK fruit extract
and DK-AuNPs. After 24 h of treatment, the cells were treated
with 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium

Bromide (MTT) solution (5 mg/mL) for 1 h, and the resultant
formazan crystals were dissolved in 100 lL of Dimethyl sulfox-
ide (DMSO). A microplate reader (SpectraMax� ABS Plus,
San Jose, CA, USA) was used for measuring the absorbance

at 570 nm.

2.2.2. Live and dead staining

Cell viability was assessed using a live/dead cell imaging kit
(Invitrogen Biotechnology, Waltham, MA, USA). Live cells
were labeled green, while dead cells were stained red. The cells
were loaded into the microfluidic devices, and after one day,

we washed the culture flasks of the microfluidic chip with
phosphate-buffered saline (PBS, HyClone) for 1–3 min. The
cells were then incubated for 15–30 min at 37 �C with the

reagent from the live/dead cell imaging kit. After washing off
the reagent with PBS for 3–5 min, we examined the culture
chambers under a fluorescence microscope. Finally, the pro-

portion of green fluorescence in all cells was used for determin-
ing cell viability.

2.3. Evaluation of skin anti-inflammatory activity and skin
moisturizing effects

2.3.1. Reactive oxygen species (ROS) and Mito-SOX
quantification

Intracellular ROS release was identified using a Cellular ROS/
Superoxide Detection Assay Kit, which was provided by

Abcam (Cambridge, MA, USA). HaCaT cells (1 � 105 cells)
were cultured in 6-well plates and treated for 24 h with varying
concentrations of DK, DK-AuNPs, TNF-a/IFN-c (T + I)

and dexamethasone (DEX - Positive control (PC)). Then,
0.4 lL of oxidative stress and superoxide detection reagents
were added to the mixture. After an incubation period of

30 min, the fluorescence was measured using a microscope
(Leica Microsystems, Wetzlar, Germany).

2.3.2. Enzyme-linked immunosorbent (ELISA) analysis

Cells were seeded in a 96-well plate at a density of 1 � 105 cells/
well. After 24 h, the cells were pretreated with DK-AuNPs and
DK at different doses (100 and 200 mg/mL, respectively) for
1 h before being treated with T + I. Following the manufac-

turer’s instructions, the supernatants were collected and tested
for the production of pro-inflammatory cytokines or chemoki-
nes and hyaluronan acid production (HA), using an ELISA
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assay kit (R&D Systems, Minneapolis, MN, USA). Table S2
lists the quantitative ELISA kits used in this study.

2.3.3. Quantitative real-time PCR

HaCaT cells were plated onto plates and cultured for 24 h. The
cells were treated with the sample and cultured for an addi-
tional 24 h after the culture medium was changed. Total

mRNA was isolated from the cells. TRIzol lysis solution was
added after two rounds of PBS washes (Invitrogen, Carlsbad,
CA, USA). A first-strand synthesis kit was used for reverse-

transcribing RNA into cDNA (Invitrogen, USA). SYBR�
Green Sensimix plus Master Mix was used for quantitative
real-time PCR (qRT-PCR, Quantace, Watford, UK). The pri-

mer sequences are listed in Supplementary Table S3 and were
provided by Macrogen (Seoul, Republic of Korea). The
threshold cycle (Ct) was estimated for each reaction using

the 2 � DDCt method (DDCt = DCt[treated] � DCt[control]).
The gene encoding b-actin served as the housekeeping gene in
this experiment.

