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Çanakkale, Turkey
bLapseki Vocational School, Department of Chemistry and Chemical Processing Technologies, Çanakkale Onsekiz Mart University,
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Abstract Carbazole-based Schiff base chemosensor was synthesized in one-pot synthesis using 2-

hydroxy-1-naphtaldehyde for fluorescent sensing of Al3+ ions. Characterization of the ligand (L)

was revealed through spectroscopic and physicochemical techniques. The fluorescence emission

responses of L to various metal ions and anions were investigated. The chelation was studied by

UV–vis, 1H NMR, LC-MS/MS, fluorescence titration and Job’s plot analysis. Bathochromic shift

resulted from charge transfer from L to electrophilic Al3+ ion was observed in the chelation of L

with Al3+. The potentiality of L to be a distinguished probe to detect Al3+ ions was due to a chela-

tion enhanced fluorescence (CHEF) effect, concomitant with noticeable fluorescent enhancement. A

significant fluorescence enhancement at 533 nm was observed in ethanol–water (1:1, v/v) solution

upon addition of Al3+ along with a distinct color change from yellow to white. Non-fluorescent

ligand exposed highly sensitive turn-on fluorescent sensor behavior for selectively sensing Al3+ ions

via 1:1 (ligand:metal) stoichiometry. The ligand’s specificity in the existence of other tested metal

ions and anions indicated no observation in color change. The ligand-Al3+ complex formation

was reversible upon addition of chelating agent EDTA. The ligand interacted with Al3+ ions with

an association constant of Ka = 5 � 104 M�1. The limit of detection (LOD) was found to be

2.59 � 10-7 M. The synthesized Schiff base could efficiently detect Al3+ ions as a fluorescent sensor.
� 2022 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hugo Schiff discovered Schiff bases with an azomethine or
imine functional group on occasion of a condensation reaction

between aldehydes or ketones and amines (Schiff, 1864). Schiff
bases have been discussed in a vast diversity of biological activ-
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ities such as antimicrobial (Da Silva et al., 2011), anti-
inflammatory (Kajal et al., 2013), antioxidant (Teran et al.,
2019), anticancer (Shah et al., 2020), antitumor (Min et al.,

2022), etc. The presence of –HC = N- (imine-azomethine)
group are suited for binding various metal ions via lone pairs
of the nitrogen atom. Schiff bases which are considered as the

privileged ligands are the backbone of a large number of
organic compounds in a broad area of implementations such
as material science, catalysis, bioinorganic, biological, analyti-

cal and organic chemistry (Arunadevi and Raman, 2020).
Various Schiff bases have been discussed as sensors for

sensing of metal ions in aqueous systems (Berhanu et al.,
2019; Iacopetta et al., 2021). Schiff base ligands have been of

interest to researchers in coordination chemistry providing
useful pharmacological and physiological activities due to their
ease of synthesis and their potentiality to form complexes with

metal ions (Abu-Dief and Mohamed, 2015) and their investi-
gation in medicinal, biophysics, light emitting diodes and
industrial functionalities such as fuel additives (Bar et al.,

2016), corrosion inhibitor (Singh et al. 2015), coupling catalyst
(Suzuki-Miyaura) (Arumugam et al., 2015), enzyme inhibitor
(Rahim et al., 2016), liquid crystal, light emitting diodes, laser

technology, biophysics, selective colorimetric, optical and fluo-
rescent sensors for ions, magnetic resonance imaging (MRI)
sensor (Tiwari et al., 2013; Zhu et al., 2015) nucleic acid con-
junction cleavage (Yadav et al., 2015) and antitubercular agent

(Jamadar et al., 2012).
The researchers of biological, chemical and environmental

sciences have immense importance to detection of metal ions,

small anions and biomolecules (Chang et al., 2015; Jiang
et al., 2020; Wu et al., 2017). Recently, the development of
chemosensors has demonstrated a great research subject as

they possess superiorities in terms of easiness in operation,
good selectivity and high sensitivity (Roy, 2021; Roy et al.,
2021; Yin et al., 2021). Of particular interest is the design of

selective ‘‘turn-on” fluorescent sensors in consequence of fluo-
rescence emission enhancement (Hirayama et al., 2013; Jun
et al., 2011; Kolcu et al., 2021; Yu et al., 2017; Yu and Wu,
2014). Schiff bases have been of important among the promi-

nent chemosensors for selective sensing of metal ions
(Jakubek et al., 2017; Udhayakumari and Inbaraj, 2020;
Kolcu et al., 2020; Fan et al., 2020; He et al., 2021). The pre-

dominant decay stage of the excited state is the C = N isomer-
ization of the compounds, which are often nonfluorescent
(Yan et al., 2016; Tang et al., 2011; Wu et al., 2007).

