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Abstract A series of novel unsaturated hydroxy and non-hydroxy fatty acid residue substituted

1,3,4-selenadiazoles were described here. These derivatives were synthesized from the reaction of

fatty acid hydrazide 1(a–d) with acetyl chloride in the presence of anhydrous sodium carbonate

in tetrahydrofuran and water at 0 �C, to form N0-acetyl undec-10-enoic hydrazide 2a, N0-acetyl-

(9Z)-octadec-9-enoic hydrazide 2b, N0-acetyl-(9Z, 12R)-12-hydroxy-9-enoic hydrazide 2c, and N0-

acetyl-(9R, 12Z)-9-hydroxy-12-enoic hydrazide 2d. Then these hydrazines (dicarbonyl compound)

on reaction with Woollin’s reagent (WR) in toluene led to the corresponding 2-(dec-90-enyl)-5-

methyl-1,3,4-selenadiazole 3a, 2-[(80Z)-heptadec-80-enyl]-5-methyl-1,3,4-selenadiazole 3b, 2-[(80Z,

110R)-110-hydroxy-octadec-80-enyl)]-5-methyl-1,3,4-selenadiazole 3c, and 2-[(80R, 110Z)-80-hydroxy-

octadec-110-enyl)]-5-methyl-1,3,4-selenadiazole 3d, respectively. These synthesized compounds were

characterized on the basis of IR, 1H NMR, 13C NMR, mass spectra and elemental analysis results.
ª 2014 King Saud University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The first organo selenium compound diethyl selenide was syn-
thesized in 1836 (Löwig, 1836). The selenoheterocyclic com-
pounds are closely related to the sulfur compounds but their

properties are quite different from the sulfur compounds. A
number of hetero organo selenium compounds (Mlochowski
et al., 2007), such as isoselenazole, selenosulfide, selenadiaz-

oles, and selenatriazoles, have been known from the literature.
Organo selenium compounds found its application in vari-

ous fields such as organic synthesis (Patai and Rappoport,

1986; Back, 1994), ligand chemistry (Hope and Levason,
1993), material synthesis (Bochman, 1996), biochemistry
(Burk, 1994), photography (Yamashita et al., 1994) and bio-
logically relevant processes. In the organic synthesis, the org-

ano selenium compounds can be used as an electrophile or
as nucleophile for functional group manipulation in a variety
of substrates under mild condition (Paulmier, 1986) and also

utilized in modern asymmetric synthesis, which have generated
a new trend in organo selenium chemistry (Wirth, 1999). In
biochemistry field, the selenium atom is incorporated in the

selenocystine residues in various enzymes such as tetraiodo
thyronine-50-deiodinase, formate dehydrogenase, glycine
reductase, glutathione peroxidase, plasma protein P (Böck,
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1994) and hydrogenase, where it has been found to act as more
reactive nucleophile than their sulfur counterparts. Sometimes
organo selenium compounds are also used as selenoenzyme

[mimics of glutathione peroxidase (GPx)], that protects the cell
membrane from oxidative damage and helps in the reduction
of various hydroperoxides (Mugesh and Singh, 2000).

In addition to these chemical properties, substituted organo
selenium compounds also show a number of biological proper-
ties (Prabakaran et al., 2011), good electro optical properties

(Velusamy et al., 2005), electroluminescent (Yang et al.,
2005), and non linear optic potential candidates for two pho-
ton absorption and sensor application (Ostrowski et al.,
2003). Substituted selenadiazole derivatives have been reported

to possess cytotoxic (Jalilian et al., 2003), and antiproliferative
activities as well. These compounds are found to be active
against various types of cancer cells such as colon (HT-29),

breast (MCF-7), lung (HTB-54) and leukemia (CCRF-CEM)
(Plano et al., 2010) and also active against HIV-I replication
in MT4-cells (Zhan et al., 2009). Apart from the above men-

tioned biological properties selenadiazoles, have also been
found to possess anticonvulsant, antitumor, antiinflammatory,
analgesic, antibacterial, fungicidal (Shealy and Clayton, 1967;

Padmavathi et al., 2009; Parveen et al., 2009; El Sadek et al.,
2013) and pesticidal activities.