2.3.4. Western blotting

For this experiment, HaCaT cells were cultured for 24 h, fol-
lowing which they were treated with the samples for another

24 h after the culture medium was changed. Radioimmunopre-
cipitation assay (RIPA) lysis buffer (ThermoFisher Scientific,
Waltham, MA, USA) was used for extracting total protein
from the cells after two rounds of PBS rinsing. We used a pro-

tein gel electrophoresis chamber system (Thermo Fisher Scien-
tific) to separate equal quantities (50 mg) of total protein on a
sodium dodecyl sulfate (SDS) polyacrylamide gel containing

10 % SDS, before transferring the separated proteins to a
polyvinylidene fluoride membrane. PBS with 5 % skimmed
milk was used for blocking the blots for 1 h at room tempera-
Fig. 1 Based on the dynamic level of absorption, as absorbs using U

optimized. (A) DK was used at concentrations ranging from 6 to 9 m

5 mM). (C) The implications of pH fluctuations (pH 2–5). (D) The con

the incubation period (5–20 min). (F) The UV absorbance of the opti
ture before primary antibodies were added and incubated over-
night at 4 �C. Incubation with HRP-conjugated secondary
antibody was followed by washing with Tris-buffered saline

containing 0.1 % Tween 20 on the membrane, was completed
after 1 h. Table S4 lists the antibodies used for this study.
Thermo Fisher Scientific’s Enhanced Chemiluminescence

reagent was used for detecting the protein bands, and Image
J was used for quantifying bands.

2.4. Statistical analysis

Three independent experiments were performed in triplicate,
and the results are presented as mean standard deviation

(SD). We used GraphPad Prism 8 to perform statistical calcu-
lations and Student’s t-test to determine significant differences.
The significance level was set at p < 0.05 for all differences.

3. Results and discussion

3.1. Synthesis of DK-AuNPs

The biosynthesis of DK-AuNPs was evaluated under various
conditions (Schwartz-Duval et al., 2020), and the obtained

results are shown in Fig. 1. The multiple conditions were exam-
ined which includes acidity, synthesis time, metal salt (Au)
concentration, and DK concentration during biosynthesis of

DK-AuNPs. The final optimal conditions listed in Table S1
were selected for the synthesis of DK-AuNPs. According to
the TEM images, the DK-AuNPs were polygonal, triangular,

hexagonal, sperical or elliptical in morphology, with mean size
23.42 ± 12.6 nm (Fig. 2A). According to the EDX spectra, the
transmittance peaks for gold and copper were the highest,
peaking at 2.1b and 8 keV, respectively (Fig. 2B). The copper
V–vis spectroscopy, the synthesis procedure for DK-AuNPs was

g/mL (B) The influence of varying concentrations of gold salt (1–

sequence of temperature fluctuations (50–80 �C). (E) The impact of

mized DK-AuNPs.
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grid employed for TEM structural research has been shown to
generate a copper peak (Dhandapani et al., 2021). The crystal-
lographic structure of the DK-AuNPs was determined using

XRD and SAED. The four primary peaks of the gold
nanoparticles at 38.14�, 44.31�, 64.55�, and 77.59� corre-
sponded to the 111, 200, 220, and 311 planes of Bragg’s reflec-

tion (Fig. 2C and 2D). The FT-IR spectrum of the samples was
assessed using an open spectral library for bioactive com-
pounds and the FT-IR spectrum database for identifying their

chemical bonds. The samples exhibited distinct patterns
(Fig. 3A). The peaks at 3326.38 cm�1 and 3325.57 cm�1 in
DK and DK-AuNPs are attributed to phenolic and aliphatic
hydroxyl groups, respectively. The CAH stretch of the methy-

lene groups of the protein was related to the bands at
2932.56 cm�1 in DK and 2930.23 cm�1 in DK-AuNPs (R.
Wang et al., 2021). The stretched C‚O group is identifiable

by the band that may be found for DK at 1716.52 cm�1.
The existence of the C‚C bond of benzene is possibly respon-
sible for the peak at 1615.48 cm � 1 in DK-AuNPs and that at

1591.36 cm�1 in DK. The CH bending vibration results from
the presence of alkenes and aliphatic amine functional groups,
and it can be identified by the signals at 1403.99 cm�1,