The detection of Al3+, which is the third most abundant
element after oxygen and silicon in the earth’ crust (Burgess,
1996; Soni et al., 2001), is of great interest due to its common
implementation in human activities such as in production of

computers, automobiles, electrical equipments, packaging
materials, cooking utensils, foods and food ingredients, clinical
drugs such as buffered aspirins, allergen injection, antacids and

antiperspirant etc. (Na et al., 2014; Wilmott et al., 2004;
Irimia-Vladu, 2014; Gui et al., 2015), and water purification
(Krupińska, 2020). Keeping in view the toxicological effects

of aluminum, its toxicity leads to critical impairments and
may become a cause of life threatening disease such as Alzhei-
mer’s disease, amyotrophic lateral sclerosis (ALS), memory

loss, Parkinson’s disease, gastrointestinal problems and osteo-
porosis (Perl and Brody, 1980; Fasman, 1996; Walton, 2006;
Perlmutter et al., 1997; Polizzi et al., 2002, Krewski et al.,
2007; Skalny et al.; 2021; Maya et al., 2016). The World Health
Organization (WHO) recommends that the allowable weekly
tolerance of Al3+ intake for a human body is ca. 7 mg kg�1

body weight (Weller et al., 2010).

Carbazole with a rigid fused-ring structure has a nitrogen
atom carrying a free electron pair, which forms n–p conjuga-
tion with benzene rings (Grabowski et al., 2003). Carbazole

possess many benefits, such as good co-planarity along the
conjugated system, suitability to structural alterations, strong
intramolecular charge-transfer, excellent solubility and stabil-

ity. Although carbazole and its derivatives are utilized over a
wide area, such as electro generated chemiluminescence, solar
energy collectors and nonlinear optical materials (Zhu et al.,
2011; Yin et al., 2021; Yoon et al., 2007), the research about

their use as fluorescent chemosensors is feeble (Yang et al.,
2013; Danjou et al., 2012; Fei et al., 2015; Zhu et al., 2015;
Qu et al., 2017). 2-Hydroxy-1-naphthaldehyde is substantiated

to be a fluorescent building block for the synthesis of distinct
fluorescent ligands. The chemo selectivity of the Schiff base
ligands including 2-hydroxy-1-naphthaldehyde moiety towards

various ions is due to the presence of both hydroxyl group at
the ortho position and -C = N- bond (Das and Goswami,
2017).

Based on aforementioned explanations, the detection of
Al3+ has been extremely important in searching its concentra-
tion levels in the biosphere and also defining its influences on
human health. Through this study, we presented the synthesis

of a fluorescent turn on chemosensor for specifying biologi-
cally and environmentally significant Al3+ ions. Schiff base
derivatives are intriguing compounds for sensing of metal ions

as well as anions due to guest binding moieties. Schiff base sen-
sor, derived from carbazole and 2-Hydroxy-1-naphthaldehyde
units, could be easily prepared in one step. Besides, most of the

reported Al3+ sensors, which needed complicated synthesis
procedures, were insoluble in polar solvent (Chen et al., 2013).

Since the analysis in a high water content solvent was more

convenient, the water content was 50% for the complete disso-
lution of the synthesized Schiff base in this study. The Al3+ -
sensing mechanism was proposed and provided by the mass
spectral and Job’s plot analysis. The synthesized ligand

depicted high selectivity for Al3+ sensing in the presence of
multiple ions in ethanol: water (1:1, v/v) mixture. The pre-
sumption from the synthesis of carbazole-based Schiff base

would exhibit turn-on fluorescence upon binding of aluminum
ions with high quantum efficiency in aqueous solution.
2. Experimental part

2.1. Chemicals

Ethylenediaminotetraacetic acid disodium salt dihydrate (Na2-
EDTA), the solvents, the metal salts and the sodium salts of

F�, Cl�, Br�, I�, CO3
2–, HCO3

– and HPO4
2- ions were purchased

from Merck Chemical Co (Germany). CrCl3 was obtained
from Riedel-de Häen (Germany). 2-hydroxy-1-
naphthaldehyde, 9-ethyl-9H-carbazol-3-amine PbCl2, SnCl2-

�2H2O, K2Cr2O7 and
tetrabutylammoniumhexafluorophosphate (TBAPF6) were
supplied by Sigma Aldrich (Germany). All chemical reagents

procured from commercial suppliers were used without purifi-
cation in the synthesis and measurements.
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2.2. Synthesis of Schiff base (L) and structural characterization

The condensation reaction between 9-ethyl-9H-carbazol-3-
amine (0.21 g, 1 mmol) and 2-hydroxy-1-naphthaldehyde
(0.172 g, 1 mmol) in a 100 mL flask containing 15 mL of EtOH

was maintained for 5 h at 60 �C under reflux with continuous
stirring. Then, the solvent was evaporated, and the product of
1-(((9-ethyl-9H-carbazol-3-yl)imino)methyl)naphtalen-2-ol
was dried in vacuum to obtain an orange solid (yield 86%).

The ligand was abbreviated as L. The synthesis procedure of
L was shown in Scheme 1.

