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Abstract The present work set out to establish a novel stopped-flow instrument equipped with a

special constructed mixing chamber containing a plunger to enable a kinetic study of the very rapid

reactions under a dry inert atmosphere glove bag, in particular, for the reactions are sensitive to

moisture or air. A stopped-flow spectrophotometer is essentially a conventional spectrophotometer

with the addition of a system for rapid mixing of solutions. The purpose of this work is to describe

the fabrication and evaluation of specially constructed and in-expensive stopped-flow system. The

evaluation includes determination of the dead-time, relative mixing efficiency, and the measurement

of known rate constants. Herein, a dead-time of about 3.4 ms was determined in the final modified

construction of the stopped-flow apparatus in order to investigate the rapid initial during which

some form of reaction intermediate is presented to be formed.
ª 2011 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

A stopped-flow apparatus was constructed by Roughton and

Hartridge to measure the rate of binding of carbon monoxide
to haemoglobin (Hartridge and Roughton, 1923). In 1940,
Chance developed a modification of the stopped-flow appara-
tus (Chance and Franklin, 1940). Improvements were subse-

quently made by Gibson, Chance, and others (Gibson, 1966;
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Figure 1 Syringes and driving block. A, Polyethylene tube. B,

Reservoirs. C, Insulin syringes. D, Pushing block. E, Polyethylene

tube over the external portion of the needles of the plunger. F,

Teflon plunger. G, Trigger micro switch. H, Spectrophotometric

cell. I, Fastenings to base board. J, Fastening for syringes. K,

Brass stop on the threaded rod.
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Gibson and Greenwood, 1963). Several types of rapid scan

stopped-flow apparatus have been made, using rapid scanning
monochromators (Dye and Feldman, 1966; Wightman et al.,
1974; Coolen et al., 1975; Paradakis et al., 1975; Suelter
et al., 1975), a Vidicon (Milano and Pardue, 1975; Ridder

and Margerum, 1977) and a special photo-tube called an ‘‘im-
age dissector’’ and digital memory circuits (Nakamura, 1971).

Recently a silicon photoarray detector has been used in

place of the image dissector. When used with a pulsed flash
lamp as the light source, this modification can give improve-
ment in the spectral time resolution down to a few microsec-

onds (Brzovic and Dunn, 1995; Yutaka, 1984). By this
improvement, rapid kinetic and scanning techniques have been
employed to observe the reaction of dioxygen with fully re-

duced cytochrome oxidase at room temperature following
stopped flow laser flash photolysis of the CO compound of
the enzyme.

In 1993, at least five companies introduced commercial

rapid-scanning stopped-flow (RSSF) UV/visible spectrometer
systems which employ either silicon photodiode array detec-
tors (four or five) or a single-element (phototube) detector suit-

able for use in the study of enzyme catalytic mechanisms
(Brzovic and Dunn, 1993). This reaction was investigated by
a typical stopped-flow rapid scanning spectrophotometer

experiment as follows. 20 lM solution of ferric myogllobin
(Mb+) in the presence of 1 mM KCN was mixed in the
Gibson–Durram stopped-flow apparatus with 1–100 mM
sodium dithionite (Na2S2O4). The absorption spectrum was

recorded (over a 150 nm wavelength range) by means of a
rapid scanning photodiode array spectrophotometer adapted
to the 2-cm light path cell of the stopped flow apparatus

(Andrea et al., 1990).
In a similar work, the rate constant for cyanide dissociation

from ferrous parascaris haemoglobin was measured as

k= 0.11 s�1 by this method (Giovanni et al., 1994). A dielec-
tric resonator based electron paramagnetic resonance probe
was constructed for stopped-flow kinetic studies (Sienkiewicz

et al., 1994). A new high-pressure stopped-flow apparatus
equipment enables one to monitor fast reactions in various or-
ganic solvents as well as in strongly acidic media (Ishihara
et al., 1999). In 2007, a capacitance cell has been designed

for stopped-flow measurements of very dilute low-relative per-
mittivity liquid solutions (Tjahjono et al., 2007). In recent year,
a combination of microelectrophoresis, laser-trap methodol-

ogy and stopped-flow techniques were designed to study en-
zyme kinetics with single molecule sensitivity (Kahl et al.,
2009). The stopped-flow apparatus has now become a handy

laboratory instrument like a spectrophotometer and it can be
handled easily by students and researchers alike. The
stopped-flow method is one of the most used of the modern

techniques for studying fast reactions in solution. The perfor-
mance of the apparatus and the detection methods are being
further improved and extended. At the same time, the fields
of application are also being broadened to include many bio-

chemical analyses. The evaluation of rate constants might at
first glance be thought somewhat troublesome for those not
used to kinetic procedures. However, recent developments in

microcomputers have enabled first-order rate constant data
to be available immediately following measurement.

The stopped-flow method is confidently expected to become

an even more widely used technique especially in biochemical
analysis. Herein, we set out to improve the instrument config-
uration in order to investigate the rapid initial during which

some form of reaction intermediate is presented to be formed
and we now describe the construction of high performance
stopped-flow apparatus specially designed for this purpose.