1,2,4-Aryl selenadiazoles can be obtained by the reaction of
selenocarboxamides in the presence of iodine (Becker and

Meyer, 1904; Cohen, 1978; Dotsenko et al., 2013) and substi-
tuted 1,3,4-selenadiazoles can be synthesized from the reaction
of N,N0-diaryloxalodihydrazonoyldichlorides with potassium

selenocyanate (Farag et al., 1994), but the selenocarboxamide
gives better yield and less reaction time in the presence of pal-
ladium catalyst (Al-Rubaie et al., 2002). Substituted and

Multi-arm/Multiple 1,2,3-selenadiazole rings have been pre-
pared by the reaction of selenium dioxide with a-ketomethyl-
ene semicarbazones or hydrazones in the presence of acetic

acid (Saravanan et al., 2007; Al-Smadi and Ratrout, 2005;
Al-Smadi and Al-Momani, 2008). The synthesis of 1,2,3-selen-
adiazoles under ultrasonic and microwave irradiation has also
been reported in the literature (Shinde et al., 2010). 3,5-Diaryl-

1,2,4-selenadiazoles have been synthesized from selenoamides
(Rong and Sen, 2002), these selenoamides are not only useful
for the synthesis of selenium-nitrogen heterocycles but also

for the reaction with various organic and inorganic reagents
because of the high reactivity of their carbon selenium double
bond. The selenadiazoles are utilized in the synthesis of cad-

mium selenide (Khanna et al., 2004), which is an important
semi conductor that can act as optoelectronic material. Here,
we are generally focusing on the synthesis of 2,5-disubsti-
tuted-1,3,4-selenadiazoles. A number of methods have been

reported for their syntheses, all these methods are limited
due to some consequences. But 2,4-diphenyl-1,3-diselenadi-
phosphetane-2,4-diselenide (Hua et al., 2009) [PhP(Se)

(l-Se)]2, is found to be the more appropriate reagent in every
aspect for the synthesis of 2,5-disubstituted-1,3,4-selenadiaz-
oles, although WR is very useful in the synthesis of a wide vari-

ety of cyclic and acyclic selenium containing compounds (Hua
et al., 2013).

The fatty acid organo selenium compounds were synthe-

sized earlier (Agarwal et al., 1990; Saeed et al., 1991) from
our laboratory. In this paper, we report the synthesis of fatty
acid residue substituted 1,3,4-selenadiazoles with Woollin’s
reagent (WR) through the corresponding 1,2-dicabonyl com-
pound selenation.
2. Results and discussion

We report the synthesis of 2-alkenyl/hydroxy alkenyl-5-alkyl-
substituted-1,3,4-selenadiazole 3(a–d), from the corresponding

intermediate N0-acetyl fatty acid hydrazide 2(a–d), on reaction
with Woollin’s reagent in dry toluene. These substituted
hydrazides 2(a–d), were synthesized by the reaction of fatty

acid hydrazide 1(a–d), with acetyl chloride in THF/H2O sol-
vent in the presence of anhydrous Na2CO3 at 0 �C. The syn-
thetic pathway for the synthesis of substituted fatty acid

hydrazides 2(a–d) and 2,5-disubstituted 1,3,4-selenadiazoles
3(a–d), is presented in Scheme 1 and proposed mechanism
of the reaction was also described. All the synthesized com-

pounds were purified by column chromatography and charac-
terized by IR, 1H NMR, 13C NMR elemental analyses and
mass spectra. The detailed spectral description of compound
2(a) is given below.
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The IR spectrum of the compound showed characteristic
peaks at 3314, 3219 cm�1 (N‚H stretching), 1628 cm�1

(C‚O stretch) and at 1265 cm�1 (NAN stretch). The 1H

NMR spectra of the compound showed some diagnostic
peaks. Two singlets were observed at d 9.07, 8.82 for two
NAH stretching. The methine proton of C10 showed a signal
at d 5.79. The methylene protons designated as Hb and Ha, dis-

played two distinct d values when coupled with adjacent C10

methine protons. Thus, spectra showed two doublets at d
4.98, 4.92 and a sharp singlet at d 2.17 for methyl protons.

The 13C NMR spectra showed peaks at d 174.2, 172.1 for
carbonyl carbon and at 18.5 for methyl carbon adjacent to
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Scheme 1 Synthesis of novel 2,5-disubstituted 1,3,4-selenadiazoles.
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carbonyl carbon. Elemental analysis result and molecular for-
mula were also consistent with the mass spectra. The charac-
terization data of compound 3(a) are discussed below.