FT-IR (cm�1): 3319v (O–H stretching), 3053–2962 v(aro-

matic C–H stretching), 2918–2865 (aliphatic C-H stretching),
1613 (C = N), 1543, 1488 v(C = C, aromatic ring), 1323 v
(C-N, aromatic amine stretching), 1232 v(C-O stretching). 1H

NMR (DMSO d6 dH ppm, 9.83 (s, –OH), 8.56 (–CH = N-),
8.56 (d, Hg), 8.26 (d, Ha), 7.90 (d, Hj), 7.79 (d, Hk, Hn),

7.76 (d, Hf)), 7.72 (d, He), 7.62 (d, Hd), 7.56 (t, Hm), 7.48
(t, Hl), 7.35 (t, Hc), 7.23 (t, Hb), 7.05 (d, Hi), 4.48 (q, –

CH2), 1.32 (t, –CH3).
13C NMR (DMSO d6): d ppm, 163.23

(C7), 153.09 (C1), 150.42 (C3), 130.26 (C10), 129.56 (C9),
129.41 (C4), 122.23 (C5), 122.11 (C8), 121.55 (C2), 121.29
(C6). 13C NMR (150 MHz, DMSO d6, d (ppm)) d: 159.61,

149.28, 143.01, 140.22, 140.73, 139.72, 139.72, 138.44, 137.12,
132.83, 129.78, 128.00, 125.71, 125.99, 125.21, 122.41, 122.20,
116.96, 115.55, 112.76, 110.23, 59.45, 14.20. LC-MS/MS, m/

z: [M + H]+ for L, calc.: m/z = 364, found: m/z = 365
[M + H]+. LC-MS/MS, for L-Al3+, calc.: M = 409, found:
M = 410 [M + Al(III) + H2O + H]+.

2.3. Stock solution preparation and instrumentation

1.0 � 10-4 mol L-1 solution of L (0.0364 g, 1.0 mol) was pre-

pared in EtOH. 5.0 � 10-3 mol L-1 solutions of K+, Ag+,
Ba2+, Mn2+, Mg2+, Sn2+, Hg2+, Ca2+, Co2+, Zn2+,
Cu2+, Ni2+, Pb2+, Al3+, Fe3+, Cr3+ and Cr6+ were prepared
by solubilizing the metal salts and anions in deionized water.

The anions, F�, Cl�, Br�, I�, CO3
2–, HCO3

– and HPO4
2-

(1 mM) solutions were also prepared in deionized water. The
UV–vis and fluorescence selectivity experiments were per-

formed by taking 1.5 mL of L (1.0 � 10–4 M) and 1.5 mL
of different metal ions and anions (5.0 � 10-3 M) in a quartz
cell to maintain the solvent ratio EtOH:H2O (1:1, v/v).

Characterization studies consisted of the Perkin Elmer
Frontier FT-IR Fourier Transform Infrared spectroscopy
method using Attenuated Total Reflection accessory for func-
tional groups analysis between 4000 cm�1 and 450 cm�1, 1H-

600 MHz and 13C NMR-150 MHz spectroscopy with Agilent
technologies (DMSO d6: solvent and TMS: internal standard),
N

NH2
OH

O

+
5 h , 6
Et h a

Scheme 1 Synthesis of Sch
UV–Vis spectroscopy with Analytikjena Specord 210 Plus
spectrophotometer, PL emission spectra with Shimadzu
R5301 PC spectrofluorophotometer equipped with a Xenon

lamp as the excitation source and CV measurements with
CHI 660C Electrochemical Analyzer (USA). Optical band
gap (Eg) was obtained using the formula of 1242/konset (eV)
(Colladet et al., 2004). Mass spectrometry data were measured
using Finnigan LCQ ion-trap mass spectrometer (Shimadzu
LC-MS/MS-8040, Japan). Ligand and ions were combined in

a mixture of EtOH: H2O (1:1, v/v).

2.4. Fluorescence spectroscopic study

Photoluminescence (PL) emission spectrum of the ligand (L) in
EtOH was monitored by spectrofluorophotometer. Upon
addition of K+, Ag+, Ba2+, Mn2+, Mg2+, Sn2+, Hg2+,
Ca2+, Co2+, Zn2+, Cu2+, Ni2+, Pb2+, Al3+, Fe3+, Cr3+,

Cr6+, F�, Cl�, Br�, I�, CO3
2–, HCO3

– and HPO4
2-, the fluores-

cence spectral behavior was monitored to study influences of
the metal ion and anion. A series of Al3+ solution (in the range

of 0.25 mM-0.195 lM) was prepared on account of observing
the concentration efficacy of Al3+ ions on the PL property of
L.

Fluorescence PL quantum yield ðQYsÞ is defined as the

ratio of the number of photons emitted to the number of pho-
tons absorbed through fluorescence of the fluorophore can be

determined using the comparative method according to equa-
tion (1) (Lakowicz, 1999):

QYs ¼
AfFsn

2
s

AsFfn
2
f

QYf ð1Þ

where A, F and n denote absorption at the maximum exci-
tation wavelength, integrated area underneath the fluorescence

emission spectrum and refractive index of the solvent, respec-
tively. Excitation and emission slit width values for both the
sample and the standard were adjusted as 5 nm. The fluores-
cence quantum yield of standard fluorophore was measured

using fluorescein in 0.1 M of aqueous NaOH (QYf = 0.97).

3. Results and discussion

3.1. Structural characterization

Solubility test for the ligand synthesized was carried out at
room conditions (L/solvent, 1 mg 1 mL�1). L was soluble in
EtOH, DMSO, ethyl acetate, acetonitrile, and acetone,
whereas partly soluble in MeOH. In addition, L was insoluble

in toluene and hexane as apolar solvent.
N

N CH

HO

0 oC
n ol

iff base (Ligand = L).