2. Apparatus and chemicals

The digital oscilloscope Model Lecroy 9400 dual 125MHZ was

used with a Hewlett Packard plotter. Stopped-flow spectro-
photometer which is presented in the following sections, ini-
tially the plunger, containing the mixing chamber, was

designed to fit into a 10 · 10 · 45 mm spectrophotometer cell
according to the structure illustrated in Fig. 2.

All chemicals were of analytical reagent grade. The concen-

trations used were 5 · 10�2 M for the 99% L-ascorbic acid
obtained from Sigma and 5 · 10�4 M for the 98% 2,6-dichlo-
rophenolindophenol obtained from Fisher. Both the reactants

were in 0.10 M sodium phosphate buffer solution that was pre-
pared by dissolving the 99.999% sodium dihydrogen phos-
phate (Aldrich) in the 99.99% sodium hydroxide obtained
from Aldrich.

3. Results and discussion

3.1. Fluid delivery system

The fluid delivery system is a modification of a design pub-
lished by Strittmatter (Gibson et al., 1964), and the principal
features of the syringe pushing block are shown in Fig. 1. Its

operation can be described as follows: the reactants are drawn
into each syringe through the polyethylene tubing (A) from the
filling valves (B). The flow from the two syringes (C) which

contain the reactant solutions is initiated by movement of
the pushing block (D) which is operated manually. Rapid,
smooth mixing of the reactants, prior to their entry into the
reaction cell, can be obtained by an experienced operator.

However, on many instruments, the pushing block is operated
by a pneumatic or hydraulic system and this is probably better
for inexperienced operators. The solutions then flow into the

mixing chamber through the polyethylene tubes (E), from each



Figure 4 The position of the plunger in the spectrophotometer

cell after mixing. A, Spectrophotometer cell. B, Plunger. C,

Observation region containing freshly mixed solution. D, External

section of stainless steel needles.
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syringe which is placed over the external portion of the stain-

less steel needles of the plunger (F).
The essential feature of the present stopped-flow apparatus

is that the mixing chamber is contained within the plunger that
fits into a spectrophotometer cell. The details of the plunger,

containing the mixing chamber, are shown in Fig. 2.
The Teflon plunger (A) is shaped to fit into a

10 · 10 · 45 mm UV spectrophotometers cell. The two inlet

vertical channels (B) at the top are 0.5 mm in diameter for
approximately 8 mm to accommodate short sections of stain-
less steel syringe needles (C). These channels lead directly to

mixing chamber (D) which is the horizontal channel, 0.5 mm
in diameter, and perpendicular to the vertical inlet channels.
A plug (E) is inserted to seal-off the horizontal channel. A

short channel (F) at the bottom of the mixing chamber,
0.5 mm in diameter, provides the exit to the bottom of the
plunger. The mixed solution which exits from the bottom of
the plunger causes the plunger to rise. The positions of the

plunger in the spectrophotometer cell are shown before and
after mixing in Figs. 3 and 4, respectively.
Figure 2 The construction detail of the plunger containing the

mixing chamber shown with the spectrophotometer cell. (a) A,

Teflon plunger. B, Vertical inlet channels. C, External section of

stainless steel needles. D, Mixing chamber. E, Plug. F, Exit

channel. (b) I, 10 mm internal width of cell. L, 10 mm path length

cell. H, Height of cell, 45 mm.

Figure 3 The position of the plunger in the spectrophotometer

cell before mixing. A, Spectrophotometer cell. B, Plunger. D,

External section of stainless steel needles.

Figure 5 Cell housing with LED and photodiode holder. (a)

Inside the cell housing: A, Electrical leads. B, Brass tube. C,

Photodiode detector. D, LED source (k 580 nm, width at half

height 29 nm). F, Spectrophotometer cell. G, Circular hole 2.5 mm

in diameter. H, Mask with circular hole to restrict light. I,

Aluminium block containing the photodiode. K, Metal block

which fits the cell holder to locate the cell. J, Metal base. (b) The

top of the cell housing: N, photodiode circuit. M, LED supply. S,

Tubes for water circulation. T, Section of the polyethylene tube

over the external portion of the needles of the plunger. U, The

metal box housing the cell. The box has a movable window.
The reaction mixture thus appears in the observation cell,

at the bottom of the spectrophotometer cell very shortly after
mixing. The light from a yellow LED which is held in the cell
housing (Fig. 5) with aluminium block, passes through a slit of
width between 2 and 2.5 mm, and is focused on the observa-

tion cell. The instrument described in this work is designed
for transmission/absorption measurements. However, the geo-
metric arrangement of the observation cell allows monitoring

of rapid reactions by several optical parameters. For example,
the optical components may be arranged for fluorometric mea-
surements when emitted light is monitored at 90� to the light

source.
In this work, the observation cell is used for transmittance/

absorption measurements by monitoring the light emerging at

180� to the LED source. The change in transmittance of light
passing through the cell is detected by the photodiode. The
dimensions (mm) and spectral sensitivity of the BPW21



Figure 6 Dimensions (mm) and spectral sensitivity of the BPW21 photodiode (RS Components Ltd.).

Figure 7 Amplifier and photodiode circuit diagram.

