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Abstract Water pollutants have been a significant concern in recent years. It is essential to use

advanced materials that effectively reduce these pollutants. This work introduces Ho2Cu2O5/

Ho2O3 nanocomposites as a novel catalyst for photodegradation of various water-soluble organic

pollutants. First, Ho2Cu2O5/Ho2O3 nanocomposites were prepared via a simple and fast ultrasonic-

assisted route. The chemical and morphological features of the as-synthesized sample were deter-

mined using VSM, FTIR, XRD, EDS, SEM, and TEM analysis. Also, the optical bandgaps and

pore diameter were determined to be 3.1, 3.6 eV, and 12.74 nm via ultraviolet–visible diffuse reflec-

tance spectroscopy and Brunauer-Emmett-Teller (BET) for Ho2Cu2O5 and Ho2O3, respectively.

The findings revealed that the prepared nanocomposite could act as a photocatalyst for removing

various organic pollutants from water. 93.01% and 92% of Eriochrome black T (ECBT) and Acid

yellow (AY) were degraded under UV irradiation at optimum conditions after 120 min (0.03 g of

photocatalyst and 10 ppm of pollutants). The kinetics of the ECBT removal was studied through
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the Langmuir-Hinshelwood model, and the apparent rate of the pseudo-first-order reaction (k = 0.

03465 min�1) was obtained. The use of different scavengers made it clear that formation �O2
– species

were primarily responsible for the photodegradation of pollutants.

� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the improvement of human economic and social conditions, a very

high tendency to live in better environmental conditions has arisen.

Therefore, in recent years, attention to environmental challenges has

increased significantly (Patra Shahi et al., 2021; Gondo 2022; Rathi

et al., 2021; Sajjadi et al., 2021; Wang et al., 2022; Abdtawfeeq et al.,

2022; Liu et al., 2022). Semiconductor photocatalysis has been known

as a promising strategy in cutting-edge environmental remediation

applications and in many clean energy technologies during the past

few years (Parvizi et al., 2019; Tayebee et al., 2020; Al Alwany et al.,

2022). In this interesting field, an efficient, inexpensive, stable, and easily

separable semiconductor nanophotocatalyst can be achieved, which is

capable of light harvesting from economic points of view (Liu et al.,

2022; Tang et al., 2023). Therefore, a great deal of research has been

recently focused on the progress of efficient semiconductor materials

with unrivaled properties to degrade organic pollutants in water (Chen

et al., 2023; Xiao et al., 2023). Photocatalysis, defined as a process by

which a solid semiconductor with light absorption destroys organic,

pharmaceutical, and petrochemical compounds, is one of the green pro-

cesses to overcome environmental challenges (Mohd Razali et al., 2021;

Shi et al., 2022; Sutar et al., 2022; Xie et al., 2021). The photocatalytic

process has substantial advantages, such as good efficiency, using eco-

nomical and free solar energy (Deng et al., 2019; Liu, Tang, et al.,

2021;Moghanlou et al., 2021). Since the beginning of the photocatalytic

process, the use of semiconductors as an attractive option for photocat-

alytic processes has always been considered. Conventional semiconduc-

tor photocatalysts often belong to the oxide andmetal sulfide categories

(Fu et al., 2022; Kar et al., 2021; Khataee et al., 2020; Serpone &

Emeline, 2012; Wang et al., 2021; Zhang et al., 2019). The use of nano-

materials in the photocatalytic process has attracted more attention via

emerging fields of nanoscience and nanotechnology. This attention is

due to the unique properties that result the reduction of particle size in

nanomaterials (Abdolmohammad-Zadeh & Zamani-Kalajahi, 2020;

Geng et al., 2019; Liu, Cheng, et al., 2021; Wei et al., 2021; Wen et al.,

2017; Xu et al., 2021).