Fig. 1 UV–vis absorption spectra of L (0.1 mM) and L + Al3+

(0.5 mM) in EtOH.
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FT-IR and spectroscopy verified the synthesized Schiff
base’s characteristic substituents. The signal at 3319 cm�1

was associated with O-H stretching mode (Fig. S1). The aro-

matic C-H and the aliphatic C-H stretching vibrations were
monitored in the region of 3053–2962 cm�1 and 2918–
2865 cm�1, respectively. In the IR spectrum of L, absence of

the peak related to the amine group (–NH2) and the peak
for the aldehyde carbonyl group (-C = O) indicated the forma-
tion of a Schiff base compound, with concomitant characteris-

tic stretching vibration pronounced at 1613 cm�1 for the imine
(–HC = N-) group. The peaks observed at 1543 cm�1 and
1488 cm�1 were attributed to the vibration bands of C = C
bonds in the benzene ring. The C-N and C-O stretching modes

were noticeable at 1323 cm�1 and 1232 cm�1, respectively. The
sharp peaks between 807 cm�1 and 719 cm�1 could be related
to the C = C and C-H bending modes.

1H NMR spectra of the Schiff base (L) and the coordinated
L with Al3+ are displayed in Fig. S2. The peaks at 9.83 ppm

and 8.56 ppm were attributed to –OH and –CH = N- protons
of L, respectively. The aromatic protons of L were observed
between 8.56 ppm and 7.05 ppm. Owing to the positive meso-

meric effect of –OH group, the ortho positioned Hi came out
up field at 7.05 ppm as doublet and the meta positioned Hj
moved downfield to 8.07 ppm as doublet (Fig. S2a). The sig-

nals of the protons in the aliphatic region were observed at

4.48 ppm (quartet) and 1.32 ppm (triplet) for –CH2 and –

CH3, respectively. Slight changes in the d values upon coordi-
nation with Al3+ ions were depicted in Fig.S2b. Since the
coordination took place from both –OH and –CH = N- sides,

the regarding protons of –OH and –CH = N- moved up field
and recorded shift of Dd 0.09 ppm and Dd 0.14 ppm, respec-

tively. A lowered intensity for the –OH peak was observed.
Aromatic protons showed slightly up field shift upon chela-
tion. It could be inferred that the binding of L to Al3+ resulted

in a formation of a rigid system along with imine-nitrogen and
hydroxyl group of L as binding site.

13C NMR spectrum of the synthesized Schiff base (L) is dis-

played in Fig.S3. The highest chemical shift value of azome-

thine carbon (–CH = N-) appeared at 169.83 ppm. Since –

OH group of naphthyl moiety pulled electrons away from
the ring inductively, the peak of C14 was deshielded to
154.28 ppm. Due to the electronegative element of nitrogen,
C1 of carbazole moiety also appeared downfield at

140.69 ppm. The aromatic carbons were observed in the range

of 138.84–109.06 ppm. Alkyl –CH2 and –CH3 asserted them-

selves at 37.66 ppm and 14.13 ppm, respectively. In considera-
tion of (+) mesomeric effect of OH group towards the ring
inducing a negative charge formation at the ortho and para

corners of the naphthyl moiety, the peaks at 129.1 ppm,
120.75 ppm and 109.92 ppm were attributed to C17, C15
and C13, respectively. The peak of the meta positioned C16

was observed at 138.85 ppm. C3 and C7, which were the ortho
and para positioned carbons appeared at 126.78 and
115.19 ppm, respectively. 1H NMR was integrated with 13C
NMR spectral measurement for the structural confirmation

of L.
Fig. 1 shows the optical behavior of L recorded by UV–vis

spectroscopy. The optical measurements were implemented at

room temperature in the range of 260–800 nm, versus a blank
solution in EtOH:H2O (1:1). The normalized absorption spec-
trum of the free sensor L displayed three absorption bands
centered at 297 nm, 318 nm and 330 nm, corresponding to
the intra-ligand aromatic p ? p* electron transitions. The

prominent band of L displayed at 462 nm could be ascribed
to the electronic transitions from nonbonding orbitals on the
heteroatoms to ligand p* orbitals, namely, n ? p* electronic

transition. Upon addition of Al3+ ions, the absorption bands
of aromatic p ? p* electron transitions were observed at
298 nm, 318 nm and 330 nm. The absorption band at a max-
imum wavelength of 462 nm indicated a bathochromic shift to

479 nm. A new band at 531 nm arose upon complexation with
Al3+ in EtOH:H2O (1:1, v/v) via the donation of lone pairs of
electrons on nitrogen/oxygen of the ligand to metal ion charge

transfer. konset is the onset wavelength which can be identified
by intersection of two tangents on the absorption edges, indi-
cating the starting wavelength for the electronic transition

(Colladet et al., 2004). konset values obtained from the UV–
Vis spectra were obtained as 519 nm and 580 nm, respectively.
The calculated optical band gap (Eg) value of L was 2.39 eV in
EtOH:H2O. Having coordinated to Al3+ ions, this value low-

ered to 2.14 eV as a result of a chelation between L and Al3+.
Bathochromic shift observed in UV–vis spectra was ensued
from the binding of Al3+ ions to -C = N- bridge and –OH

of 2-hydroxynaphthalene unit (Das and Goswami, 2017;
Yoon et al., 2007). On account of charge transfer from L
towards Al3+, the yellow solution of L turned into white upon

addition of Al3+ ions under 366 nm of UV light, as shown in
Fig. 2. The addition of other metal ions and anions (K+, Ag+,
Ba2+, Mn2+, Mg2+, Sn2+, Hg2+, Ca2+, Co2+, Zn2+, Cu2+,

Ni2+, Pb2+, Al3+, Fe3+, Cr3+, Cr6+, F�, Cl�, Br�, I�, CO3
2–,

HCO3
– and HPO4

2-) did cause no alterations on metal-
complexation, which was also confirmed by detecting no color
change under 366 nm light, as seen in Fig. 2A and Fig. 2B.

