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Abstract Photodynamic therapy (PDT) is a rapidly evolving area of cancer management against

solid tumors. PDT is either administrated by injecting photosensitizer (porphyrins) or by accumu-

lation of intracellular protoporphyrin IX via the inhibition of human Protoporphyrinogen Oxidase

IX (hPPO). In this study, novel inhibitors of hPPO have been investigated by integrating virtual

screening, molecular docking, and molecular dynamics (MD) simulation. A ligand-based pharma-

cophore was generated from a training set of 22 inhibitors of hPPO. The selected pharmacophore
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Molecular docking

simulation;

Molecular dynamics (MD)

simulation
had four chemical features including three hydrogen bond acceptors and one hydrophobic. The

pharmacophore was characterized by highest correlation coefficient of 0.96, cost difference of

53.20, and lowest root mean square deviation of 0.73. The resultant pharmacophore was validated

by Fischer’s Randomization and Test Set Validation methods. The validated pharmacophore was

used as a 3D query to screen chemical databases including NCI, Asinex, Chembridge, and

Maybridge. The screening of chemical databases and the subsequent application of Lipinski’s Rule

of Five, and ADMET Assessment Test, retrieved 1176 drug-like compounds. The drug-like

compounds were subjected to molecular docking studies in the active site of hPPO to eliminate false

positive hits and to elucidate their true binding orientation. Top three candidate molecules with

high docking scores and hydrogen bond interactions with catalytic active residues were selected

as best candidate inhibitors against hPPO. The binding stability of selected candidate inhibitors

was evaluated by MD simulation. The MD simulation of hits portrayed strong hydrogen bonds

and key hydrophobic interactions with catalytic active residues of hPPO including R59, R97, G159,

G332 and flavin moiety of FAD (coenzyme of hPPO). Our study predicts three hit compounds

against hPPO, which could possibly accumulate high concentration of protoporphyrinogen-IX, and

thereby acting as an intracellular photosensitizer against tumor cells through photodynamic therapy.

� 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Photodynamic therapy (PTD) is an emerging modality of cancer
treatment and management, with special focus on solid tumors
(Dougherty et al., 1998; Robertson et al., 2009). The theory
behind this immense strategy involves the utilization of a photo-

sensitizer, e.g. Protoporphyrinogen-IX, as the precursor of
singlet oxygen. The photosensitizer is either injected to tumor
localization, and is subsequently excited by light, or it is accu-

mulated endogenously in tumor cells. Protoporphyrinogen-IX
is a best photosensitizer in tumor therapy, where it is converted
spontaneously to protogen (oxidized protoporphyrinogen-IX)

in the presence of light and release highly reactive singlet oxygen
(1O2) (Weishaupt et al., 1976; Foote, 1990; Fingar et al., 1997).
Subsequently, this singlet oxygen causes cellular damage,
involving cell apoptosis and cell disruption (Arnould and

Camadro, 1998; Kato et al., 2010; Matringe et al., 1989).
Modifications of heme biosynthetic pathway by targeting

protoporphyrinogen oxidase IX (PPO) remains a promising

strategy in photodynamic therapy (Peng et al., 1997;
Henderson et al., 1995). Protoporphyrinogen oxidase IX (EC
1.3.3.4) is an essential rate limiting enzyme of heme and/or

chlorophyll biosynthetic pathways in prokaryotes as well as in
eukaryotes (Poulson and Polglase, 1975). PPO catalyzes the
photo-dependent oxidation of protoporphyrinogen-IX to

protoporphyrin-IX (Poulson, 1976; Brenner and Bloomer,
1980). Accumulation of protoporphyrinogen-IX occurs as a
result of either PPO inhibition or loss of its catalytic potential
and is exported to cytoplasm, where it can spontaneously be

oxidized to protogen by molecular oxygen upon light exposure
(Masoumi et al., 2008). Being a strong photosensitizer, protogen
accelerates the production of singlet oxygen that induces lipid

peroxidation and cell apoptosis (Arnould and Camadro,
1998). Thus, PPO is considered as a dynamic target against
several inhibitors like herbicides, bactericides and fungicides

(Kato et al., 2010; Matringe et al., 1989). Furthermore, several
studies have been recommended that PPO inhibitors may also
be employed in cancer management via photodynamic therapy

(Moghissi et al., 2009; Robertson et al., 2009; Halling et al.,
1994; Rebeiz et al., 1992). Two fundamental studies have
shown that the induction of endogenous accumulation of
protoporphyrinogen-IX in tumor cells destroyed cancerous cells
in the presence of light (Halling et al., 1994; Rebeiz et al., 1992).