Figure 8 Position of spent solution in the spectrophotometer cell

after depressing the plunger. A, Spectrophotometer cell. B,

Displaced spent solution. C, Plunger. D, External section of

stainless steel needles.

Figure 9 The reduction of 2,6-dichlorophenolindophenol

(DCPI) by L-ascorbic acid used as a test reaction for the high-

performance stopped-flow apparatus.
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photodiode used in this work are shown in Fig. 6. The photo-
current generated by the photodiode is converted into a volt-
age by an operational amplifier. The amplifier and photodiode
circuit diagram are illustrated in Fig. 7. A trigger micro switch

(Fig. 10) initiates the recording of the voltage with time on a
digital storage oscilloscope. The reaction curve is down-loaded
onto graph paper for subsequent analysis by a printer-recorder

attached to the oscilloscope. At the end of each experiment, the
plunger is pushed gently down to the bottom of the spectro-
photometer cell (Fig. 8), so that the spent solution is forced

along the space between the plunger and cell walls to the top
from where it is then discarded by removing it with a syringe.

3.2. Performance test

To test the performance of the constructed apparatus the reac-
tion of 2,6-dichlorophenolindophenol (DCPI) by L-ascorbic

acid (Tonomura et al., 1978) at pH 5.7 was chosen as an
appropriate reaction (Fig. 9) for these reasons: (i) the reaction
could be studied under pseudo first order kinetic conditions;

(ii) the reaction was accompanied by a significant change in
the absorption spectrum; (iii) variation in the reaction velocity
was possible when one of the reaction parameters is changed;

(iv) in this particular case, the reaction is readily monitored via
light absorption without the need for an indicator.

In these experiments the concentrations used were:
5 · 10�2 M for the L-ascorbic acid, 5 · 10�4 M for 2,6-dichlo-

rophenol-indophenol, both the reactants also being in 0.10 M
phosphate buffer solution. Under these conditions the reduc-
tions of DCPI followed pseudo first-order kinetics with respect
to the concentration of the DCPI. The rate equation for the
reaction between 2,6-dichlorophenolindophenol (DCPI) and

L-ascorbic acid may be expressed as:



Figure 10 Schematic diagrams of the stopped flow apparatus with oscilloscope monitoring.

Figure 11 Typical oscillographic picture for the mixing of equal

volumes (20 lL) of water, upper trace is a magnification of the

lower trace.
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Rate ¼ k0½ascorbic acid�½DCPI�

where k0 = second order rate constant.
As the experiment uses a large excess of L-ascorbic acid its

concentration will remain practically constant throughout the

reaction, and rate equation may therefore be expressed as:

Rate ¼ k½DCPI�

k ¼ k0½ascorbic acid�

where k = pseudo first order rate constant.

In this condition the reaction follows pseudo first-order
kinetics with respect to DCPI according to the integrated rate
equation.

log10ct=co ¼ �k� t=2:303

where ct and co are respectively, the actual and initial concen-
trations of DCPI.

In the photometer equipment the change in reactant con-
centration is monitored as the change in light absorption by

the solution. By reference to the Beer–Lambert law

Absorbance A ¼ log10Io=It ¼ nc l

where Io is the incident light intensity, It is the transmittance
light intensity, n is decadic absorption coefficient, l is the path

length, c is reactant concentration.
Thus, since the values of n and l are fixed for any particular

apparatus/reaction combination.

log10ct=co ¼ log10At=Ao ¼ �k� t=2:303

Thus, the variation of absorbance with time is measured.
Then a plot of log10 A as time will be a straight-line of slope
�k/2.303 and so a value for k can be obtained.

In order to perform test reaction, the apparatus set up is
illustrated in Fig. 10. Details of the individual sections were
explained earlier. Before the beginning of an experiment the

photometer was calibrated to give an approximately zero
transmittance signal with the plunger at the bottom of the
spectrophotometer cell (no incident light), and an output of
approximately 100% transmittance signal with the plunger at
the top of the cell and water in the 10 mm path length spectro-
photometer cell (maximum intensity of incident light). The

oscilloscope was also set to record data over a suitable period
of time and then 0.3 mL of each reactant (L-ascorbic acid and
2,6-dichlorophenolindophenol) solution contained in the two

drive syringes was simultaneously injected into the mixing cell.
A significant change in absorbance due to the colour change
was observed, and the output data were recorded graphically

on the oscilloscope screen as voltage against time as the reac-
tion proceeded.

The oscillographic traces obtained were similar to the cali-

bration plot (Fig. 11) obtained for mixing water. It was obvi-
ous that practically the whole of the reaction had occurred in
the dead time of the apparatus i.e. between the start of the mix-
ing and the first measurement of the light transmission through

the mixed solutions. This experimental arrangement therefore
had failed to provide suitable data for kinetic analysis.



Figure 13 Typical oscillographic picture, upper trace corre-

sponding to the reduction of 5.0 · 10�4 M DCPI by 5.0 · 10�2 M

L-ascorbic acid when 60 lL of each reactant was mixed at 23 �C
and pH 5.7, both the reactants being in 0.1 M phosphate buffer.