3.2. pH effect

To determine useful pH range where the ligand can perform

without being affected by hydrogen ions, which cause interfer-
ence in the performance of the ligand is necessary. Thus, pH
dependence of the ligand was investigated and the results

obtained are given in Fig. 3. The emission intensity of L
(0.1 mM) was stable in the pH range from 2.0 to 12.0, conclud-
ing with a pH-independent ligand. Being present of Al3+ (20

eqv.) enhanced the PL emission intensity, which reached to
maximum value at midpoint, therefore, it was better to make
all measurements at pH 7.5 and 8.0 (Fig. 3). The change in
potential above pH 8.0 resulted in the formation of Al(OH)3



Fig. 2 Digital camera photograph of L in the presence of metal ions (A) and anions (B) under 366 nm UV light.

Fig 3 pH dependence of L and L + Al3+.
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concomitant with the breakdown of L-Al3+ complex, hence
fluorescence was quenched. Consequently, L could be used
for sensing Al3+ ions in aqueous medium under neutral

conditions.

3.3. Selectivity of L to Al3+ and competitive study

The selectivity of L (0.1 mM) in EtOH was investigated
towards metal ions (K+, Ag+, Ba2+, Mn2+, Mg2+, Sn2+,
Hg2+, Ca2+, Co2+, Zn2+, Cu2+, Ni2+, Pb2+, Al3+, Fe3+,

Cr3+ and Cr6+, 1.0 eqv. in H2O) and anions (F�, Cl�, Br�,
I�, CO3

2–, HCO3– and HPO4
2-, 1.0 eqv. in H2O). The sensor L

possessed a weak fluorescence emission at 533 nm with 73 a.
u. intensity under excitation at 320 nm. The excited-state

intramolecular proton transfer (ESIPT) eventually the pheno-
lic proton and C = N isomerization, resulting in non-
fluorescent ligand (Tang et al., 2011; Chen et al., 2021). It

was noted that only Al3+ ion exhibited a drastic enhancement
in the PL emission spectra. The excitation at 320 nm gave
results for the emission intensities of L-metal ion and L-

anion solutions in the presence of K+, Ag+, Ba2+, Mn2+,
Mg2+, Sn2+, Hg2+, Ca2+, Co2+, Zn2+, Cu2+, Ni2+, Pb2+,
Al3+, Fe3+, Cr3+, Cr6+, F�, Cl�, Br�, I�, CO3

2–, HCO3
– and

HPO4
2-, which were found to be 74, 98, 78, 73, 101, 102, 79,

102, 101, 96, 103, 96, 95, 789, 39, 104, 74, 82, 78, 77, 91, 91,
92 and 91 a.u, respectively, at 533 nm of maximum emission
wavelength of L as displayed in Fig. 4. All of the emission

bands exhibit the same spectral envelope. As demonstrated
in Fig. 4, the fluorescence enhancement performance in the
presence of Al3+ observed at 533 nm was 11-fold greater than
that of the control by emitting white color, indicating that L

came up with a high fluorescent selectivity towards Al3+, while
no fluorescence was monitored in the presence of other metal
ions and anions.

Due to the isomerization of the C = N bond in the excited
state via the excited state intra molecular proton transfer
(ESIPT) (Manna et al., 2020), the ligand showed weak fluores-
cence. Specific metal ion binding through O donor site and the

C = N moiety of L restricted C = N isomerization and thus,
emission intensity could be enhanced due to the chelation
enhancement fluorescence (CHEF) effect (Gupta and

Kumar, 2016). The participation of Al3+ in the ethanol solu-
tion of L eventuated with an emission enhancement at
533 nm due to chelation-enhanced fluorescence (CHEF)

(Kim et al., 2003) on account of binding with Al3+, which
could be related to the formation of a rigid system by the coor-
dination of Al3+, leading to the disruption of the ESIPT fea-

ture (Salarvand et al., 2019; Li et al., 2013). The fluorescence
enhancement happens due to the non-bonded electrons of N
atom from C = N took part in coordination with Al3+ ion
to inhibit the isomerization process. The coordination of L

with Al3+ ion hindered the rotation around the C = N bond
and prevented the C = N isomerization. The result was the
inhibition of ESIPT in the ligand, resulting in a fluorescence

enhancement and inducing chelation-enhanced fluorescence,
thereby generating white fluorescence in the ligand–metal
product. The selectivity and sensitivity took part in fluores-

cence enhancement by Al3+ ion capturing and the PL emission
change through CHEF effect (Sahana et al., 2013; Shyamal
et al., 2016; Manna et al., 2020; Shyamal et al., 2016) due to
retardation of C = N isomerization. The presence of C = N

and O sites of L, which showed strong affinity towards a hard
metal like Al3+, would form the chelation with Al3+ and, thus,
would be the essence of a promising turn-on fluorescent sensor

for Al3+ ion, as seen in Fig. 5.
The fluorescence quantum yield (QY) of L-Al3+system was

calculated as 21.3%. Time-dependent (0–3600 sec) fluorescence

measurement pointed out that irradiation at 320 nm within
3600 sec eventuated with no considerable changes in fluores-
cence emission intensity as displayed in Fig.S4, showing that

the L-Al3+ system possessed a remarkable photostability in
EtOH:H2O (1:1, v/v) media.