Copper oxide nanostructures based on rare earth elements have been

produced by various routes and applied in the photocatalytic process

due to their unique properties (Mosleh et al., 2018; Raizada et al.,

2020; Tobaldi et al., 2019). Size and morphology control in these nanos-

tructures is very important because the photocatalytic properties of

these nanostructures depend heavily on the size and morphology of

nanostructures. The relationship between properties and morphology

emphasizes the importance of themethodsof synthesis of these nanopar-

ticles since the applied synthesis method determines the morphological

characteristics of the copper oxide nanostructures based on rare earth

elements (Duan et al., 2021; Shabani et al., 2016; Zhang et al., 2016).

In recent years, rare earth-based nanomaterials have been widely pre-

pared and applied in photocatalytic process. This effect can be made

through the formation of rare earth oxides nanocomposites with con-

ventional photocatalysts, or by doping rare earth elements into the struc-

ture of metal oxide photocatalysts (Kannan et al., 2020; Sordello et al.,

2019; Salavati-Niasari et al., 2009; Bobinov et al., 2021).

Muhammad Rakibul Islam and co-authors prepared copper oxide

and cerium-doped copper oxide nanostructures via the sol–gel auto

combustion route. In this study, the effect of cerium content was stud-

ied on morphological, optical, structural, and electrical properties.

Results revealed that the presence of cerium induces intrinsic defects

in the cerium-doped copper oxide nanoparticles and changes the
optical bandgap from 1.72 eV to 1.40 eV. The photodegradation activ-

ity of copper oxide and cerium-doped copper oxide nanoparticles was

studied by examining the degradation of methylene blue under visible

light irradiation. Cerium-doped copper oxide nanoparticles show supe-

rior photocatalytic performance in comparison with copper oxide

nanoparticles. It was reported that the narrowing of the bandgap along

with the presence of shallow doping states allows sufficient charge sep-

aration along with enhanced photon adsorption of cerium-doped cop-

per oxide nanoparticles, leading to an improved photodegradation

process (Islam et al., 2021).

In another report, lanthanum-doped NaTaO3 was synthesized via a

solution-based route. Then, the prepared lanthanum-doped NaTaO3

was decorated with copper oxide nanoparticles with different concen-

trations to design new visible-light-induced photocatalysts. Copper

oxide/lanthanum-doped NaTaO3 showed mesoporous properties and

specific surface areas of 199 to 221 m2/g in comparison with 230 m2/

g for pristine lanthanum-doped NaTaO3. It was reported that at

3.0 wt% dosage of copper oxide nanoparticles, incorporation of the

copper oxide in lanthanum-doped NaTaO3 makes a sample via a wide

absorption in the 400–700 nm and a significant reduction of the Eg

from 4.05 to 2.1 eV. The study was aimed at photodegradation of

ciprofloxacin via as-prepared copper oxide/ lanthanum-doped

NaTaO3. After 60 min of visible light irradiation, the 2.0 g.L-1 dosage

of 3%copper oxide/lanthanum-doped NaTaO3 achieved complete

degradation of ciprofloxacin via a photoreaction rate of 0.071 min�1

and provided considerable recyclability of 5 cycles. The development

of a heterojunction between copper oxide and lanthanum-doped

NaTaO3 was credited with copper oxide/lanthanum-doped NaTaO3

photocatalytic activity. Photoluminescence and photocurrent tests

indicated that the as-obtained heterojunction enhanced photoinduced

charge separation and mobility (Shawky et al., 2021).

This study aimed to introduce a novel and superior photocatalyst,

Ho2Cu2O5/Ho2O3 nanocomposites, for the photodegradation of

organic pollutants. For the first time, the Ho2Cu2O5/Ho2O3 nanocom-

posites were prepared via a sonochemical route at the different exper-

imental conditions to modify their structural and morphological

properties. The properties of as-obtained samples were examined via

XRD, FTIR, EDS, SEM, TEM, and UV–Vis (DRS) analysis compre-

hensively. Optimized Ho2Cu2O5/Ho2O3 nanocomposites were applied

for photodegradation of Eriochrome black T (ECBT), as a common

dye-based pollutant.