It has also been investigated that 5-aminolevulinic acid, being a
precursor of porphyrin via porphobilinogen formation, induces
porphyrin synthesis in murine tumor (Henderson et al., 1995).

In another study, Peng et al. (1997) has been evaluated the ther-
apeutic potential of 5-aminolevulinic acid by photodynamic
therapy approach. Nevertheless, some of the small molecules
have already been investigated as PPO inhibitors either

in vitro and/or in vivo, but there is no practicing drug to date.
Therefore, our study has emphasized on integration of virtual
screening, molecular docking and molecular dynamic simula-

tion for the identification of novel hPPO inhibitors.
To accomplish the objective, we employed ligand-based

pharmacophore modeling approach to generate a suitable

3D query which represents the essential features of the ligand
complementing the hot spots of the active site of hPPO. The
pharmacophpore model was validated by Fischer’s Randomiza-

tion and Test Set Validationmethods to assist its specificity and
efficiency towards hPPO inhibitors. The validated model was
used as a 3D query to screen four chemical databases including
NCI, Asinex, Maybridge, and Chembridge, and the best fitted

compounds were retrieved. The retrieved compounds were
evaluated for their drug-like properties by Lipinski’s Rule of
Five and ADMET Assessment Test methods. The initial bind-

ing poses for candidate compounds into the active site of
hPPO were predicted through molecular docking. The best
docked candidate molecules were subjected to molecular

dynamics (MD) simulation to affirm the conformational space
and binding stability of the final candidate molecules. Finally,
this in silico approach for the identification of potential

inhibitors of hPPO may contribute to a new avenue in
photo-induced cancer therapy.

2. Results and discussion

2.1. Formulation of training set and pharmacophore modeling

To accomplish our goal, a training set of 22 structurally

diverse inhibitors of hPPO was formulated and their respective
2D structures were drawn in Accelrys Draw v4.2 (Fig. 1).

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1 Training set compounds: 2D chemical structures and Ki (nmol/L) values of 22 training set compounds for hypotheses generation.
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Based on experimental Ki value, the entire training set was

classified into three classes: most active (+++, Ki < 1000 n
mol/L), moderate active (1000 nmol/L < Ki � 5000 nmol/L,
++), and least active (Ki > 5000 nmol/L, +) as depicted in

Table 1.
Accordingly, ten hypotheses with statistical parameters

were generated using the training set compounds.
Several cost values including fixed cost, total cost, and
null cost were employed to select the best hypothesis

(Table 2).



Table 1 Experimental and Hypo1-based estimated activity of training set compounds.

Compound no. Fit value Exp. Ki (nmol/L) Pred. Ki (nmol/L) Errora Exp. scaleb Pred. scaleb

1 9.35 8.3 23 +2.8 +++ +++

2 9.28 12.9 28 +2.2 +++ +++

3 9.17 26.9 36 +1.3 +++ +++

4 9.13 12.2 39 +1.4 +++ +++

5 9.32 33.9 25 �1.3 +++ +++

6 9.23 48.9 31 �1.6 +++ +++

7 8.35 229.1 240 +1.0 ++ ++

8 8.31 371.5 260 �1.4 +++ +++

9 8.22 1023.1 320 �3.2 ++ +++

10 7.01 1710.0 5100 +3.0 ++ ++

11 7.06 2818.4 4600 +1.6 ++ ++

12 6.53 2930.0 16,000 +5.4 ++ +

13 7.07 4786.3 4500 �1.1 ++ ++

14 7.07 5011.9 4500 �1.1 + ++

15 6.57 9730.0 14,000 +1.5 + +

16 6.61 11120.0 13,000 +1.2 + +

17 6.06 20700.0 46,000 +2.2 + +

18 6.58 21400.0 14,000 �1.5 + +

19 6.61 27500.0 13,000 �2.1 + +

20 6.52 34400.0 16,000 �2.2 + +

21 6.40 43500.0 21,000 �2.1 + +

22 6.33 173000.0 25,000 �6.9 + +

a Error: Ratio of the predicted activity (Pred. Ki) to the experimental activity (Exp. Ki) or their negative inverse if the ratio is < 1.
b Activity scale: Ki < 1000 nmol/L =+++ (highly active), 1000 nmol/L < Ki � 5000 nmol/L =++ (moderate active), Ki > 5000 nmol/

L =+ (least active).