To further corroborate the high selectivity of L sensor
towards Al3+, competitive tests were conducted in the pres-



Fig. 4 Fluorescence emission spectra of L (0.1 mM) treatment with various metal ions and anions such as Ag+, K+, Mg2+, Ba2+,

Mn2+, Hg2+, Sn2+, Co2+, Ca2+, Ni2+, Cu2+, Zn2+, Pb2+, Al3+, Fe3+, Cr3+, Cr6+, F�, Cl�, Br�, I�, CO3
2–, HCO3– and HPO4

�

(0.5 mM) at room temperature in EtOH: H2O (1:1, v:v, kex = 320 nm, excitation and emission slit widths = 5 nm).

Fig. 5 Suggested mechanism of binding of L with Al3+.
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ence of selected metal ions and anions. The selectivity of L
towards Al3+ was examined in a ternary mixture containing

L (0.1 mM), Al3+ (0.5 mM) and other interfering metal ions
Fig. 6 (blue bar): metal ion selectivity profile of the sensor L (0.1 mM

bar): change in emission of L + Al3+ + Mn+ (0.5 mM) at 533 nm.
(K+, Ag+, Ba2+, Mn2+, Mg2+, Sn2+, Hg2+, Ca2+, Co2+,
Zn2+, Cu2+, Ni2+, Pb2+, Al3+, Fe3+, Cr3+ and Cr6+,
0.5 mM) and anions (F�, Cl�, Br�, I�, CO3

2–, HCO3– and

HPO4
2-, 0.5 mM), followed by excitation at 320 nm. Fig. 6

and Fig. 7 revealed that the fluorescence intensity of L-Al3+

at 533 nm had no obvious fluorescent alterations in the pres-

ence of the other metal ions and anionic species, concluding
with the fact that the tested ions had no prominent impact
on fluorescence intensity of the L-Al3+ system.

3.4. Fluorescence titration study and limit of detection (LOD)
of aluminum ions

Non-fluorescence property of the ligand (L) was altered by the

addition of Al3+ to the yellow colored L solution resulting in a
bright white fluorescence under excitation at 320 nm. The flu-
); (orange bar): change in emission of L + Al3+ (0.5 mM); (purple



Fig. 7 (blue bar): anion selectivity profile of the sensor L (0.1 mM); (orange bar): change in emission of L + Anionn- (0.5 mM); (pruple

bar): change in emission of L + Al3+ + Anionn- at 533 nm.

Fig. 8 Fluorescence emission spectra recorded for L (0.1 mM) upon increasing concentration of Al3+ ion (2.50 � 10-4, 2.25 � 10-4,

1.75 � 10-4, 1.50 � 10-4, 1.25 � 10-4, 1.0 � 10-4, 5.0 � 10-5 1.25 � 10-5, 6.125 � 10-6, 3,125 � 10-6, 1,56 � 10-6, 7.8 � 10-7, 3.9 � 10-7,

1.95 � 10-7 M).

Fig. 9 Plot of the fluorescence intensity at the PL emission peak

of L at 533 nm versus the concentration of Al3+ (0.25 mM –

0.195 lM).
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orescence titration of L upon the addition of different concen-
trations of Al3+ from 0.25 mM to 0.195 lM at 533 nm of an

emission wavelength revealed an increase in the fluorescence
emission intensity, as seen in Fig. 8.

To make a detailed investigation about the binding mode,

limit of detection (LOD) of L for Al3+ was determined using
fluorescence titration results. Fig. 9 represents the fluorescence
emission intensity of L (I) in the presence of Al3+ at 533 nm

versus the concentration of Al3+ ions ranged from 0.25 mM
to 0.195 lM. From the changes in Al3+ dependent fluores-
cence intensity (I533 nm), the LOD in EtOH:H2O (1:1, v/v)

was estimated to be 2.59 � 10-7 M, using the formula of
LOD = 3r/k formula (Analytical Methods Committee,
1987), where r was standard deviation of ten control measure-
ments of L, and k was the slope of the line created by plotting

the fluorescence intensities versus [Al3+] values. The calculated
LOD value was below the tolerable concentration of Al3+ in
drinking water (2.41 lM) as defined by WHO, and Al3+ levels

higher than 2.4 lM may cause encephalopathy as reported in



Table 1 Comparison of same Schiff base ligands for the selectivity of Al3+.