The IR spectrum of compound 3(a), showed characteristic
peaks at 1461 cm�1 (C‚N stretch), 1268 cm�1 (NAN stretch),
and 1082 cm�1 (CAN stretch). The 1H NMR spectra of the
compound showed some diagnostic peaks. The methine proton

C9 showed a signal at d 5.80, the methylene protons Hb and Ha

showed two separate doublets at d 4.99, 4.93 respectively and a
sharp singlet at d 2.10 for methyl protons. The 13C NMR spec-

tra showed diagnostic peaks at d 168.8, 158.7 for ring carbons.
Elemental analysis showed the significant results. A mass spec-
trum of the compound was also consistent with assigned

molecular formula.
3. Experimental

3.1. Physical measurements

Undec-9-enoic acid (98%) and (9Z)-octadec-10-enoic acid
(97%) were purchased from the Fluka Chemicals, Switzerland.
(9Z, 12R)-12-Hydroxy-octadec-9-enoic (Ricinolic) and (9R,

12Z)-9-hydroxy-octadec-12-enoic (Isoricinolic) acids were iso-
lated from the naturally occurring Wrightia tinctoria seeds by
standard extraction procedure (Gunstone, 1954). The solvents
used for the extraction procedure, were purified by the normal
distillation process. Woollin’s reagent was commercially avail-
able and purchased from Sigma Aldrich, USA.

The fatty chain substituted 1,3,4-selenadiazole derivatives
were synthesized by adopting the reported procedure (Hua
et al., 2009). The purity of the newly synthesized compounds
was tested on glass plates coated with silica gel G (for thin

layer chromatography) and purification of the synthesized
compounds was carried out by column chromatography with
silica gel (mesh 60–120 for column chromatography), pur-

chased from Merck, Mumbai. The melting points were deter-
mined on an electro thermal digital melting point apparatus
on glass cover slips and are uncorrected. Infrared spectra

(IR) were recorded as KBr-pellets on a FT-IR spectrometer
in cm�1. The 1H NMR and 13C NMR spectra were recorded
on a Bruker Avance II-400 spectrometer in CDCl3 using Me4Si

(TMS, Tetramethylsilane) as standard. Chemical shifts were
recorded in d (delta) units. Mass spectra were recorded on a
Jeol SX-102/DA-600 (FAB) spectrometer.

3.2. General procedure for the synthesis of fatty acid hydrazides
1(a–d)

Fatty acid hydrazides were synthesized from the literature

reported method (Rauf et al., 2007), previously synthesized
in our laboratory.
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3.3. General procedure for the synthesis of dialkyl hydrazines/
substituted fatty acid hydrazides 2(a–d)

A suspension of fatty acid hydrazides (0.01 mol) and anhy-
drous sodium carbonate (0.01 mol) was prepared in 60 mL of

tetrahydrofuran (THF) and 60 mL of water. This suspension
was gradually added to a continuously stirred solution of
acetyl chloride (0.11 mol) in 30 mL of THF at 0 �C. The
reaction was stirred at 0 �C for 4–5 h and then at room temper-

ature for 8 h. A precipitate was obtained, which was then
separated out by filtration and wash the precipitate 2–3 times
with cold THF, then with the diethyl ether and finally dried

in vacuum. Spectral description of the newly synthesized
compounds was given below.

3.3.1. N0-Acetyl undec-10-enoic hydrazide 2(a)

White powder; Yield: 74%; m.p. 98–99 �C; IR (KBr, cm�1):
3314, 3219 (NAH stretch), 2913 (CAH asymm.), 2850 (CAH
symm.), 1628, 1588 (C‚O), 1265 (NAN stretch), 1183 (CAC

aliphatic), 1082 (CAN stretch); 1H NMR (400 MHz, CDCl3,
d, ppm): 9.07, 8.82 (s, 1H, NHANH), 5.79 (tdd, 1H, JHA9CH2