Table 2 Statistical data of the ten pharmacophore hypotheses generated by HypoGen.

Hypo no. Total cost Cost differencea RMSDb Correlation (r) Max fit Featuresc

Hypo1 99.68 53.20 0.73 0.96 9.65 3HBA, 1HYP

Hypo2 99.76 53.12 0.76 0.95 9.27 3HBA, 1HYP

Hypo3 101.06 51.82 0.78 0.95 10.07 2HBA, 1HYP, 1RA

Hypo4 101.78 51.10 0.88 0.94 9.14 3HBA, 1HYP

Hypo5 102.36 50.52 0.92 0.93 8.79 3HBA, 1HYP

Hypo6 102.90 49.98 0.93 0.93 9.09 3HBA, 1HYP

Hypo7 103.80 49.08 0.99 0.92 8.60 2HBA, 1HYP, 1RA

Hypo8 103.94 48.94 1.00 0.92 8.78 2HBA, 1HYP, 1RA

Hypo9 104.60 48.28 0.98 0.92 9.78 3HBA, 1HYP

Hypo10 104.68 48.20 103 0.92 8.56 2HBA, 1HYPA, 1RA

a Cost difference: The difference between null cost and total cost. The null cost of ten scored hypotheses is 152.89, the fixed cost value is 92.79.

The unit of cost is bit.
b RMSD: Deviation of the log of estimated activities from the log of experimental activities, which is normalized by the log of uncertainties.
c Features: HBA, Hydrogen bond acceptor; HYP, Hydrophobic; RA, Ring aromatic.
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The distribution of cost values remain different, where fixed
cost is the lowest possible cost and represents a simplest model

that fits all the data perfectly. Conversely, null cost is equal to
maximum error cost. A pharmacophore is considered to be
statistically significant if the difference between the fixed cost

and null cost remains greater. Several studies have shown that
the possibility of correlating experimental and estimated activ-
ities enhances to 75–90%, if the cost difference ranges between

40 and 60 bits (Gupta et al., 2010; Kim et al., 2008). In this
study, difference between the fixed cost and null cost was
53.20 bits, which reveals that the quality of the generated phar-
macophore is significant to use as a 3D query for screening of

chemical databases. Moreover, a best pharmacophore must
have total cost closed to fixed cost and far from the null cost
(Nayana et al., 2009; Debnath, 2002). Our results also
observed that all the ten hypotheses had total cost closed to

fixed cost, e.g. 92.79 and far from null cost i-e. 152.89; which
in turn agrees the criteria of best model quality (Table 2).
Apart from that, other statistically significant factors including

cost values, correlation coefficient (r), pharmacophore fea-
tures, and root mean square deviation (RMSD) of the entire
generated hypotheses are depicted in Table 2. The RMSD

value evaluates the quality of pharmacophore in terms of pre-
diction of the training set compounds. The RMSD of ten
hypotheses ranged between 0.73 and 1.03, where the Hypo1
showed a lowest RMSD score of 0.73 (Table 2). Correlation

coefficient (r) enumerates geometric fit index and its value
should be greater than 0.90 (Debnath 2002). Our results
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showed high correlation coefficient value of 0.96 for Hypo1,
which represents consensus correlation by linear regression.
Collectively, the entire results confirmed that Hypo1 com-

prised of three hydrogen bond acceptors (HBA) and one
hydrophobic (HYP) features, is the best ranked pharma-
cophore model among the generated hypotheses (Fig. 2).

To evaluate the predictive capability of the Hypo1, an
activity-based prediction of the training set compounds was
conducted. The regression analysis revealed that all the highly

active compounds were predicted in the same scale, whereas
among the two moderate active compounds, one was overesti-
mated as highly active, and the other was underestimated as
least active. Additionally, one least active was overestimated

as moderate active among the entire training set compounds
(Table 1). These results suggested that the corresponding phar-
macophore is capable to predict the Ki values in the same

order of magnitude as the experimental values with high accu-
racy. Our results also confirmed that all the features in Hypo1
were perfectly mapped to highly active compound with a fit

value of 9.65 (Fig. S1A). In contrast, the least active com-
pound mapped onto only 3 features of the selected pharma-
cophore (Fig. S1B). These results recommended that the

selected pharmacophore is efficient to discriminate highly
active from least active compounds against hPPO.