2. Experimental

2.1. Materials

Copper nitrate trihydrate 99% (Cu(NO3)2�3H2O), Holmium
(III) nitrate pentahydrate 99.9% (Ho(NO3)3�5H2O),
tetraethylenepentamine (TEPA), Ethylenediaminetetraacetic

acid (EDTA) benzoic acid (BA), and 4-Benzoquinone (BQ),
were procured from Merck Company and applied with no
extra purifying.

2.2. Synthesis of Ho2Cu2O5/Ho2O3 nanocomposites

550 mg (1.25 mmol) of Ho(NO3)3 was dissolved in distilled
water under magnetic stirring. In another container, 300 mg

http://creativecommons.org/licenses/by/4.0/


Fig. 1 XRD pattern of prepared samples after calcination at a)

1000 ℃ for 8 h b) 700 ℃ for 4 h.

Fig. 2 A) ftir spectrum, and b) eds analysis of synthesized ho2-

Cu2O5/Ho2O3 nanocomposites prepared with a power of 45 W for

10 min and 0.5 s pulse rate.
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(1.25 mmol) of Cu(NO3)2 was dissolved in distilled water
under stirring. It should be noted that the molar ratio of Cu
to Ho was considered 1:1. The Cu-containing solution was

added to the Ho-containing solution. The as-obtained solution
was irradiated via ultrasonic (45 W power) at different times.
TEPA, a basic agent, was added dropwise to the solution dur-

ing ultrasonication until pH reached 10. In this step, the solid
product was precipitated from the solution. After 30 min,
ultrasonication was stopped, and the obtained mixture was

transferred to the magnetic stirrer at 80 ℃. After 20 min, the
gel-like product was formed. The obtained gel was dried at
70 ℃ for 24 h. Finally, the dried gel was calcined at 700 and
1000 ℃.

2.3. Characterization

XRD patterns were obtained from a Philips-X’pertpro X-

ray diffractometer with Ni-filtered Cu K radiation. The sur-
face functional group was investigated via Fourier-
transform infrared spectroscopy, which was obtained from

a Nicolet Magna-550 spectrometer in KBr pellets. The
LEO-1455VP scanning electron microscope, which was fit-
ted with an EDS spectroscopy, was used to examine the

shape and size of the samples. The transmission electron
microscope images were applied to study the shape and size
recorded by Philips EM208 transmission electron micro-
scope. The magnetic characteristics were analyzed via a

vibrating sample magnetometer (VSM, Meghnatis Kavir
Kashan Co., Kashan, Iran). All chemical analyses were car-
ried out using a GC-2550TG (Teif Gostar Faraz Company,

Iran).

2.4. Photocatalytic test

The photocatalytic activity of prepared nanocomposites was
comprehensively studied against methyl orange, methyl violet,
acid red, eriochrome black T, malachite green, rhodamine B,

eosin, acid black, and acid yellow at room temperature. The
photocatalytic tests were done as follows: A 10 ppm concentra-
tion of the examined dyes was prepared separately. 300 mg of
prepared Ho2Cu2O5/Ho2O3 was dispersed in 50 mL of dye

solutions. The mixture was then stirred in the dark for
30 min to complete the adsorption equilibrium of dyes on
the surface of the photocatalyst. After that, the xenon arc lamp

was turned on to provide UV light to irradiate the as-prepared
mixture. After every interval of 15 min, 5 mL of the solution
was taken out and centrifuged. The light absorbance of the

provided solution was tested by an ultraviolet spectropho-
tometer, and the dosage of the pollutants within the obtained
solution was determined based on the absorbance of light at

the maximum wavelength of pollutants.