= 5.7 Hz, JHAHa
= 9.0 Hz, JHAHb

= 15.7 Hz, CH2‚CH),

4.98 (dd, 1H, JHaAH = 9.0 Hz, JHaAHb
= 1.0 Hz, HaC‚CH),

4.92 (dd, 1H, JHbAH = 15.7 Hz, JHbAHa
= 1.0 Hz, HbC‚CH),

2.25 (t, 2H, J = 7.5 Hz, CH2CO), 2.17 (s, 3H, COCH3), 2.03
(m, 2H, ‚CHCH2), 1.63 (m, 2H, ‚CH2CH2CO), 1.34 (br.s,

10H, CH2(CH2)5);
13C NMR (100 MHz, CDCl3, d, ppm):

174.2, 172.1, 128.9, 128.1, 37.1, 36.9–20.9, 18.5; MS (ESI):
m/z = 263.1 [M+Na]+, Calculated = 263.2. Analysis found:

C, 64.77; H, 9.99; N, 11.43%. C13H24N2O2 requires C, 64.97;
H, 10.04; N, 11.65%.

3.3.2. N0-Acetyl-(9Z)-octadec-9-enoic hydrazide 2(b)

White powder; Yield: 76%, m.p. 123 �C; IR (KBr, cm�1):
3322, 3228 (NAH stretch), 2924 (CAH asymm.), 2852 (CAH
symm.), 1633, 1598 (C‚O), 1282 (NAN stretch), 1176 (CAC

aliphatic), 1094 (CAN stretch); 1H NMR (400 MHz, CDCl3,
d, ppm): 9.20, 8.53 (s, 1H, NHANH), 5.26 (m, 2H, CH‚CH),
2.67 (t, 2H, J = 7.6 Hz, CH2CO), 2.10 (s, 3H, COCH3), 2.02

(m, 4H, CH2CH‚CHCH2), 1.93 (m, 2H, CH2‚CH2CO),
1.62 (m, 2H, CH2CH3), 1.26 (br.s, 18H, (CH2)9), 0.80 (dis.t,
3H, CH2CH3);

13C NMR (100 MHz, CDCl3, d, ppm): 175.1,

173.5, 131.2, 129.5, 36.9, 35.4–21.5, 18.1, 14.6; MS (ESI): m/
z= 361.5 [M+Na]+, Calculated = 361.4. Analysis found:
C, 70.67; H, 11.09; N, 8. 17%. C20H38N2O2 requires C,
70.97; H, 11.29; N, 8.27%.

3.3.3. N0-Acetyl-(9Z, 12R)-12-hydroxy-octadec-9-enoic
hydrazide 2(c)

White powder; Yield: 65–70%; m.p. 119 �C; IR (KBr, cm�1):

3320, 3236 (NAH stretch), 2920 (CAH asymm.), 2852 (CAH
symm.), 1631, 1598 (C‚O), 1272 (NAN stretch), 1166 (CAC
aliphatic), 1041 (CAN stretch); 1H NMR (400 MHz, CDCl3,

d, ppm): 9.15, 8.67 (s, 1H, NHANH), 5.40 (m, 2H, CH‚CH),
3.78 (m, 1H, CHOH), 2.36 (t, 2H, J = 7.6 Hz, CH2CO), 2.12
(s, 3H, COCH3), 2.05 (m, 4H, CH2CH‚CHCH2), 1.98 (m,

1H, CHOH), 1.64 (m, 2H, CH2CH2CO), 1.60 (m, 2H, CH2-

CHOH), 1.30 (br.s, 16H, (CH2)8), 0.89 (dis.t, 3H, CH2CH3);
13C NMR (100 MHz, CDCl3, d, ppm): 176.0, 175.2, 130.8,

130.1, 71.5, 36.2, 35.1–20.9, 18.9, 13.8; MS (ESI): m/
z= 377.4 [M+Na]+, Calculated = 377.4. Analysis found:
C, 67.67; H, 10.69; N, 7. 89%. C20H38O3N2 requires C,
67.77; H, 10.78; N, 7.90%.