2.2. Pharmacophore validation

The representative pharmacophore model was validated by
two methods. First, Hypo1 was validated by Fischer’s Ran-
domization at 95% confidence level. Hypo1 achieved the lowest

total cost value of 99.68 among all the 19 spreadsheets gener-
ated, which advocates the statistical significance of the phar-
macophore (Fig. 3A).

Second, the pharmacophore was validated by external test
set which was comprised of 34 structurally diverse compounds
other than training set compounds (Fig. S2). Herein, we have

obtained an acceptable correlation coefficient value of 0.91 by
linear regression analysis between the Hypo1 predicted and
experimental activities of test set compounds (Fig. 3B). There-
Fig. 2 Chemical features of the selected pharmacophore ‘Hypo1’

with inter-feature distance constraints. Hypo1 consists of three

HBA (green) and one HYP (cyan) features. The inter-feature

distance constraints have been shown in angstrom (Å).
fore, our results corroborated that the Hypo1 is able to dis-
criminate between the active and moderate active compounds.

2.3. Screening of chemical databases

The validated pharmacophore model was employed to filter
the best-mapped compounds from chemical databases includ-

ing NCI, Asinex, Maybridge, and Chembridge. The number of
compounds in each database was 238,819; 231,262; 59,652;
and 50,000 for NCI, Asinex, Maybridge, and Chembridge,

respectively. Hypo1 mapped a total of 217,913 compounds
from all the databases. Since, the fit value of mapping of the
selected pharmacophore to highly active compound of the

training set was used as cut-off value (9.35); hence the candi-
date molecules with fit value greater than 9.35 were filtered.
The successful compounds were further subjected to addi-
tional filtrations like Lipinski’s Rule of Five and ADMET

Descriptors to characterize and subsequently retrieve the
drug-like compounds. Both these approaches evaluate com-
pounds in terms of their drug-like properties, for instance,

number of hydrogen bond donor and/or acceptor, logP value,
molecular weight, blood-brain barrier, solubility, and toxicity.
A total of 1176 candidate hits could successfully pass the drug-

like properties (Table S1).

2.4. Molecular docking simulation

Molecular docking was performed to predict the binding mode

of hit compounds. To date, a single crystal structure of hPPO
has been resolved (PDB ID: 3NKS) (Qin et al., 2011). The can-
didate hits as well as the training set compounds were docked

into the active site of hPPO. The catalytic active pocket of
hPPO is shaped by R59, R62, R97, F169, F331, G332, I419
and the flavin moiety of FAD (Flavin adenine dinucleotide)

(Qin et al., 2011). The ChemPLP score of 74.16 and ASP score
of 28.32 obtained by highly active compound of the training
set (hereafter Reference) was preferred as cut-off value for

the evaluation of candidate hits (Table 3).
The candidate hits with high ChemPLP score and high ASP

scores than cut-off value and interactions with catalytic active
residues of hPPO were selected. Since, the ChemPLP score was

used as decision making parameter during the docking analy-
sis, therefore, Hit2 was also considered as best candidate com-
pound despite of its low ASP score than the Reference

(Table 3). Our docking results illustrated that all the three can-
didate hits had strong hydrogen bond as well as hydrophobic
interactions with catalytic active residues of hPPO. For

instance, Hit1 showed hydrogen bond with catalytic active
residues including R62, R97, G169 and FAD. Moreover,
Hit1 also showed strong hydrophobic interactions with other

important residues of hPPO e.g. p-p interaction with F331
and L344. Hit2 established hydrogen bond interactions with
active residues R59 and R97 of hPPO. Hit2 also formed sev-
eral hydrophobic interactions with catalytic site residues of

hPPO. The docking simulation of Hit3 showed hydrogen bond
interactions with R97, F98 and G169 of hPPO. Additionally,
Hit3 also established van der Waals, alkyl, p-alkyl and

p-cation interactions with residues shaping the catalytic site
of hPPO. Finally, the top three hits were selected as final can-
didates. The selected candidate hits mapped well onto all the

four features of Hypo1 (Fig. 4).