Lower trace corresponds to the same reaction at 21 �C.
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3.3. Modified design of the plunger and spectrophotometer cell

These preliminary observations indicated that the dead-time of
the initial design of apparatus was too long. In order to reduce

the dead-time as much as possible, decreasing the size of the
spectrophotometer cell and mixing chamber appeared to be
the most practical way. It was therefore decided to modify

the configuration of the plunger. Improved design could
reduce the amount of reactants that needed to be injected
and the time interval between the start of the reaction and
the beginning of observation. The modified design of the

plunger and micro-spectrophotometer cell are shown in
Fig. 12. In this case the modified form of the plunger was
shaped to fit into a 10 · 2 · 25 mm micro-spectrophotometer

cell. The reaction kinetics was then investigated with just
60 lL of each reactant being simultaneously injected into the
mixing cell with the conditions as previously described. This

experiment enabled a suitable trace to be obtained, which al-
lowed the calculation of the dead-time (t0–t1) of the apparatus.

3.4. Determination of the dead-time of the apparatus

To obtain meaningful kinetic measurements it is important to
follow measurable changes in reactant with time. If the reac-

tion has half-life comparable to dead time then only half initial
concentration of the reactant is left when measurements are
begun. Thus the system dead time determines the minimum

reaction half-life that can be investigated.
To calculate the dead-time, the difference between the time

at which the reaction is started and the time corresponding to

the first observation point is measured in ms. Unfortunately, a
certain inaccuracy in the determination of the effective start
point is always possible because the micro switch always has
some mechanical inertia. To overcome these difficulties two

experiments at different temperatures (21 and 23 �C) were per-
formed with equal volumes of each reactant (60 lL) for same
reaction with the conditions as previously described. The out-

put data are displayed graphically on the oscilloscope screen as
voltage against time in real time as the reaction proceeds e.g.
Fig. 13. The procedures for measuring the voltage at various
Figure 12 The construction details of the modified design of the

plunger containing the mixing chamber shown with the micro

spectrophotometer cell. (a) A, Telfon plunger. B, Vertical inlet

channel. C, External section of stainless steel needles. D, Mixing

chamber. E, Plug. F, Exit channel. (b) I, 2 mm internal width of

cell. L, 10 mm path length cell. H, Height of cell, 25 mm.
times recorded by the traces are best understood by reference

to simplified sketch in Fig. 14.
Remembering that voltage output (V) from the amplifier is

proportional to the light intensity, then It = kVt + C and
Io = kVo + C , where k= constant of proportionality, C=

constant
But the equipment is pre-set so that output voltage is set to

zero when the incident light is blocked off with the plunger at

the bottom of the spectrophotometer cell, that is It = 0 and so
C= 0 under these circumstances.

kVo=kVt ¼ Io=It

log10ðVo=VtÞ ¼ log10ðIo=ItÞ ¼ e½c�l ¼ absorbance ¼ A
Figure 14 The hypothetical trace showing the voltage of a few

hypothetical points. A, Dashed line horizontal cursor that stays at

a fixed arbitrary position for the whole period of measurement. B,

Solid horizontal cursor that is moved with respect to the dashed

line horizontal cursor to show the voltage of each point of the

trace. C, Solid cursor showing the voltage of the light-off region.

D and E, Solid cursor showing the voltages of the t1 and t2 times.

F, Solid cursor showing the voltage of the infinite light-on region.



Table 1 Data treatment for transmittance/time at 21 �C.

t (ms) V (mv) It Io Aa Io/It Log A

Light off �19.2 – 78 – – –

50 �24.9 5.7 78 13.6 1.13 0.06

100 �52.7 33.5 78 2.33 0.37 �0.43
150 �80.6 61.4 78 1.27 0.10 �0.98
200 �90.2 71.0 78 1.10 0.04 �1.38
Light-on �97.2 78.0 78 1.00 0.00 –

a A= log10 (Io/It).
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Thus a calibration plot of log10 (Vo/Vt) against of [c] can be
obtained by determining Vo/Vt ratios for various known con-
centrations of reactant. With respect to the above descriptions,

remembering that the difference in voltage output (V) between
the light-off and light-on of any obtained trace is proportional
to Vo or Io (C and F regions, Fig. 14), and the difference in

voltage output (V) between the light-off and light-on of any
obtained trace is proportional to Vo or Io (C and F regions,
Fig. 14), and the difference in voltage output (V) between

the light-off and other points of the trace (D and E, Fig. 14)
is proportional to Vt or It, we can write:

Vlight off � Vlight on / Io

Vlight off � VD / ðItÞD
:

:

:

Vlight off � VE / ðItÞE
This method was applied to the original oscilloscope Fig. 13

and the relevant data were obtained according to the proce-

dure described in Fig. 14.
These were then converted to give the approximate values

for Io and It as reported in the Tables 1 and 2 respectively.
With respect to the kinetic equation log10 At/Ao =

�kt/2.303 two plots of log A versus time were drawn for the
data in Tables 1 and 2. These plots are shown in Fig. 15.
The dead-time is the difference in time between the time at

which the reaction started (to) and the time corresponding to
the first observation point (t1) measured in ms. The dead-time
was found by extrapolation from the experimental straight

lines. The intersection point of the two experimental straight
lines corresponds to the effective start point (to) of the reac-
tion. The first experimentally observed points can be seen to

be roughly 10 ms later. In this way a dead time (t0–t1) of about
10 ms was obtained for the reaction carried out in the refined
apparatus shown in Fig. 12.
Table 2 Data treatment for transmittance/time at 23 �C.