3. Results and discussion

3.1. Structural and morphological properties of Ho2Cu2O5/
Ho2O3 nanocomposites

Fig. 1 shows the XRD patterns of samples produced at various
calcination temperatures and times. Fig. 1a displays the XRD
pattern of the prepared sample after calcination at 700 ℃ for
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4 h, and Fig. 1b is related to the product after calcination at
1000 ℃ for 8 h. The temperature and time of calcination affect
the structural properties of samples substantially. It is found

that pure Ho2Cu2O5/Ho2O3 nanocomposites are not formed
after 4 h of calcination at 700 ℃. In Fig. 1a, the Ho2Cu2O5-
related peaks are not observed and the Ho2O3-related peaks

are prominent. The Ho2Cu2O5/Ho2O3 nanocomposites are
Fig. 3 The SEM images of Ho2Cu2O5/Ho2O3 nanocomposites prepa
formed without any impurities by increasing calcination time
and temperature. This can be due to the low activation energy
at low temperatures that do not allow Ho2Cu2O5 formation.

The same result was reported previously via Rui Guo et al
(Guo et al., 2017). They found that at a calcination tempera-
ture of below 800 ℃, no Ho2Cu2O5 was formed. Fig. 1b shows

the formation of the orthorhombic structure of Ho2Cu2O5
red with a power of 45 W for a,b) 10 min c,d) 20, and e,f) 30 min.
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with JCPDS No. 00–033-0458. Also, the Ho2O3 has a cubic
structure with JCPDS no: 01–074-1984. The width of the
obtained XRD peaks leads to small grain size. Based on the

XRD results, 8 h calcination at 1000 ℃ is considered an opti-
mum calcination condition. FTIR analysis was applied for fur-
ther investigation of the structural properties of the prepared

Ho2Cu2O5/Ho2O3 nanocomposites. Fig. 2a shows the FTIR
spectrum of Ho2Cu2O5/Ho2O3 nanocomposites. The presence
of a broad peak at 3471 cm�1 is related to the stretching band

of hydrogen bonds on the surface of the prepared sample (O–
H) (Salavati-Niasari, 2005). The peaks at 490 and 562 cm�1 are
related to the holmium-oxygen (Ho-O) bond. The two mild
bands at 439.61 cm�1 and 624.48 cm�1 may be related to the

Au and Bu modes of the copper-oxygen (Cu–O) bond
(Tabatabaeinejad, Amiri, et al., 2021), respectively. It can be
concluded from FTIR that Ho2Cu2O5/Ho2O3 nanocomposites

are formed purely and no by-product-related stretching modes
are observed. EDS analysis is applied to determine the chemi-
cal composition of the prepared sample. The results confirm

the presence of holmium, copper, and oxygen elements which
confirms the formation of oxides of Cu and Ho (Fig. 2b).

Sonochemical-assisted synthesis is a fast and simple route

used in the preparation of nanostructures. Here, the effect of
time and power of ultrasonic irradiation was investigated on
Fig. 4 The SEM images of Ho2Cu2O5/Ho2O3 nanocomposites prepa

0.1 s and c,d) 0.5 s.
the morphological properties of Ho2Cu2O5/Ho2O3 nanocom-
posites via scanning electron microscopy (SEM). Fig. 3(a-f)
shows the SEM images of as-obtained Ho2Cu2O5/Ho2O3

nanocomposites under different time of ultrasonic irradiation
(10, 20, and 30 min). Two different magnifications of SEM
images are provided for a better investigation of morphologi-

cal features. SEM images confirm that the optimum time for
Ho2Cu2O5/Ho2O3 preparation with desirable morphological
properties is 10 min. As shown, at 10 min, the porous network,

including tiny nanoparticles, is formed (Fig. 3(a-b)), while the
irregular larger particles are formed via increasing sonication
time for 20 and 30 min. Also, the prepared nanoparticles after
20 min (Fig. 3(c-d)) sonication have lower particle sizes than

those prepared at 30 min (Fig. 3(e-f)) sonication. The very tiny
particles with higher surface energy are formed via increasing
the sonication time, which facilitates the particle agglomera-

tion process. The result of this process is the formation of
non-uniform morphology and a larger particle size. Similar
results have already been reported confirming these results