Fig. 3 Pharmacophore validation. (A) Fischer’s Randomization. The total cost of Hypo1 remains lower to the total costs of the 19

scrambled runs generated during the Fischer’s Randomization run; (B) Test Set Validation. Correlation plot between the Hypo1 predicted

inhibitory activities and experimental activities of 22 training set compounds as well as 34 test set compounds.

Table 3 Comparison of ChemPLP score and ASP score of

hPPO and Reference, Hit1, Hit2, and Hit3 in complex.

Systems ChemPLP score ASP score

hPPO+Hit1 76.58 34.76

hPPO+Hit2 77.94 24.28

hPPO+Hit3 78.72 30.50

hPPO+ Reference 74.16 28.32
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2.5. Molecular dynamics simulation

In order to affirm the binding stability and pose orientation of
each candidate hit in the active site of hPPO, molecular
dynamics simulation of 30-ns was performed. The docked pose

of each candidate hit was taken as input data and a total of
four different systems (Reference and the three candidate hits)
were designed. Our simulation results showed that all the sys-

tems have converged well and established a stable root mean
square deviation (RMSD) which ranges between 2 and 3 Å
throughout the simulation period (Fig. 5).

The individual RMSD value for each system further
affirmed that all the three candidate hits had low RMSD val-
ues than the Reference compound in last 5-ns trajectory

(Fig. 5).
To further get insight into the stability of protein-ligand

complex, the potential energy for each system was calculated.
The potential energy of all the four systems remained stable

during the entire simulation period and no abnormal behavior
was observed (Fig. S2). To trace the binding orientation, the
representative structures of all the protein-ligand complexes

were taken from the last 5-ns trajectory and superimposed. It
was observed that all the candidate hits oriented in the same
pattern and occupied the same catalytic pocket as the Refer-
ence compound (Fig. S3). Furthermore, the molecular interac-
tions of each ligand with catalytic active residues of hPPO were

inferred. As mentioned earlier that the active site of hPPO is
shaped by R59, Arg62, R97, G169, F331, G332, I419 and
the flavin moiety of the FAD. Our computational analysis
observed that the binding mechanism of Reference compound

was established by hydrogen bond formation with the catalytic
site residues Arg97 and Gly345 of hPPO (Fig. 6A).

Several other hydrophobic interactions were also observed

between the Reference compound and the residues in catalytic
pocket of hPPO (Table 4).

Our computational analysis showed that Hit1 has hydrogen

bond interactions with R59, G60, R62, G169 and FAD as
shown in Fig. 6B. Our analysis observed that the hydroxyl
group of acidic moiety of Hit1 has hydrogen bond with

carbonyl oxygen of G60 and R59, and amino group of
isoalloxazine ring of FAD (Fig. 6B). Additionally, hydrogen
bond formation was observed between the oxygen of amino-
terminus of benzamidobenzoyl moiety of Hit1 and amino

group of isoalloxazine ring of FAD. Apart from hydrogen
bonding, Hit1 has also showed several hydrophobic interac-
tions including p-alkyl stacking between the benzene ring of

benzoyl group and side chains of V314 and M368, and benzene
ring of benzamide group and side chains of V347 and L334
(Table 4). Our analysis observed that benzoamidobenzoyl moi-

ety of Hit1 is oriented towards the hydrophobic subpocket of
hPPO by making van der Waals interactions with A172, I419
and G345. All these findings are in strong agreement of the
interaction pattern established by aciflurine (Qin et al., 2011).

Our data showed that Hit2 has formed four hydrogen
bonds with hPPO including residues R97, G332 and the flavin
moiety of FAD (Fig. 6C). It was observed that the oxygen

atoms of ethoxy and oxopentanoic acid groups of Hit2 have



Fig. 4 Hypo1 mapped onto the hit molecules. (A) Hit1, (B) Hit2, (C) Hit3. The HBA and HYP features are colored as green and cyan

respectively.