t (ms) V (mv) It Io Io/It Aa Log A

Light off �22.2 – 77 – – –

50 �29.4 7.20 77 10.96 1.03 0.01

100 �64.6 42.4 77 1.82 0.26 �0.59
150 �89.2 67.0 77 1.15 0.06 �1.20
200 �93.4 74.0 77 1.04 0.02 �1.76
Light-on �99.2 77.0 77 1.00 0.00 –

a A= log10 (Io/It).
3.5. Further improvements to the configuration of the plunger

and the spectrophotometer cell

In spite of good progress being made in decreasing the dead-
time, it seemed that further reduction could be achieved by
modifying the micro-spectrophotometer cell, shown in

Fig. 12, to take into account the following points: (i) the reac-
tant volumes of 60 lL were too large, (ii) because the micro-
spectrophotometer cell had a height of only 2.5 cm, when the

plunger was pushed up in an experiment, some splashing of
the solution occurred, (iii) the method of focusing the monitor-
ing light onto the observation area of the cell allowed some

stray light to pass through the clear cell walls to the detector.
To overcome these difficulties it was necessary to improve still
further the configuration of the plunger and the spectropho-

tometer cell. These changes included: selection of a spectro-
photometer cell with walls constructed of black glass to
allow more of the light emerging from the LED to be focused
on the observation area without stray light reaching the detec-

tor; decreasing the height of the exit channel from 10 to 5 mm
in order to reduce the time for the mixed reaction to exit from
the plunger so reducing the dead time; moving the position of

the photodiode to a slightly higher position in comparison
with the previous position; improving the configuration of
the LED holder to allow the LED to be moved up and down

in relation to the photodiode. These modifications are shown
in Fig. 16.
Figure 15 Two plots of log A versus time (t) for the reduction of

5.0 · 10�4 M DCPI by 5.0 · 10�2 M L-ascorbic acid. Blue line

corresponding to the upper trace in Fig. 11 at 23 �C, red line

corresponding to the lower trace in Fig. 11 at 21 �C, pH= 5.7 and

both the reactants being in 0.1 M phosphate buffer solution.



Table 3 Data treatment for transmittance/time (t) at 17 �C
obtained from relevant trace.

t (ms) V (mv) It Io Io/It Aa Log A

Light off �190 – 227 – – –

10 �197 7 227 32.42 1.51 +0.18

20 �210 20 227 11.35 1.05 +0.02

30 �241 51 227 4.45 0.65 �0.19
40 �276 86 227 2.63 0.42 �0.38
Light-on �417 227 227 1.00 0.00 –

a A= log10 (Io/It).
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In a test of the new configuration, two experiments were

performed at 17, 21 �C and the reaction was started by the
simultaneous injection of 40 lL of each reactant into the mix-
ing cell with the same conditions as in the previous experimen-
tal procedure.

Typical oscilloscope trace is shown in Fig. 17 at 21 �C. The
treatment to obtain the transmittance/time data corresponding
to these traces was as previously described for Fig. 14.

The results are reported in Tables 3 and 4 respectively and
two plots of log A against time are shown in Fig. 18 with re-
spect to the data recorded in Tables 3 and 4. A dead time

(t0–t1) of about 6.4 ms was obtained from the results of these
experiments which indicate that the final attempt to improve
the apparatus had successfully reduced the dead time to well
Figure 16 Black cell and holder for the photodiode and LED.

(a) Front elevation of LED holder: A, Central hole. B, Hexagonal

adjusting nut. (b) Side elevation of LED holder: C, Brass plate. D,

Threaded brass tube to hold the LED (�7–8 mm outer diameter

and internal diameter to suit the LED). (c) Aluminium holder for

the photodiode. (d) Black quartz spectrophotometer cell: I, 2 mm

internal width. L, 10 mm path length. H, 45 mm height.

Figure 17 Typical oscillographic picture corresponding to the

reduction of 5.0 · 10�4 M DCPI by 5 · 10�2 M L-ascorbic acid

when 40 lL of each reactant was mixed at 21 �C and pH 5.7, both

the reactants being in 0.1 M phosphate buffer solution. Both

upper traces are magnifications of the original lower trace.

Figure 18 Two plots of log A versus time (t) for the reduction of

5.0 · 10�4 M DCPI by 5.0 · 10�2 M L-ascorbic acid. Red line

corresponding to the relevant trace at 17 �C and pH 5.7. Blue line

corresponding to the trace 3 at 21 �C and pH 5.7, both the

reactants being in 0.10 M phosphate buffer.

Table 4 Data treatment for transmittance/time (t) at 21 �C
obtained from relevant trace.

t (ms) V (mv) It Io Io/It Aa Log A

Light off �73 – 228 – – –

10 �86 13 228 17.5 1.24 0.095

20 �132 59 228 3.86 0.59 �0.23
30 �191 118 228 1.93 0.29 �0.54
40 �245 172 228 1.32 0.12 �0.91
Light-on �301 228 228 1.00 0.00 –

a A= log10 (Io/It).
below 10 ms. The equipment could now be used to study reac-
tions with half-lives of 20 ms or longer.