1314.88 cm�1, and 1038.46 cm�1 in DK and those at
1445.50 cm�1, 1376.80 cm�1, 1229.05 cm�1, and
1073.9 cm�1 in DK-AuNPs. DLS spectroscopy showed that
Fig. 2 DK-AuNPs physicochemical characterization. (A) Transmiss

the morphological properties of DK-AuNPs. (B) Energy-dispersive X

crystalline structure determination. (D) A TEM image of selected

crystalline structure of DK-AuNPs.
the DK-AuNPs were 219.5 nm in intensity and 85.5 nm in vol-
ume (Fig. 3B). TEM and DLS were used to measure the molec-
ular size; however, the findings might vary. DLS analysis

shows size distribution depending on the conjugated diameter
or hydrodynamic size in colloidal particles; hence, the sizes are
quite often greater than those according to TEM analysis.

3.2. Evaluating the cytotoxic effect of DK-AuNPs

The MTT assay was used to compare the cytotoxicity in

HaCaT cells treated with DK-AuNPs and DK. The cells were
treated with varying concentrations of DK-AuNPs and DK
(10–800 mg/mL) for 24 h. DK-AuNPs showed a lower inhibi-

tory effect at high concentrations, and DK produced no cyto-
toxic effect (Fig. 4A). Thus, compared to DK alone, DK-
AuNPs showed no harmful impact at low concentrations.
Finally, for future experiments, we used non-toxic concentra-

tions of DK-AuNPs and DK (100 and 200 mg/mL, respec-
tively). Additionally, we used LIVE/DEAD staining for
confirming the cytotoxic effect of DK-AuNPs and DK

(Fig. 4B). The red color indicated dead cells, while the green
cells were alive. DK-AuNPs and DK did not significantly
affect cell death. Collectively, our findings indicated that con-

verting DK to DK-AuNPs did not have a cytotoxic effect on
HaCaT cells. Overproduction of ROS may result in cell death,
ion electron microscopy (TEM) picture was used for determining

-ray (EDX) spectrum. (C) X-ray diffraction (XRD) spectrum for

area electron diffraction (SAED) was used for determining the
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mitochondrial malfunction, and protein degradation (Di Meo
et al., 2016). To determine functional changes in mitochondria,
we measured ROS generation in cells and mitochondria. T + I

treatment increased Mito-SOX and intracellular ROS secre-
tion, whereas DK-AuNPs, DK, and PC (20 ng/mL) decreased
Mito-SOX and ROS generation in a dose-dependently at 100

and 200 mg/mL (Fig. 5A-B). Our results showed that DK-
AuNPs significantly decreased the generation of Mito-SOX
and ROS in HaCaT cells compared to DK and PC.

3.3. Skin anti-inflammatory potential of DK-AuNPs

3.3.1. Inhibition of pro-inflammatory cytokines and chemokines

Chemokines have a major impact on the activation of inflam-
matory regulators, and T cells or leukocytes are employed to
inflamed skin regions as a response. Moreover, cytokines

and chemokines, such as interleukin 8 (IL-8), interleukin 6
(IL-6), CC chemokine ligand 17 (CCL17)/ thymus and
activation-regulated chemokine (TARC), have been linked to

the recruitment of Th2 type cells and high levels of chemokine
expression in dermatitis (Yang et al., 2015). Thus, the secretion
of proinflammatory cytokines and chemokines in HaCaT cells

after exposure to T + I was assessed using ELISA. The release
of cytokines and chemokines in the supernatant significantly
Fig. 3 (A) Infrared absorption spectrum produced by Fourier-tra

linkage confirmation in DK-AuNPs. (B) The intensity and volume d

scattering (DLS) spectrum.
increased following T + I (10 ng/mL) treatment for 24 h,
whereas DK-AuNPs pretreatment (100 and 200 mg/mL)
resulted in a decrease in T + I induced production compared

to treatment with DK and PC (Fig. 6A-C). Therefore, ELISA
results showed that DK-AuNPs and DK were effective in pre-
venting T + I induced elevation of IL-8, IL-6, and TARC

production.