Fig. 5 The RMSD plot of four systems. The RMSD profile for

the Ca atoms of the protein during the 30-ns simulation. Colors

are assigned as red (Reference compound), green (Hit1), cyan

(Hit2), and blue (Hit3).
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formed hydrogen bonds with side chain of R97. Hit2 has also

been interacted by its terminal oxygen of acetate group with
another catalytic active residue G332. Our results follow Qin
et al. (2011) findings that aciflurine has hydrogen bond interac-

tion with G332. Moreover, the carboxyl oxygen of oxopen-
tanoic acid moiety of Hit2 formed stable hydrogen bond
interaction with FAD (Fig. 6C). Based on these observations,
we suggest that Hit2 may have same mode of hPPO inhibition

as the Reference compound but with high affinity. We support
our suggestion of high affinity of Hit2 towards hPPO by the
formation of strong hydrogen bonds with Arg97, Gly332

and FAD. Hit2 was also found to establish several hydropho-
bic and van der Waals interactions with active site residues of
hPPO (Table 4). Benzene ring of oxopentanoic acid moiety has
strong hydrophobic center which formed alkyl interactions

with positively charged scars of M368, L344, and FAD. Oxo-
penanoic acid group of Hit2 also formed p-sulfur interaction
with sulfur containing M368. Since, R97 has been shown as
the essential residue participating in catalytic reaction driven

by hPPO, therefore, our rational approach suggested that the
formation of hydrogen bonds of Hit2 with R97, G332 and
FAD might be strong enough to prevent the binding of sub-

strate (protoporphyrinogen-IX) in the active site of hPPO in
competitive inhibition.

The third candidate compound, Hit3, was also evaluated by

MD simulation to infer its binding mode and conformational
stability in hPPO. Our analysis showed that polar hydrogen of
the amino group of benzoate formed hydrogen bond with sul-
fur atom of M368. Other hydrogen bonds were observed

between the oxygen atom of oxo-pyrrolidine group of Hit3
and side chain of R62 as well as methyl group of methoxyphe-
nyl and carboxyl oxygen of G345 (Fig. 6D). Moreover, Hit3

showed p-alkyl interactions between its aminobenzoate moiety
and M368, A172 and FAD. All the hydrophobic and van der
Waals interactions with the catalytic pocket residues of hPPO

are depicted in Table 4.
To evaluate the binding affinity of selected candidate mole-

cules in the active site of hPPO, the inter-molecular hydrogen

bonds of the compounds were monitored during the entire sim-
ulation period (Fig. 7). Our computational analysis observed
that the average number of hydrogen bonds for all the hit com-
pounds remained higher than that of the Reference compound.



Fig. 6 Illustration of pose orientation and hydrogen bond formation of the Reference compound and the three hit molecules in the

active site of hPPO. (A) Reference: red, (B) Hit1: green, (C) Hit2: cyan, and (D) Hit3: blue. Hydrogen bonds between hPPO and ligands

are shown as green dotted lines.
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Among the hit compounds, Hit1 showed highest number of
hydrogen bonds (Fig. 7). The comparative analysis suggested
that Hit2 and Hit3 also showed greater number of hydrogen

bonds than the Reference compound.
Finally, PubChem Structure (Wang et al., 2014), which is
an online tool, was used to verify that the selected hit com-
pounds are not tested experimentally as PDT induced thera-

peutics and can be recommended as potent hPPO inhibitors.



Table 4 The molecular interactions between the final hit compounds and hPPO.

Systems Hydrogen bond

(<3.0 Å)

Hydrophobic interactions van der Waals interactions

hPPO+

Reference

Arg97, G169, G345 Arg62, Ala172, Val314,

Leu334, Val347, Met368

Gly60, Arg168, Val170, Gln226, Gly332, His333, Leu344, Ile346, Ile419,

FAD

hPPO+

Hit1

Gly60, Arg59,

Arg62, Gly169, FAD

Val314, Leu334, Val347,

Met368

Pro58, Ile61, Arg62, Arg168, Val170, Phe171, Ala172, Gln226, Gly332,

His333, Leu344, Gly345, Ile346, Ile419

hPPO+

Hit2

Arg97, Gly332, FAD Leu344, Met368, FAD Arg59, Arg62, Phe98, Arg168, Gly169, Ala172, Val170, Val314, Phe331,

His333, Leu334, Gly345, Ile346, Val347, Tyr348, Ile419

hPPO+

Hit3

Arg62, Gly345,

Met368

Ala172, Met368, FAD Arg59, Gly60, Leu166, Arg168, Gly169, Val170, Leu334, Leu344, Gly345,

Ile346, Val347, Leu369, Ile419

Fig. 7 The number of intermolecular hydrogen bonds between

hPPO and the compounds during 30-ns MD simulation. Red,

green, cyan and blue represent reference, Hit1, Hit2, and Hit3

respectively.
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Based on these observations, we propose these three hit com-

pounds as novel candidates for hPPO inhibition (Fig. 8).