3.6. Further decrease in the dead time of the stopped-flow

apparatus

A further decrease in dead time can be obtained if the volumes
of the reactants are reduced as much as possible. For this

reason, a series of experiments at different temperatures were
performed with smaller volumes of the reactants. In separate
experiments, 20 lL of each reactant were simultaneously in-
jected into the mixing cell at 19.8, 20.5 and 24.8 �C other con-



Figure 19 Three plots of log A versus time (t) for reduction of

5.0 · 10�4 M DCPI by 5.0 · 10�2 M L-ascorbic acid at pH 5.7.

Green plot corresponding to the relevant trace at 19.8 �C. Red plot

corresponding to the relevant trace at 20.5 �C. Blue plot corre-

sponding to the relevant trace at 24.8 �C, both the reactants being

in 0.1 M phosphate buffer solution.

Table 5 Data treatment for transmittance/time at 19.8 �C
(obtained from its relevant trace).

t (ms) V (mv) It Io Io/It Aa Log A

Light off �322 – 254 – – –

20 �354 32 254 7.94 0.90 �0.05
40 �418 96 254 2.65 0.42 �0.37
60 �482 160 254 1.59 0.20 �0.70
80 �513 202 254 1.26 0.10 �1.00
Light-on �576 254 254 1.00 0.00 –

a A= log10 (Io/It).

Table 6 Data treatment for transmittance/time (t) at 20.5 �C
(obtained from its relevant trace).

t (ms) V (mv) It Io Io/It Aa Log A

Light off �354 – 238 – – –

20 �386 32 238 7.44 0.87 �0.06
40 �450 96 238 2.46 0.39 �0.41
60 �512 158 238 1.51 0.18 �0.75
80 �549 218 238 1.09 0.04 �1.40
Light-on �592 238 238 1.00 0.00 –

a A= log10 (Io/It).

Table 7 Data treatment for transmittance/time (t) at 24.8 �C
(obtained from its relevant trace).

t (ms) V (mv) It Io Io/It Aa Log A

Light off �344 – 222 – – –

20 �376 32 222 6.94 0.84 �0.08
40 �456 112 222 1.98 0.30 �0.53
60 �520 176 222 1.26 0.10 �1.00
80 �543 204 222 1.09 0.04 �1.45
Light-on �566 222 222 1.00 0.00 –

a A= log10 (Io/It).

Table 8 Showing the experimental pseudo first-order rate

constants (k= �2.303.S) for the reduction of DCPI by L-

ascorbic acid at pH 5.7.

T (�C) t1 (ms) t2 (ms) log A1 log A2 S= DlogA/Dt k (s�1)

19.8 47.6 35.2 �0.5 �0.3 �0.2/12.4 37.15

20.5 45.6 34.0 �0.5 �0.3 �0.2/11.6 39.71

22.4 42.3 31.8 �0.5 �0.3 �0.2/10.5 46.77

24.8 38.0 29.6 �0.5 �0.3 �0.2/8.4 54.83
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ditions being as previously stated. Typical oscillographic traces
were obtained and the data treatment for transmittance/time
corresponding to these original oscilloscope traces is reported
in Tables 5–7. Three plots of log A versus time (t) were drawn

with respect to the data recorded in Tables 5–7 (corresponding
to their relevant traces). These plots are shown in Fig. 19. In
this way a dead time (t0–t1) of about 3.4 ms was determined

for the final modified form of the stopped-flow apparatus.

3.7. Determination of the pseudo first-order rate constants for
the reaction between DCPI and L-ascorbic acid

From the results obtained from the final set of experiments
(Fig. 19), the slope of each plot can be calculated as the change

of log10 A divided by the change of the time as:

Slope ¼ Dlog10A=Dt

This slope is equal to the theoretical slope of the integrated
first order equation log10 A/Ao = �(k/2.303)t, and may be

shown as:
Dlog10A=Dt ¼ �k=2:303 or k ¼ �2:303� Dlog10A=Dt

Thus, the relevant values of the pseudo first-order rate

constant (k) can be easily calculated from the calculated
values of the Dlog A/Dt ratio. This ratio is measurable for
any two arbitrary points (e.g. log A1 = �0.5 and
log A2 = �0.3) of each plot, and they are reported in

Table 8.
In the temperature range studied the dependence of the rate

constants on temperature was in agreement with the Arrhenius

equation:

log k ¼ �Ea=ð2:303� RÞ � ð1=TÞ þ constant

(Ea = activation energy, T = Temperature (Kelvin), R = gas
constant), as can be seen from Table 9 and Fig. 20 respectively.

Table 9 also provides values for the reaction half-life at the
respective temperatures. This good linear dependence is
another demonstration of the efficiency of the apparatus.

The activation energy of the process studied can be calculated
from the slope of the Arrhenius plot via slope = �Ea/(2.303
R). This slope is measurable for any two arbitrary points
(e.g. log k1 = 1.67 and log k2 = 1.73) of the plot and can be

written as: slope = (1.67–1.73)/(3.38–3.36) · 103 = �3 · 103

and Ea = 3.103 · 2.303 · 8.3 · 10�3 = 57.3k J mol�1.