(Hujjatul Islam et al., 2019; Salavati-Niasari., 2004). Fig. 4(-
a-d) provides SEM images of prepared products after 10 min
at two different sonication time pulses (0.1 s and 0.5 s). It

can be concluded that the applied pulsed ultrasonic affects
the size and morphology of prepared Ho2Cu2O5/Ho2O3
red with a power of 45 W for 10 min at sonication time pulse a,b)
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nanocomposites. It is found that the 0.5 s pulse rate (Fig. 4(c-
d)) provides uniform morphology with a smaller particle size
than the 0.1 s pulse rate (Fig. 4(a-b)). Transmission electron

microscope (TEM) images were applied for further investiga-
tion of morphology and particle size. Fig. 5(a-b) shows TEM
images of prepared Ho2Cu2O5/Ho2O3 nanocomposites with a

power of 45 W for 10 min, and 0.5 s pulse rate. It can be
observed that Ho2Cu2O5 particles with a diameter of 30 nm
are formed with 35 nm Ho2O3 particles as Ho2Cu2O5/Ho2O3

nanocomposites with uniform morphology.
The surface features of prepared Ho2Cu2O5/Ho2O3

nanocomposites are determined via nitrogen adsorption/des-
Fig. 5 TEM images of synthesized Ho2Cu2O5/Ho2O3 nanocom-

posites prepared with a power of 45 W for 10 min and 0.5 s pulse

rate.
orption isotherm as well as pore size distribution. The obtained
isotherm confirms that the prepared sample belongs to type IV
(Fig. 6). The particle size was measured in the range of 1 to

98 nm by applying the BJH route. The BET surface area, pore
volume, and pore diameter were calculated at 2.5972 m2/g,
0.0082733 cm3/g, and 12.742 nm, respectively. The results

prove that the applied ultrasonic-based process provides a suf-
ficient method for the preparation of high-surface-area
products.

VSM analysis was applied for the investigation of the mag-
netic properties of prepared nanocomposites (Fig. 7). As well
as shown, no hysteresis was observed in the B-H graph and
the obtained curve is completely reversible. This finding can

be justified by the superparamagnetic feature of prepared Ho2-
Cu2O5/Ho2O3 nanocomposites. The maximum saturation
magnetization (Ms) of the sample is measured at 0.25 emu

per gram. This superior magnetic property can be linked to
the higher reusability of Ho2Cu2O5/Ho2O3 nanocomposites
in the photocatalytic process.

3.2. Photocatalytic activity of Ho2Cu2O5/Ho2O3

nanocomposites

The optical properties of nanomaterials are the main determi-
nation of photocatalytic properties, so the optical properties of
synthesized Ho2Cu2O5/Ho2O3 nanocomposites were investi-
gated through UV–Vis diffuse reflectance spectroscopy.

Fig. 8a shows UV–Vis diffuse reflectance spectroscopy of pre-
pared Ho2Cu2O5/Ho2O3 nanocomposites with a power of
45 W for 10 min. From it, the Tauc plot was illustrated via

the Tauc equation. As seen, the optical band gap is calculated
via plotting (ahʋ)2 vs hʋ (Fig. 8b). According to the prediction,
two different band gaps were determined: 3.6 eV for Ho2O3

and 3.1 eV for Ho2Cu2O5. The measured band gaps provide
excellent optical characteristics for the photocatalytic process
under UV irradiation. Fig. 9 shows the photocatalytic perfor-

mance of prepared nanocomposites to the removal of various
organic dyes (Methyl orange (MO), Methyl violet (MV), Acid
red (AR), Eriochrome black T (ECBT), Malachite green
(MG), Rhodamine B (RhB), Eosin (EO), Acid black (AB),

and Acid yellow (AY). After 120 min UV illumination, the
degradation efficiencies for MO, MV, AR, ECBT, MG,
RhB, EO, AB, and AY are measured 40 %, 49.84%,

65.60%, 93.01%, 81.30%, 29%, 89.6.%, 55.93%, and
10.70%, respectively (Fig. 9 (a-b)). The findings show that
Ho2Cu2O5/Ho2O3 nanocomposites had the best photocatalytic

performance against ECBT with 93.01% degradation. So, the
ECBT was applied for further investigation of the photocat-
alytic performance of Ho2Cu2O5/Ho2O3 nanocomposites.
The Langmuir-Hinshelwood first-order reaction kinetics

model was utilized for in-depth studying of the kinetics of
tested dyes removal under ultraviolet irradiation:

�ln(C/C0) = kt (1).