3.3.2. Cytokines and chemokines mRNA gene expression

Human keratinocytes are associated with inflammation

through the expression of the pro-inflammatory cytokines
IL-8 and IL-6, chemokines (CCL17/TARC, CAC motif che-
mokine ligand 27 (CCL27)/ cutaneous T cell-attracting che-

mokine (CTACK) and Chemokine (CAC motif) ligand 5
(CCL5)/ normal T cell expressed and presumably secreted
(RANTES)), which is a large supergene of pro-inflammatory

cytokines, and is expressed in activated T cells, platelets, air-
way epithelial cells, and fibroblasts. RANTES, CTACK, and
TARC secretion have a major impact on the development of
inflammatory conditions (Cho et al., 2020). Therefore, we used

quantitative real-time PCR to examine HaCaT cells that had
been pretreated with DK-AuNPs, DK, and PC for 1 h before
exposure to T + I for 24 h and to determine whether the

mRNA expression of proinflammatory cytokines and
nsform infrared (FT-IR) spectrum for confirmation of chemical

istributions of DK-AuNPs were determined using dynamic light
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chemokines was suppressed. In comparison to DK and PC,
DK-AuNPs downregulated the gene regulation of IL-6, IL-8,
TARC/CCL17, RANTES/CCL15, and CTACK/CCL27, in

T + I induced HaCaT cells, which was consistent with the
ELISA result (Fig. 7A-E). Notably, DK-AuNPs (200 mg/mL)
showed a better inhibitory effect than PC. Therefore, these

results suggest that DK-AuNPs can recover T + I stimulated
HaCaT cells and that it could reverse the inflammation in
HaCaT cells.

3.3.3. MAPKs/NF-jB signalling pathways in HaCaT cells

Keratinocytes have a diverse set of cell surface receptors,
including TNF-a and IFN-c, two receptors that may crosslink

when stimulated. In inflammatory skin diseases, T + I simul-
taneously enhances keratinocyte cytokine production
(Jayasinghe et al., 2022). Several studies have indicated that

T + I stimulates the synthesis of chemokines and cytokines
including RANTES, TARC, CTACK, IL-6, and IL-8, in
human epidermal keratinocytes. This may cause the develop-
ment and activation of mitogen-activated protein kinase

(MAPKs) and nuclear factor kappa light chain enhancer of
Fig. 4 Cytotoxic effect of DK-AuNPs and DK, against human epide

DK-AuNPs and DK on HaCaT cells, as determined using MTT assa

HaCaT cells.
activated B cells (NF-jB) signaling pathways in cells, which
are linked to inflammatory responses (Mehta et al., 2017).
MAPKs (p38 kinase (p38), extracellular signal-regulated

kinase (ERK), and c-Jun N-terminal kinase (JNK)) affect the
pathophysiology of inflammatory reactions (Lim et al.,
2018). Generally, MAPKs control gene expression upstream

of the NF-jB, which regulates genes and mediators associated
with inflammation (Ge et al., 2021). All these variables actively
contribute to the enhancement of pathogenesis in patients with

dermatitis. Fig. 8A presents the effect of DK-AuNPs/DK (100
and 200 mg/mL) on the protein expression and activity of
MAPKs such as p38, ERK, and JNK in T + I stimulated
HaCaT cells. To determine whether DK-AuNPs and DK influ-

enced MAPK phosphorylation, we measured the relative pro-
tein concentrations of p-ERK/ERK, p-p38/p-38, and p-JNK/
JNK (Fig. 8B). DK-AuNPs exhibited no effect on total protein

levels but showed a strong inhibitory effect on the phosphory-
lation of p38, ERK, and JNK in T + I induced HaCaT cells.
As part of our investigation into the potential effects of DK-