3.3.4. N0-Acetyl-(9R, 12Z)-9-hydroxy-octadec-12-enoic
hydrazide 2(d)

Light yellow powder; Yield: 72%; m.p. 122 �C; IR (KBr,

cm�1): 3326, 3238 (NAH stretch), 2925 (CAH asymm.), 2848
(CAH symm.), 1627, 1578 (C‚O), 1299 (NAN stretch),
1170 (CAC aliphatic), 1054 (CAN stretch); 1H NMR

(400 MHz, CDCl3, d, ppm): 9.23, 8.63 (s, 1H, NHANH),
5.42 (m, 2H, CH‚CH), 3.75 (m, 1H, CHOH), 2.35 (t, 2H,
J= 7.5 Hz, CH2CO), 2.16 (s, 3H, COCH3), 2.07 (m, 4H, CH2-

CH‚CHCH2), 1.90 (m, 1H, CHOH), 1.59 (m, 2H, CH2CH2-

CO), 1.48 (m, 2H, CH2CHOH), 1.31 (br.s, 16H, (CH2)8), 0.88
(dis.t, 3H, CH2CH3);

13C NMR (100 MHz, CDCl3, d, ppm):

177.2, 176.8, 132.3, 131.4, 72.4, 38.7, 32.5–25.4, 17.8, 14.0;
MS (ESI): m/z= 377.5 [M+Na]+, Calculated = 377.4. Anal-
ysis found: C, 67.64; H, 10.59; N, 7.79%. C20H38O3N2 requires
C, 67.77; H, 10.78; N, 7.90%.

3.4. General procedure for the synthesis of 2,5-disubstituted-

1,3,4-selenadiazoles 3(a–d)

An equimolar mixture of hydrazine derivatives (2) (0.01 mol)
and Woollin’s reagent (WR) (0.01 mol) in dry toluene, was
refluxed for 12 h. The red suspension was obtained, which

was disappeared on refluxing. Finally a brown suspension was
obtained along with the gray metal selenium. Progress of the
reaction was monitored by TLC. After completion of the reac-

tion, the reaction mixture was cooled to room temperature and
removed the excess of toluene by drying the suspension in vac-
uum. After that, the residue was dissolved in dichloromethane
and purified by column chromatography (with appropriate elu-

ent), to give the target product as oily liquid. For the calculation
of molecular weight, the most abundant isotope of selenium
[80Se, Mol. wt: 79.997] is taken. Spectral description of the

newly synthesized compounds was given below.

3.4.1. 2-(Dec-90-enyl)-5-methyl-1,3,4-selenadiazoles 3(a)

Oily liquid; Yield: 64%; IR (KBr, cm�1): 2919 (CAH asymm.),

2852 (CAH symm.), 1461 (C‚N), 1163–808 (CAC aliphatic),
1268 (NAN stretch), 1082 (CAN stretch); 1H NMR
(400 MHz, CDCl3, d, ppm): 5.80 (tdd, 1H, JHA9CH2

= 5.9 Hz,

JHAHa
= 9.2 Hz, JHAHb

= 16.0 Hz, CH2‚CH), 4.99 (dd, 1H,
JHaAH = 9.2 Hz, JHaAHb

= 1.2 Hz, HaC‚CH), 4.93 (dd, 1H,
JHbAH = 16.0 Hz, JHbAHa

= 1.2 Hz, HbC‚CH), 2.77 (t, 2H,

J= 7.6 Hz, CH2C‚N), 2.10 (s, 3H, ‚CCH3), 1.94 (m, 2H,
‚CHCH2), 1.75 (m, 2H, CH2CH2C‚N), 1.27 (br.s, 10H,
CH2(CH2)5);

13C NMR (100 MHz, CDCl3, d, ppm): 168.8,
158.7, 129.9, 128.8, 36.3, 35.5–22.4, 17.5; MS (ESI): m/

z= 309.2 [M+Na]+, Calculated = 309.1. Analysis found: C,
54.45; H, 7.69; N, 9. 69%. C13H22N2Se requires C, 54.55; H,
7.73; N, 9.78%.

3.4.2. 2-[(80Z)-Heptadec-80-enyl]-5-methyl-1,3,4-
selenadiazoles 3(b)

Oily liquid; Yield: 66%; IR (KBr, cm�1): 2927 (CAH asymm.),

2855 (CAH symm.), 1457 (C‚N), 1171–790 (CAC aliphatic),
1278 (NAN stretch), 1084 (CAN stretch); 1H NMR (400 MHz,
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CDCl3, d, ppm): 5.15 (m, 2H, CH‚CH), 2.27 (t, 2H,
J = 7.4 Hz, CH2C‚N), 2.10 (s, 3H, ‚CCH3), 2.01 (m, 4H,
CH2CH‚CHCH2), 1.46 (m, 2H, CH2CH2C‚N), 1.18 (br.s,

20H, (CH2)10), 0.82 (dis.t, 3H, CH2CH3);
13C NMR

(100 MHz, CDCl3, d, ppm): 167.1, 159.2, 134.2, 133.3, 37.0,
36.8–20.5, 18.0, 14.2; MS (ESI): m/z = 407.3 [M+Na]+, Cal-

culated = 407.4. Analysis found: C, 62.45; H, 9.36; N, 7. 13%.
C20H36N2Se requires C, 62.49; H, 9.42; N, 7.28%.