The slope of the plot provided the chemical rate constant,
k. The calculated k for all tested dyes is displayed in Fig. 9(-
c-d). The maximum k of 0.03465 min�1 for ECBT was mea-

sured by the pseudo-first-order reaction kinetics equation
that shows a higher k in comparison with other tested
pollutants.

Fig. 10a shows the effect of dye concentration on the pho-
tocatalytic performance of Ho2Cu2O5/Ho2O3 nanocomposites.



Fig. 7 VSM analysis of prepared Ho2Cu2O5/Ho2O3 nanocomposites with a power of 45 W for 10 min and 0.5 s pulse rate.

Fig. 6 Nitrogen adsorption–desorption isotherms of Ho2Cu2O5/Ho2O3 nanocomposites prepared with a power of 45 W for 10 min and

0.5 s pulse rate.
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The photocatalytic efficiencies in the 5 ppm (62.5%) and
10 ppm (93.01%) are higher than 15 ppm (22.10%) and
20 ppm (38.53%) of ECBT. The higher photocatalytic activity

in the lower dosage of ECBT can be related to the reduction of
active sites on the catalyst surface via increasing dye concen-
tration. The ECBT molecules are linked on the surface of Ho2-

Cu2O5/Ho2O3 nanocomposites and this leads to disrupting the
process of receiving ultraviolet light by the Ho2Cu2O5/Ho2O3

nanocomposites and finally causes the prevention of hydroxyl

radical formation. Also, the adsorbed ECBT molecules on the
surface of the catalyst act as a barrier for the reaction between
photo-induced holes or radicals and dye molecules. But the
results show the higher photocatalytic activity of Ho2Cu2O5/
Ho2O3 nanocomposites against 10 ppm ECBT than 5 ppm
ECBT. This may be attributed to the fact that since the initial
ECBT dosage increase, more ECBT molecules are available for

generation charge carriers, and this lead to a higher probability
of hydroxyl radical formation and result in higher photocat-
alytic efficiency (Reza et al., 2017). Fig. 10b shows the mea-

sured k value for photodegradation of different
concentrations of ECBT. The photodegradation rate at
10 ppm of ECBT is higher than 5 ppm, 15 ppm, and

20 ppm. Fig. 10c shows the photocatalytic activity of Ho2Cu2-
O5/Ho2O3 nanocomposites under ultraviolet and visible light
irradiation. According to the results obtained from UV–Vis
diffuse reflectance spectroscopy and calculated band gaps, it



Fig. 9 Photocatalytic activity and kinetic linear simulation plots of Ho2Cu2O5/Ho2O3 nanocomposites for removal of a,b) Methyl

orange (MO), Methyl violet (MV), Acid red (AR), Eriochrome black T (ECBT), Malachite green (MG), c,d) Rhodamine B (RhB), Eosin

(EO), Acid black (AB), and Acid yellow (AY) after 120 min UV illumination.

Fig. 8 A) uv–vis diffuse reflectance spectra and b) band gap energies of prepared Ho2Cu2O5/Ho2O3 nanocomposites with a power of

45 W for 10 min and 0.5 s pulse rate.

8 S. Milad Tabatabaeinejad et al.



Fig. 10 Photocatalytic performance and kinetic linear simulation plots of Ho2Cu2O5/Ho2O3 nanocomposites under a, b) different dye

concentrations (5, 10, 15, 20 ppm) and c,d) different light sources.
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was predictable that the photocatalytic activity of Ho2Cu2O5/

Ho2O3 nanocomposites under ultraviolet light (93.01%) was
much higher than the photocatalytic activity under visible light
(34.47%). Fig. 10d displays measured k for the photocatalytic

process under visible light (0.00454 min -1) and UV irradiation
(0.03465 min�1).