AuNPs/DK on the NF-jB signaling pathway, we measured
the levels of nuclear factor of kappa light polypeptide gene
rmal keratinocytes. (A) Cytotoxicity of indicated concentrations of

y; (B) LIVE and DEAD staining in DK-AuNPs and DK treated
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enhancer in B-cells inhibitor, alpha (IjB-a) degradation and
P65 phosphorylation. When T + I induced proinflammatory
cytokines and chemokines are produced in HaCaT cells, NF-

jB is involved in the transcriptional control of these molecules.
DK-AuNPs restored IjB-a protein expression, which had been
decreased by T + I (Fig. 9A-B). Moreover, inducible inflam-

matory cytokines, the release of which is induced by NF-jB,
particularly Inducible nitric oxide synthase (iNOS) and
Cyclooxygenase 2 (COX-2), are key mediators of the cuta-

neous inflammatory response (Liu et al., 2018). In contrast
to DK, DK-AuNPs significantly reduced the activation of
NF-jB by degradation of IjB-a, iNOS, and COX-2 without
changing the total protein levels in the existence of T + I.

These results indicated DK-AuNPs can promote the anti-
inflammation activity through inhibition MAPKs/NF-jB sig-
naling pathway.

3.4. Skin moisturizing activity by treating DK-AuNPs

3.4.1. Hyaluronic acid production

Normal skin function and health are both dependent on suffi-
cient moisture, which is also a critical aspect of preserving skin

health. HA is a large and dense polymer that is presented on
the top layer of skin. Owing to its ability to retain water,
HA is used in many special skin hydration treatments
Fig. 5 (A) Fluorescence microscopic images of DK-AuNPs and DK

Mito-SOX. (B) Results were quantified using the Image J software. Ast

and control *, #, p < 0.05; **, ##, p < 0.01; ***, ###, p < 0.001; n
(Marinho et al., 2021). Mammalian cells have three distinct
Hyaluronan synthase (HAS) isoforms (HAS1, HAS2, and
HAS3), each of which has a distinct catalytic activity or is pre-

sent in a distinct cell type (Gruber et al., 2022). Among these
isoforms, HAS1 exhibits the highest enzymatic activity fol-
lowed by HAS2 and HAS3. HAS2 is the most strongly

expressed isoform in keratinocytes and is significantly sup-
pressed in the skin of elderly individuals. Activation of the
Akt signaling pathway in fro/fro mouse fibroblasts has been

reported to lead to an increase in HAS2 mRNA expression,
which was associated with elevated HA production. Com-
pound K has been reported to enhance by stimulating the pro-
duction of HA in HaCaT cells. By activating the ERK and Akt

mechanisms, which in response increased HAS2 levels and
facilitated the production of HA. Therefore, by regulating
HA synthesis in the skin, modulation of HAS2 expression in

keratinocytes may aid in preserving skin hydration and home-
ostasis. Here, we determined whether DK-AuNPs could
increase HA synthesis. According to ELISA results in

Fig. 10A, DK-AuNPs significantly increased the synthesis of
HA. Additionally, the qRT-PCR results (Fig. 10B-D), showed
that DK-AuNPs significantly increased the gene expression

levels of HAS1, HAS2, and HAS3 compared with DK and
PC (N-acetylglucosamine (NAE � 5 mg/mL)). Moreover,
HYALs are the primary enzymes responsible for the break-
down of HA via activation of specific processes. Many studies
treated HaCaT cells stained for reactive oxygen species (ROS) and

erisks in the column indicate significant differences between sample

s, not significant.



Fig. 6 Effect of DK-AuNPs on the production of pro-inflammatory cytokines in T + I stimulated HaCaT cells. The production of (A)

IL-6, (B) IL-8, and (C) TARC was measured using ELISA. Asterisks in the column indicate significant differences between sample and

control *, #, p < 0.05; **, ##, p < 0.01; ***, ###, p < 0.001; ns, not significant.