3.4.3. 2-[(80Z, 110R)-110-Hydroxy-octadec-80-enyl)]-5-methyl-
1,3,4-selenadiazoles 3(c)

Yellow oily liquid; Yield: 65%; IR (KBr, cm�1): 2924 (CAH
asymm.), 2852 (CAH symm.), 1458 (C‚N), 1169–798 (CAC ali-

phatic), 1254 (NAN stretch), 1094 (CAN stretch); 1H NMR
(400 MHz, CDCl3, d, ppm): 5.29 (m, 2H, CH‚CH), 3.76 (m,
1H, CHOH), 2.34 (t, 2H, J= 7.4 Hz, CH2C‚N), 2.17 (s, 3H,

‚CCH3), 2.02 (m, 4H, CH2CH‚CHCH2), 1.95 (m, 1H,
CHOH), 1.45 (m, 2H, CH2CH2C‚N), 1.43 (m, 2H, CH2-

CHOH), 1.29 (br.s, 16H, (CH2)8), 0.92 (dis.t, 3H, CH2CH3);
13C NMR (100 MHz, CDCl3, d, ppm): 165.2, 158.8, 133.7,

133.4, 72.3, 36.9, 35.3–21.0, 17.9, 14.3; MS (ESI): m/z= 423.5
[M+Na]+, Calculated = 423.3. Analysis found: C, 59.98; H,
9.01; N, 6.89%. C20H36N2OSe requires C, 60.00; H, 9.04; N,

6.99%.

3.4.4. 2-[(80R, 110Z)-80-Hydroxy-octadec-110-enyl)]-5-methyl-

1,3,4-selenadiazoles 3(d)

Yellow oily liquid; Yield: 62%; IR (KBr, cm�1): 2929 (CAH
asymm.), 2857 (CAH symm.), 1453 (C‚N), 1159–818 (CAC
aliphatic), 1262 (NAN stretch), 1075 (CAN stretch); 1H NMR

(400 MHz, CDCl3, d, ppm): 5.37 (m, 2H, CH‚CH), 3.77 (m,
1H, CHOH), 2.33 (t, 2H, J= 7.6 Hz, CH2C‚N), 2.14 (s, 3H,
‚CCH3), 2.03 (m, 4H, CH2CH‚CHCH2), 1.93 (m, 1H,

CHOH), 1.47 (m, 2H,CH2CH2C‚N)1.45 (m, 2H,CH2CHOH),
1.28 (br.s, 16H, (CH2)8), 0.91 (dis.t, 3H, CH2CH3);

13C NMR
(100 MHz, CDCl3, d, ppm): 166.9, 159.8, 132.7, 132.3, 73.4,
36.4, 34.9–21.2, 18.8, 14.4; MS (ESI): m/z= 423.4 [M+Na]+,

Calculated = 423.3. Analysis found: C, 59.97; H, 8.99; N,
6.94%. C20H36N2OSe requires C, 60.00; H, 9.04; N, 6.99%.
4. Conclusion

Different 2,5-disubstituted-1,3,4-selenadiazoles have been syn-
thesized from the substituted fatty acid hydrazides (1,2-dicar-

bonyl compound) by the reaction with acetyl chloride and
Woollin’s reagent, through an intermediate product. This
method is very simple, efficient and fast. The hetero cyclic sele-

nium fatty acid derivatives have been synthesized for the first
time in appreciable yield. In, recent year, attention has increas-
ing been given to the fatty acid organo selenium compounds.

The synthesis of fatty chain substituted 1,3,4-delenadiazoles,
provides a systematic and general route to the synthesis of
other heterocyclic compounds (containing selenium metal
atom as hetero atom), for future development in the field of

heterocyclic chemistry and lipid chemistry.
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