Structure of chemosensor Media LOD (mol L-1) Ka (M�1) Reference

EtOH/HEPES buffer

(95:5, v/v)

1.08 x10-7
6.53 x103 (Zhu et al., 2016)

MeOH-H2O

(9:1 v/v)
6.4 � 10-7 1.546 � 105 (Salarvand et al., 2019)

CH3CN 3.2 � 10-7 3.148 � 104 (Singh et al., 2013)

MeOH-H2O

(1:1 v/v)
5.0 � 10-5 4.0 � 106 (Kumar et al., 2015)

CH3CN: H2O

(1:1, v:v)
1.98 � 10-6 4.35 � 104 (Huang et al., 2017)

EtOH/ H2O

(1:1, v:v)
2.2 � 10-7 1.89 � 104 (Wang et al., 2015)

H2O:DMSO

(1:9, v/v)
1.27 � 10-6 6.4 � 104 (Roy et al, 2021)

MeOH-H2O 5.2 � 10-6 1.05 � 104 (Kaur and Kaur, 2017)

MeOH-Tris-HCl buffer

(1:1, v/v) 1.15 � 10-7
1.76 � 102 M-1/

2 (Manna et al., 2020)

MeOH-water (2:1, v/v) 1.26 � 10-8 1.23 � 105 (Ghorai et al., 2016)

CH3CN: H2O

(1:1, v:v)
1.17 � 10-7 2.35 � 105 (Chandra et al., 2020)

EtOH/deionized H2O (1:1, v/v)
2.59 � 10-7 5 � 104

This study
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the literature (Kaur, and Kaur, 2017), indicating that L was
highly sensitive to the recognition of Al3+ ions at the sub-

micromolar concentration.
Some reported similar studies about Schiff base sensors for

the recognition of Al3+ and the calculated LOD, Ka values are

arranged in Table 1. Based on the aforementioned findings,
low LOD value of L for Al3+ specified that the Schiff base syn-
thesized in this study demonstrated a distinctive selectivity

compared to other Schiff base ligands sensing aluminum in
the literature (Roy, 2021; Salarvand et al., 2019; Kaur, and
Kaur, 2017; Zhu et al., 2016; Singh et al., 2013; Kumar
et al., 2015; Huang et al., 2017; Wang et al., 2015, Manna

et al., 2020; Ghorai et al., 2016; Chandra et al. 2020). Although
Schiff base sensor with 2-hydroxy-1-benzaldehyde and
anthracene moieties possessed a fluorescence response towards

both Hg (II) and Al (III) in the presence of interfering metal
ions (Kaur, and Kaur, 2017), the ligand synthesized in this
study formed a chelate between only Al (III) in the presence
of competing metal ions and anions, indicating a specific selec-
tivity of L. The lowest LOD value for the Schiff base

chemosensor synthesized by Ghorai et al. had a fluorescence
response towards both Hg (II) and Al (III) (Ghorai et al.,
2016). Another Schiff base containing pyrene and o-vanillin

units synthesized by Shyamal et al. had 8.64 nM of LOD for
Al3+ in CH3CN: H2O (95:5, v:v) (Shyamal et al., 2016a).

Since the analysis of an analyte in a high water content sol-

vent was more suitable for the analysis of real samples, the
water content was 50% for the complete dissolution of the syn-
thesized Schiff base in this study.

3.5. Binding affinity of L towards Al3+

A meticulous study was carried out to comprehend the binding
behavior of L towards Al3+ ions using Job’s plot analysis

based on fluorescence measurement (Likussar and Boltz,
1971; Job, 1984). In this method, standard nine mixtures were



Fig. 10 Benesi-Hildebrand plot of 1/I-I0 versus 1/[ Al3+].
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prepared by adding aliquots of Al3+ equivalent to 9–1 mmol
into a series of 10 mL volumetric flasks containing aliquots
of L equivalent to 1–9 mmol so that each flask contained a total

number of 10 mmol. Job’s plot was acquired by plotting PL
emission values at 533 nm versus the mole fraction of ligand
(L) where the transition point for fluorescence intensity was

observed at the molar fraction of 0.5, specifying that 1:1 stoi-
chiometric complexation of L with Al3+ (Fig. S5). To support
1:1 binding mode, LC-MS/MS of L and L + Al3+ were pre-
sented. The LC-MS/MS spectrum of L revealed an intense

peak at m/z 365 corresponding to [L + H]+ (Fig S6). Upon
addition of 20 eqv. of Al3+, a main peak at m/z 410 appeared
and could be assignable to the 1:1 formation of [L + Al

(III) + H2O + H]+ (Fig. S7). Al3+ used two 3-level orbitals
to make chelation with L and one 3-level orbital to accept lone
pair from one water molecule. The result was to obtain an iso-

topic peak at m/z 410 of [L + Al (III) + H2O + H]+.
The calculation of the binding constant (Ka) for the

L + Al3+ chelation was obtained according to Benesi-
Hildebrand expression (Benesi and Hildebrand, 1949). Fluo-

rescence titration study provided a plot for the calculated val-
ues of [1/(I-I0)] at 533 nm depending on 1/[Al3+], as seen in
Fig. 10. The slope of the line drawn by using Benesi–Hilde-

brand equation led us to calculate the association constant
(Ka) of the L + Al3+ complex, which was found to be
5 � 104 M�1. I and I0 were the fluorescence emission intensities
Table 2 CV results of L and L + Al3+.

Compound aEox (eV)
bEred (eV)

L 1.5403

1.1504

0.9963

�1.5579

�0.8365

L + Al3+ 1.6144

1.1547

0.8992

�0.9275

a Onset oxidation potential. b Onset reduction potential.
c Highest occupied molecular orbital. d Lowest unoccupied molecular o
e Electrochemical band gap.
of L in the presence and in the absence of Al3+ ion,
respectively.