Fig. 7 Effect of DK-AuNPs on the relative gene expression of pro-inflammatory cytokines in T+ I stimulated HaCaT cells. The relative

mRNA expression of (A) IL-6, (B) IL-8, (C) CCL-17/TARC, (D) CCL15/RANTES, and (E) CCL-27/CTACK were measured using qRT-

PCR analysis. Asterisks in the column indicate significant differences between sample and control *, #, p < 0.05; **, ##, p < 0.01; ***,

###, p < 0.001; ns, not significant.

Enhanced skin anti-inflammatory and moisturizing action of gold nanoparticles 9



Fig. 8 Effect of DK-AuNPs on the expression of mitogen-activated protein kinase (MAPKs) in TNF-a/IFN-c-stimulated HaCaT cells.

(A) Protein expression of p38, ERK, and JNK phosphorylation in HaCaT cells was detected by western blotting. (B) Results were

quantified using the Image J software. Asterisks in the column indicate significant differences between sample and control *, #, p < 0.05;

**, ##, p < 0.01; ***, ###, p < 0.001; ns, not significant.

Fig. 9 Effect of DK-AuNPs on NF-jB translocation in T + I stimulated HaCaT cells. (A) Protein expression of p65, IjBa, iNOS, and

COX-2 in HaCaT cells. (B) Results were quantified using the Image J software. Asterisks in the column indicate significant differences

between sample and control *, #, p < 0.05; **, ##, p < 0.01; ***, ###, p < 0.001; ns, not significant.
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have indicated that hyaluronidase 1 (HYAL1) breaks down
HA polysaccharides into di- and tetra-saccharides (Caon
et al., 2021). HYAL1 is expressed in keratinocytes in the gran-

ular layer of the skin. In contrast, HYAL2 is structurally sim-
ilar to HYAL1; however, its activity and localization differ.
The HYAL2 enzyme is found in epidermis cell membranes.
As shown in (Fig. 10E-F), the gene expression levels of

HYAL1 and HYAL2 in the DK-AuNP treated HaCaT cells
were significantly suppressed compared to that in DK and
PC treated cells. Therefore, these results suggest that DK-
AuNPs can suppress HYAL1/2 expression and promote
HAS regulation in HaCaT cells indicating that DK-AuNPs
have potential skin moisturizing activity.

3.4.2. PI3K/Akt signaling pathway by HAS2 regulation

Furthermore, the phosphatidylinositol 3-kinase (PI3K)/ pro-
tein kinase B (Akt) signaling pathway is a key condition for

the production of HAS2 in human skin cells (Mi et al.,
2022). The activation of PI3K/Akt results in the sequential
phosphorylation and activation of inhibitor kappa-B kinase



Fig. 10 Effect of DK-AuNPs on hyaluronic acid (HA) production in HaCaT cells. (A) The production of HA was measured using

ELISA. The mRNA gene expression of (B) HAS1, (C) HAS2, (D) HAS3, (E) HYAL1, and (F) HYAL2 were measured using qRT-PCR

analysis. Asterisks in the column indicate significant differences between sample and control control *, #, p < 0.05; **, ##, p < 0.01; ***,

###, p < 0.001; ns, not significant.

Fig. 11 Effect of DK-AuNPs on the PI3K/AKT signaling pathway in HaCaT cells. (A) Protein expression of PI3k, AKT, p65, and

HAS2 in HaCaT cells. (B) Results were quantified using the Image J software. Asterisks in the column indicate significant differences

between sample and control *, #, p < 0.05; **, ##, p < 0.01; ***, ###, p < 0.001; ns, not significant.
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alpha/beta (IKK/beta) and inhibitor kappa B alpha (IjBa).
When phosphorylated IjBa is degraded by ubiquitination,
the resultant nuclear factor immunoglobulin kappa chain
enhancer B (NF-jB) is released from the complex with IjBa
and activated, and the production of the target protein is

enhanced as a transcription factor (Lee et al., 2019). Thus,
NF-jB is involved in the expression of human HAS2. We
explored whether DK and DK-AuNP drove HAS2 involve-

ment in PI3K/Akt signaling pathway that activates NF-jB
(Fig. 11A). DK-AuNPs significantly upregulated PI3K and