Figure 20 Dependence of the pseudo first-order rate constant on

reciprocal temperature in accordance with the Arrhenius equation

for the reduction of DCPI by L-ascorbic acid.

Figure 21 Dependence of the pseudo first-order rate constant on

reciprocal temperature in accordance with the Arrhenius equation

for the reduction of DCPI by L-ascorbic acid.

Table 9 Effect of temperature on the pseudo first-order rate

constant for the reduction of DCPI by L-ascorbic acid at pH

5.7.

T (K) k (s�1) log k 1/T (K�1) (·10�3) t1/2(ms) = Ln 2/k

19.8 + 273.15 37.15 1.57 3.41 18.7

20.5 + 273.15 39.71 1.60 3.40 17.5

22.4 + 273.15 46.77 1.67 3.38 14.8

24.8 + 273.15 54.83 1.74 3.35 12.6

Table 10 Effect of the pH on the pseudo first order rate

constant (k) for the reduction of DCPI by L-ascorbic acid at

25 �C (Tonomura et al., 1978).

pH k (s�1) log k t1/2(ms) = Ln 2/k

2.03 1028 3.01 0.674

4.07 837 2.92 0.830

4.91 224 2.35 3.09

6.07 24.1 1.38 28.00

Table 11 Value of second order rate constant of present work

and Tonomura’s work (Tonomura et al., 1978) for reaction

between DCPI and L-ascorbic acid.

k (s�1) k0/s�1 M�1 = k/[ascorbic acid] T (�C)

Tonomura’s work 45.7 2285 25.0

This work 54.8 2192 24.8
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3.8. Second order rate constant for the reaction between DCPI
and L-ascorbic acid

To obtain a second order kinetic constant (k0) for the reaction

between 5 · 10�4 M DCPI and 5 · 10�2 M L-ascorbic acid for
the final set of present work (Fig. 19), the experimental pseudo
first order rate constant k= 54.8 s�1 was obtained at pH 5.7

and 24.8 �C (Table 8). This together with the concentration
of L-ascorbic acid in mixing chamber allowed the second order
rate constant (k0 = k /[L-ascorbic acid]) to be estimated as

follows:

k0 ¼ k=½L� ascorbic acid� k0 ¼ f54:8s�1=ð5� 10�2M=2Þg
¼ 2192s�1M�1

It is important to remember that in the present work the
concentration of each reactant in the mixing chamber is half
that of the concentration in the syringe (the stopped -flow

apparatus uses syringes of equal volume). Hence, the above va-
lue of second order rate constant (k0) is based on the concen-
tration of L-ascorbic acid in the mixing chamber (5 · 10
�2 M/2). To compare the second order rate constant obtained
from the present study with Tonomura’s study (Tonomura
et al., 1978), the pseudo first order rate constants obtained
from the Tonomura’s study for the reduction of 4.0 · 10
�4 M DCPI by 2.0 · 10�2 M L-ascorbic acid in the mixing
chamber are reported in Table 10 and the plot of log k versus
pH is also shown in Fig. 21.

From Fig. 21, showing Tonomura and Nakatani’s results,
the value of the pseudo first order constant (k = 45.7 s�1) at
pH 5.7 was interpolated. This together with the concentration

of ascorbic acid in mixing chamber (4.0 · 10�4 M), allowed the
second order rate constant at pH 5.7 (k0 = k/[ascorbic acid]) to
be estimated. In Table 11, this value is compared with the va-

lue obtained for the data obtained in the present work. These
two values for the second order rate constant are in good
agreement and indicate that the current apparatus functioned
satisfactorily.
3.9. Mixing test

Since, in the stopped-flow method, the reaction is started by
mixing two solutions, mixing efficiency is one of the most fun-
damental factors involved in the correct estimation of rate con-

stants. Incomplete mixing may lead to underestimation of the
rate constant. In this work, the mixing efficiency of the appa-
ratus was evaluated by mixing a solution of sodium hydroxide

with a solution of hydrochloric acid of concentration just suf-
ficient to change the colour of the pH indicator bromothymol
blue from yellow to blue. Neutralisation and proton transfer
reactions are in general extremely fast (Eigen and Hames,

1960), and hence, any unchanged (i.e. still yellow) indicator
appearing in the observation cell will be the result of incom-
plete mixing.

The original oscilloscope pictures are shown in Figs. 11, 22
and 23 respectively. Fig. 11 shows the mixing of water with
water. Fig. 22 shows the mixing of (HCl/bromothymol blue)

with water. It will be seen that there is as expected a small drop
in transmission of the mixed solution compared with water/
water. Fig. 23 shows the mixing of (HCl/bromothymol blue)

with NaOH solution. A large drop in transmission is seen
due to the absorption of the monitoring light by the blue solu-
tion. Comparison of Figs. 22 and 23 shows that the change
from the yellow form of the indicator to the blue form is



Figure 24 Increase in transmission due to the sudden rise in the

plunger on mixing (B): a solution of the HCl and bromothymol

blue (yellow form) with water (A): water and water. In (B) the

increase in transmission is less due to the small absorbance of the

yellow form of the indicator at the monitoring wavelength.