3. Conclusion

Inhibition of heme biosynthetic pathway has been considered
as a promising target in several cancer therapies. PPO is the
last rate limiting enzyme of heme biosynthetic pathway and
its inhibition results in high accumulation of protogen, which

later on produces singlet oxygen in the presence of light and
causes apoptosis and cellular destruction. In this study, we
attempted to identify novel inhibitors against hPPO by
Fig. 8 2D structures and IUPAC n
ligand-based pharmacophore modeling. Herein, a pharma-
cophore model was generated from training set compounds.

The best pharmacophore model had four chemical features
including three HBA and one HYP. Hypo1 had the highest
correlation coefficient (r) of 0.96, cost difference of 53.20,

and low RMSD of 0.73. The pharmacophore was validated
by Fischer’s Randomization and Test Set Validation method,
which confirmed the ability of Hypo1 to retrieve active com-

pounds against hPPO. Thereafter, Hypo1 was used as a 3D
structural query to screen the selected chemical libraries and
retrieved the best fitted compounds. Lipinski’s Rule of Five
and ADMET Descriptors were used to eliminate the non-

drug like compounds. Furthermore, the drug-like compounds
were subjected to molecular docking to eliminate the false pos-
itive hit molecules. Finally, MD simulation was employed to

affirm the stability of each ligand into the catalytic active site
of hPPO. The newly identified hit molecules formed stable
hydrogen bond interactions with catalytic active residues e.g.

R59, R97, and G332 of hPPO. The MD simulation also con-
firmed that each hit molecule formed hydrophobic interactions
with residues occupying the catalytic active site of hPPO.
Finally, we proposed three hit molecules as fundamental vir-

tual platforms for the development of photodynamic therapeu-
tics against hPPO inhibition.
4. Materials and methods

4.1. Data set preparation

Already known inhibitors of protoporphyrinogen oxidase IX
(PPO) were identified from literature survey (Zhang et al.,
ames of the three hit molecules.
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2009; Zuo et al., 2011) and binding database (http://www.
bindingdb.org/bind/index.jsp). A total of 56 compounds were
selected and classified into training set (22 compounds) and

test set (34 compounds). Thereafter, the inhibitory constant
expressed as Ki value was taken as selective parameter for
the classification of compounds. Based on Ki values, all the

training set compounds were classified into highly active, mod-
erate active, and least active sets. The 2D structures of training
set compounds were drawn in Accelrys Draw v4.2, and subse-

quently converted to their 3D format in Discovery Studio v4.5
(DS). The training set compounds were energy minimized
by CHARMm forcefield with energy threshold value of
20 kcal/mol. Subsequently, a maximum of 255 conformers

were generated for each compound and these conformers were
used for hypotheses generation, fitting compounds into the
hypotheses and estimating the activity of compounds.

4.2. Pharmacophore model generation

To identify the essential features of the training set com-

pounds, they were subjected to Feature Mapping protocol,
implanted in DS. The essential features of the training set com-
pounds were employed to generate pharmacopohore models,

while using 3D QSAR Generation protocol, implanted in DS.
The essential pharmacophoric features were included hydro-
gen bond acceptor (HBA), hydrogen bond donor (HBD), ring
aromatic (RA), hydrophobic (HYP), and hydrophobic aro-

matic (Hy-Ar). The uncertainty value was defined as 3 for all
the training set compounds. Other parameters were selected
as minimum number of features ‘‘1”, maximum number of fea-

tures ‘‘5”, conformation generation ‘‘best” and the Fischer’s
validation ‘‘95%”, while the rest of the parameters were used
as default values. At the end, ten qualitative pharmacophore

models were generated with corresponding statistical parame-
ters like cost values, fit values, correlation coefficient values,
and root mean square range.

4.3. Pharmacophore model evaluation

In order to confirm whether the resultant pharmacophore
model was reliable enough to mimic the essential features of

hPPO inhibitors, validation of the pharmacophore models
was carried out. The Fischer’s Randomization method was
employed to select the best pharmacophore model. Our proto-

col relied on 95% significance of the best hypothesis, where 19
random sets were derived from the original training set by
shuffling randomly and 19 different pharmacophore models

were generated. These randomly created pharmacophores were
plotted against the selected hypothesis in terms of total cost,
where the selected hypothesis must have lowest total cost

(Sakkiah and Lee, 2012).
To further validate our pharmacophore model, structurally

diverse inhibitors of hPPO, which were not included in training
set, were taken and assigned as test set. The test set was used to

predict correlation between the experimental and predicted
activity values estimated by the selected pharmacophore.