Akt phosphorylation along with p65 by promoting HAS2
expression in a dose-dependent manner. Fig. 11B presents
the expression of related proteins determined using the Image
J software. Therefore, our results indicate that DK-AuNPs can

regulate PI3K/Akt/NF-jB activation by enhancing HAS2
expression. These findings, in combination with the anti-
inflammatory activities of DK-AuNPs, support the potential

therapeutic benefits of DK-AuNPs against reduced skin mois-
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ture and degradation of the epidermal barrier function in
T + I induced inflammation in HaCaT keratinocytes.

3.5. Determination of phytochemicals for the syntheizes of DK-
AuNPs

The primary active phytochemicals in DK were identified

using a UPLC-MS/MS study. Photodiode array (PDA) chro-
matogram and base peak chromatogram (BPC) of DK are
shown in (Fig. S1A and B), respectively. By examining an in-

house spectrum library, mass spectrometry (MS) and tandem
MS (MS2) was utilized to determine the mass to charge ratio
(m/z) and putatively identify the principal peaks with a mass

accuracy<5 ppm. Four peaks on the BPC at retention periods
of 2.47, 3.57, 5.8, and 8.22 min were verified to match with
their source ions at 221.0435, 247.0802, 294.1562, and
294.1562, respectively, according to MS analysis in positive

ionized mode ([M + H] + ). Several bioactive compounds
were found in DK, but only the main natural compounds such
as purpurogallin, ranunculin, were presented, along with other

unknown compounds. According to spectral library, the sub-
stance found in the DK extract at RT (min)-8.22 was probably
fenamic acid/salicylanilide. However, these substances are not

natural, so this could be an unknown compound. Notabally,
purpurogallin is the major compound identified in DK extract,
which has been previously shown to have antioxidant, anti-
cancer, and anti-inflammatory activities (Zhang et al., 2022).

Therefore, these compounds might take part in synthesizing
DK-AuNPs and also influence the activity of anti-
inflammatory or HA synthesis.

4. Conclusion

This study develops AuNPs to aid in the healing process of skin dis-

eases. Thus, DK fruit extracts primary phytochemicals converted

DK-AuNPs in an ecologically friendly plant-mediated synthesis. Sev-

eral characterization techniques was performed to confirm the physi-

calchemical properties of the synthesized DK-AuNPs. The DK-

AuNPs showed nontoxic effect in HaCaT cells until 200 lg/mL and

it could inhibit ROS and Mito-SOX release in T + I-induced HaCaT

cells. Moreover, the DK-AuNPs notably supressed the generation of

inflammatory regulators in T + I-induced HaCaT cells; these effects

were related to downregulation of the MAPK and NF-jB signaling

pathways. The skin’s moisturizing activity is an important factor for

skin for which we analyzed the hyaluronic acid (HA) secretion along

with HAS (1–3) and HYAL (1–2) biomarkers. Moreover, we evaluated

the underlying mechanism of these activities through protein expres-

sion of the MAPK/NFjB signaling pathway for anti-inflammatory

and PI3K/AKT/NFjB signaling pathways for HA production. Com-

pare to the well know and commercialy available drugs such as

DEX and NAG, the synthesized DK-AuNPs could be an ecologically

and cost friendly skin disease treating agent. In addition, our findings

support basic data for novel nanoparticles and evaluating their activi-

ties, which may lead to the development of medicines based on DK-

AuNPs. Further in vivo mechanism and clinical trials need to be per-

formed for exploreing the influence of DK-AuNPs on human health,

particularly with regard to their safety.
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