3.2.1. Proposed mechanism of Ho2Cu2O5/Ho2O3 photocatalyst

To understand the mechanism of photodegradation of ECBT
via Ho2Cu2O5/Ho2O3 nanocomposites, ethylenediaminete-
traacetic (EDTA), benzoic acid (BA), and benzoquinone

(BQ), were used as a scavenger of h+, �OH, and �O2
–, respec-

tively. As shown in Fig. 11a, BA has a negligible effect on the
photocatalytic degradation of ECBT, while BQ causes a signif-

icant reduction in photocatalytic efficiency. Fig. 11b shows the
obtained results from the kinetic study of ECBT photodegra-
dation via different scavengers. From Fig. 11, it can be con-
cluded that ECBT photodegraded through formation h+ and

�O2
– species. So, the possible photodegradation mechanism

can be described as Eqs. (2)–(8) (Yousefzadeh et al., 2022):

Ho2Cu2O5/Ho2O3 + hm(UV) ! Ho2Cu2O5/Ho2O3 (eCB
�)

þHo2Cu2O5=Ho2O3ðhVBþÞ
ð2Þ
O2 + e� !�O2
– ð3Þ

�O2
� + Hþ !�HO2 ð4Þ

2�HO2 ! O2 + H2O2 ð5Þ

H2O2 + eCB
� !2�HO ð6Þ

hVB
þ + H2O !�HO + 2Hþ ð7Þ

ECBT + �HO ! Degradation of ECBT ð8Þ
The proposed mechanism and determined band gap ener-

gies show the synergistic interaction between Ho2Cu2O5 and
Ho2O3 that has increased the photocatalytic activity of Ho2-
Cu2O5/Ho2O3 nanocomposites against ECBT. The proposed

mechanism for photocatalytic degradation of ECBT is pro-
vided in Scheme 1.

3.2.2. Recyclability

One of the most influential features of heterogeneous semicon-
ductor photocatalysts is their recyclability, which reduces
expenses. Therefore, Ho2Cu2O5/Ho2O3 nanocomposites were

reused five times in the photocatalytic process. Based on



Scheme 1 Photocatalytic degradation mechanism of Ho2Cu2O5/Ho2O3 nanocomposites.

Fig. 11 A) effects of various scavengers on the photocatalytic degradation of ecbt under uv irradiation, b) kinetic linear simulation

curves of photocatalytic activity in the presence of scavengers, c) recycle test in the presence of ho2Cu2O5/Ho2O3 nanocomposites over

10 ppm ECBT, d) TOC removal in the photodegradation of ECBT in the presence Ho2Cu2O5/Ho2O3 nanocomposites.

10 S. Milad Tabatabaeinejad et al.
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Fig. 11c, the degradation efficiency was about 82.4% after five
cycles, which decreased by 10.61% compared to the first cycle.
The result affirmed that dye decolorization was accomplished

by optical technique, in which physical absorption played a
minor role.

3.2.3. TOC test

Furthermore, the mineralization of ECBT during the photo-
catalytic degradation process was also investigated by TOC
measurements. As shown in Fig. 11d, the TOC removal ratios

over Ho2Cu2O5/Ho2O3 nanocomposites were gradually pro-
moted with increasing the irradiation time of UV light. After
120 min of photocatalytic reaction, the TOC removal ratio

was approximately 78%. That is to say, during the degrada-
tion process, most of the dye molecules could be mineralized
over the Ho2Cu2O5/Ho2O3 photocatalyst under UV light illu-

mination (Chen et al., 2021; Ren et al., 2020).
Fig. 12 A) xrd pattern, (b and c) fesem images of ho2Cu2O5/
3.2.4. Stability

Fig. 12a depicts the XRD pattern of Ho2Cu2O5/Ho2O3

nanocomposites after five cycle’s degradation. As can be seen,
all diffraction peaks well-matched to Ho2Cu2O5 (JCDPS No.
00–033-0458) and Ho2O3 (JCDPS No. 01–074-1984) with

orthorhombic structure. The result showed that the photocat-
alytic reaction did not change the crystal structure of
nanocomposites. FESEM images of Ho2Cu2O5/Ho2O3

nanocomposites after five cycle’s degradation shows the
approximately similar morphology of before degradation
(Fig. 12a and 12b). These result confirm the high stability of
Ho2Cu2O5/Ho2O3 nanocomposites.