3.6. Reversibility process using electrochemical techniques

The reversibility of the chemosensor to target ion binding is a
very important aspect in practical application. Accordingly,

the reversibility of L + Al3+ chelation was studied using elec-
trochemical techniques (Patil et al., 2019). To estimate oxida-
tion–reduction behavior of L, redox behavior was

investigated by the cyclic voltammetry (CV) technique with a
predictable three-electrode cell assembly with Pt wire as
counter-electrode, glassy carbon as a working electrode and

Ag/AgCl as the reference electrode. The supporting electrolyte
was 0.1 M TBAPF6 in acetonitrile solution. The CVs were
monitored at a scan rate of 100 mV s�1 in the potential range
from + 2.0 V to -2.0 V to detect peaks in both forward and

reverse scans at room temperature and under Argon atmo-
sphere. Two quasi-reversible oxidation CV waves representing
the oxidation–reduction process were apparent in Fig. S8. The

HOMO-LUMO energy levels and the calculated band gap val-
ues are tabulated in Table 2. Initial oxidation corresponded to
carbazole oxidation at a potential of 1.15 V, forming the cation

radical (polaron) in one-electron process (Karon and
Lapkowski, 2015). The first oxidation peak was reversible.
Since each discrete oxidation process was also assigned to a
unique one-electron transfer, the other oxidation then formed

at around 1.54 V associated with hydroxyl group, forming
polaron structure when scanning to higher anodic potentials
(Epa) (Seo et al., 1966). The cathodic reduction peak (Epc) of

L, seen at �1.55 V, was due to the reduction process observed
via protonation of azomethine nitrogen of C = N linkage
(Kolcu and Kaya, 2016). The HOMO and LUMO energies

designating the ability to donate an electron and the capability
to accept the electron were calculated using the formulas of
EHOMO= -(4.39 + Epa) eV and ELUMO= -(4.39 + Epc),

respectively. To gain knowledge about the electron transition
to take place in the ligand and in the ligand-Al3+ complex,
the calculation of band gap (E’g) energy between HOMO
and LUMO was fulfilled. The energy gap had control over

the electron transition to occur in the ligand and in the ligand
bound to metal ion. E’g was found to be 3.10 eV and decreased
to 2.52 eV after addition of Al3+ ion, concluding with the fact

that the formation of L + Al3+ system lowered the energy
required for the electronic transition. These results were also
in conformity with the result obtained from UV–vis spectral
cHOMO (eV) dLUMO (eV) eE’g (eV)

�5.93

�5.54

�2.83

�3.55

3.10

�6.00 �3.48 2.52

rbital.
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studies, in which a decrease in the calculated optical band gap
(Eg) value of L after coordination to Al3+ ions, as a result of a
chelation between L and Al3+. The disappearance of the

reduction peak of L at �1.55 V, as seen in Fig. 16, in presence
of Al3+ confirmed that chelation took place between Al3+ ions
and L. The reversibility feature, which was essential in devel-

oping a sensor (Rana et al., 2017), could be tested by titration
of L-Al3+ complex with 1.0 equivalent of Na2EDTA, which
resulted in the recovery of the original C = N reduction peak

of L in the voltammogram, as displayed in Fig. 16. The reap-
pearance of the original -C = N- reduction peak of L revealed
that EDTA displaced the metal ion in L-Al3+ system, confirm-
ing decomplexation of the L-Al3+ adduct; in other words, L

could be successfully recovered.

4. Conclusion

A Schiff base chemosensor comprising carbazole and 2-
hydroxybenzaldehyde moieties was developed for the selective
recognition of aluminum ions in aqueous-alcohol medium,

coupled with its straightforward synthesis. Simple and inex-
pensive fluorescent probe exhibited a turn-on fluorescence
response toward Al3+ at sub micromolar range over other

metal ions and anions. The fluorescence enhancement upon
formation of sensor-Al3+ adduct was observed due to inhibi-
tion of C = N isomerization along with ESIPT, concomitantly

CHEF effect predominated in the system, which was asserted
itself by a prominent color change from yellow to white under
UV lamp. Since PL emission spectroscopy was to be seen as
supplementary to the optical measurement, fluorescence mea-

surements were conducted for appraising the results. The
change in fluorescence intensity was such that the synthesized
Schiff base exhibited ‘‘turn-on” mode of high sensitivity

towards Al3+ ions. The fluorescence quantum yield (QY) of
L in the presence of Al3+ was found to be 21.3% along with
presenting an outstanding photostability in 3600 sec under

excitation at 320 nm. The limit of detection (LOD) of L and
the binding constant (Ka) was found to be 2.59 � 10-7 M
and 5 � 104 M�1, revealing a chemosensor, which could detect

sub-micromolar concentration of Al3+ in aqueous solution
along with a stable complex formation of L-Al3+. Keeping
in view that the decrease in the band gap energy was observed,
the probability of binding ability of L with Al3+ increased.

The sensing ability and functional reversibility of L could
make this sensor appealing to detect Al3+ ions. Fluorescence
sensing ability of L to detect Al3+ ions in aqueous-ethanol

environment make it to use as a fluorescent probe in biological
imaging in the cells.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.arabjc.2022.103935.
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