4.4. Pharmacophore-based screening of chemical databases

The validated pharmacophore was used as a 3D query to
retrieve the best fitted candidate molecules from chemical
databases like NCI, Asinex, Chembridge, and Maybridge.
The screening of chemical databases was carried out by phar-
macophore using Ligand Pharmacophore Mapping module in

DS with Best and Flexible parameters. The pharmacophore-
fitted molecules were evaluated for their drug-like properties.
The drug-like properties were analyzed by Lipinski’s Rule of

Five and ADMET Descriptors module, implanted in DS.
Finally, the drug-like hit molecules were subjected to molecu-
lar docking to elucidate the binding orientation in the active

site of hPPO.

4.5. Molecular docking simulation

Molecular docking is an in silico approach to predict binding
affinity, pose orientation, and molecular interactions between
ligand and receptor. Herein, molecular docking studies were
carried out by using Genetic Optimization of Ligand Docking

(GOLD v5.2.2) package (Morris et al., 1998). GOLD package
relies on ChemPLP (Pearson Linear Potential) as main scoring
function, which accounts for energy from external hydrogen

bonds, external van der Waals (vdW) and internal torsion.
On the other hand, ASP (Astex Statistical Potential) score
was used as rescoring function, which deals with atom-atom

distance potential and Chemscore terms (Yan et al., 2014).
For molecular docking simulation, a high resolution (1.9 Å)
crystal structure of hPPO (PDB ID: 3NKS) was taken (Qin
et al., 2011). The initial structure was cleaned by removing

water molecules and hetero atoms. The missing residues were
gap-filled by Loop Insertion protocol, implanted in DS.
CHARMm forcefield was used to carry out energy minimiza-

tion and hydrogen atoms were added. The well prepared hPPO
structure was sued as protein input file for docking analysis.
The docking coordinates were selected from active site residues

e.g. R59, R97, F331, G332 and hPPO bound inhibitor
(aciflurine). The drug-like molecules along with training set
compounds were energy minimized and used as ligand input

file for docking in the active site of hPPO.

4.6. Molecular dynamics (MD) simulation

All simulations were performed in GROMACS v5.1.2

(Abraham et al., 2015) with CHARMm36 forcefield (Huang
et al., 2017) parameters. The topology and coordinates of all
the ligands were parameterized by SWISSPARAM (Zoete

et al., 2011). For each ligand, independent MD system was
designed in a TIP3P water model in an octahedral simulation
box (Jorgensen et al., 1983). Periodic boundary conditions

were applied in all directions to imitate infinite system. During
the simulation, Particle Mesh Ewald (PME) method using 10
Å cut-off distance for real-space Ewald interactions and vdW

interaction was employed (Darden et al., 1993). Dispersion
correction was used to accommodate energy and pressure
terms caused by vdW truncation. Bond lengths were restrained
by LINCS algorithm that endorsed a 2-fs time frame in all sim-

ulations (Hess et al., 1997). Prior to simulation, all the systems
were neutralized by adding sodium (Na+) as counter ions. The
energy minimization was carried out by steepest descent mini-

mization with a maximum force of 10 kJ/mol/nm to remove
any unfavorable contacts. To avoid configurational changes
during equilibration, all the atoms were position restrained.

Each system was equilibrated in two phases; first, systems were
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simulated for 100 ps at NVT ensemble and constant tempera-
ture of 300 K, which was controlled by V-rescale method
(Bussi et al., 2007). Each NVT equilibrated system was sub-

jected to NPT equilibration for 100 ps at an isotropic pressure
of 1.0 bar, employing Parrinello-Rahman barostat (Parrinello
and Rahman, 1981). Production MD was performed for

30 ns in flexible mode and data was collected after each 2 fs
interval. During the production period, V-rescale thermostat
and Parrinello-Rahman barostat were employed to maintain

temperature (300 K) and pressure (1 bar). All the analyses of
MD simulations were carried out by VMD and DS software.
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