3.2.5. Comparison study

For in-depth investigation, the results obtained from the pho-

tocatalytic performance of the as-obtained Ho2Cu2O5/Ho2O3

nanocomposites were compared with previously reported
Ho2O3 nanocomposites after five cycle’s photodegradation.



Table 1 Comparison of photocatalytic performance of some photocatalyst and current Ho2Cu2O5/Ho2O3 nanocomposites.

Sample Dye Efficiency (%) Time (min) References

Er-doped CuO Reactive Black 5 98.0 90 (Shaghaghi et al., 2020)

Eu-doped ZnO Eriochrome Black T 99.0 240 (Franco et al., 2020)

HoVO4 Methyl Violet 67.6 90 (Khorasanizadeh et al., 2019)

(Er, Yb) co-doped ZnO Methyl Orange 99.0 90 (Ahmad, 2019)

ZnO/CuO Rhodamine B 95.0 100 (Kumari et al., 2020)

g-C3N4/Ce2O3/CuO Methylene Blue 90.3 150 (Vignesh et al., 2022)

La2Cu2O5 Acid Black 80.1 120 (Tabatabaeinejad et al., 2022)

Dy2Cu2O5 Phenol Red 96.4 120 (Tabatabaeinejad, Amiri, et al., 2021)

La2CuO4-ZnO Malachite Green 91.0 120 (Yulizar et al., 2020)

Lu2Cu2O5/Lu2O3 Thymol Blue 98.5 120 (Tabatabaeinejad, Zinatloo-Ajabshir, et al., 2021)

ZnO/La2O3/NiO Methylene Blue 98.0 150 (Shubha et al., 2022)

CuO Methylene Blue 85.0 50 (Muthuvel et al., 2020)

Pt/PtO Nanodots onLa2O3 Methyl Orange 98.0 120 (Zhao et al., 2020)

Sm2Ti2O7 Rhodamine B 94.0 80 (Kaviyarasu et al., 2020)

La2Sn2O7 Methyl Orange 98.0 50 (Zeng et al., 2007)

La2Ti2O7 Reactive Red 22 99.0 180 (Hou & Ku, 2011)

Ce2Sn2O7 Methylene Blue 80.0 60 (Jayaraman et al., 2019)

Ho2Cu2O5/Ho2O3 Eriochrome Black T 93.01 120 This work
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papers on the degradation of water pollutants (Table 1). As
can be seen, Ho2Cu2O5/Ho2O3 nanocomposites can compete

with other similar structure and can be a great photocatalyst
for water purification process.

4. Conclusion

In this work, Ho2Cu2O5/Ho2O3 photocatalyst was successfully pre-

pared via the fast and simple ultrasonic-assisted method. The sufficient

optical bandgaps of Ho2Cu2O5/Ho2O3 photocatalyst lead to the degra-

dation of various organic pollutants under UV light. The highest pho-

tocatalytic efficiency was obtained against Eriochrome black T

(ECBT), and 93% of ECBT was degraded after 120 min. Further

investigation revealed that the highest photocatalytic activity was

achieved under the optimum condition of 0.03 g of Ho2Cu2O5/

Ho2O3 and 10 ppm of ECBT. The rate of the pseudo-first-order reac-

tion was calculated at 0.03465 min�1 via photodegradation kinetic

investigation. It was suggested that the photocatalytic degradation of

ECBT was carried out using �O2
– radicals via applying benzoquinone

as an �O2
– scavenging.
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