Figure 25 A large drop in transmission of the mixed solution of

(HCl/bromothymol blue) and NaOH due to the absorption of the

monitoring light by the blue form of indicator (C, D and E cases)

compared with a small drop in transmission of the mixed solution

of (HCl/bromothymol blue) and water (B case, FIG. 24). C,

Mixing of (HCl/bromothymol blue) and NaOH when the mixing

efficiency of the apparatus is extremely poor (takes longer than the

dead time). D, Mixing of (HCl/bromothymol blue) and NaOH

when the mixing efficiency is ideal (100% mixing within the dead

time). E, Mixing of (HCl/bromothymol blue) with NaOH solution

in the stopped-flow apparatus for this study (92.5% mixing within

the dead time). In each case the yellow line represents the

transmission level that is obtained if water is used in place of

NaOH.

Figure 23 Typical oscillographic picture obtained when 20 lL of

0.009 M HCl containing bromothymol blue indicator was mixed

with 20 lL of 0.01 M NaOH. The upper trace is a magnification of

the lower trace.

Figure 22 Typical oscillographic picture obtained when 20 lL of

0.009 N HCl containing bromothymol blue indicator was mixed

with 20 lL of water. Upper trace is a magnification trace of lower

trace.
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largely complete (92.5%) within the dead time of the appara-
tus. It takes only a further 3 ms for mixing to be complete.
Figs. 24 and 25 reveal how these changes occurred in the ori-
ginal oscilloscope pictures 11, 22 and 23.
4. Conclusion

As mentioned previously, one of the most important factors

affecting the performance of a stopped-flow apparatus is the
‘‘dead-time’’. Another definition of dead time td is the time re-
quired for solution to flow from the centre of the mixing vol-

ume to the centre of the observation cell; the change
occurring in the reaction mixture cannot be observed during
td. If we define the dead volume Vd (ml) as the volume of dead

space between the centre of the mixer and the centre of the cell,
the dead time (s) is written by Hiromi (1980):

td ¼ Vd=U ð1Þ

where U is the flow velocity in millilitres per second.
The observable fraction of a change due to the reaction,

with an apparatus of a given dead time, is determined by the
relative magnitude of the dead time with respect to the reaction
half-life, t1/2 = 0.693/k for first order reaction. For a first or-

der reaction the relationship between the observable fraction
(fobs) of total reaction and the dead time of the apparatus is gi-
ven by Hiromi (1980):

fobs ¼ ð1=2Þtd=t1=2 ð2Þ

The relationship between the dead time measured during
this study k and the observable fraction (fobs) of the reaction

between DCPI and L-ascorbic acid, performed at 19.8 �C
(k= 37.15 s�1), is reported in Table 12. This table shows
why the shortening of the dead-time is so important to im-
prove the performance of the stopped-flow apparatus.



Table 13 Relationship between the volume of each reactant

and the dead-times determined in this work.

Volume of each reactant (lL) Dead-time (ms)

300 50 (approx.)

60 10

40 6.4

20 3.4

Table 12 Relationship between the observable fraction (fobs)

of the total reaction between the DCPI and L-ascorbic acid

(k = 37.15 s�1) and the dead-time (td).

td (ms) fobs (%)

50 (approx.) 1.6

10 69.5

6.4 78.9

3.4 87.7
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Decreasing the dead-time from 50 to 3.4 ms increased the frac-
tion of observable reaction from 1.6% to 87.7%. From the
optimisation information obtained from these experiments it

appears that the dead time can be reduced by decreasing both
the volume of reactants and the dead volume (Eq. (1)). For all
the experiments, as described previously, the relationship be-
tween the volumes of each reactant and the dead-time of the

apparatus is reported in the Table 13.
As the Table 13 indicates, the decrease in the dead-time is

approximately proportional to the reduction of the volume

of each reactant; thus the dead-time of initial apparatus can
be estimated to be about 50 ms. Preliminary observations also
indicate that more rapid mixing with smaller volumes and

greater monitoring sensitivity may be possible by modification
of the size of the observation area. To improve overall instru-
mental performance, it is necessary to make the following
changes: increase in the intensity and stability of the light

source; improvement in the optical system to focus more of
the light through the observation cell; employment of a more
sensitive and stable detection system; decrease in the size of

the mixing chamber in the plunger; decrease of the volume
of the observation area by using smaller reactant volumes.
However, volumes of reactants less than 20 lL (total) are

not practical because of incomplete mixing (Richard, 1969)
also an extremely small observation cell would reduce the
intensity of the light reaching the photodiode and frequently

would result in an unacceptable signal-to-noise ratio. Increase
of the flow velocity by means of a pneumatic or hydraulic de-
vice to drive the solutions into the mixer would reduce the
dead time of the apparatus. However, this requirement also

has limitations; for example, a high flow velocity may give rise
to ‘‘cavitation’’ which is the bubbling of dissolved gas during
flow and after stopping. These changes have altogether the po-

tential to provide a high performance stopped-flow apparatus
with a dead-time of less than 3.5 ms. At present, some types of
stopped-flow instrument have a dead time as short as 0.5 ms or

less (Berger et al., 1968). In this case, the reduction of 2,6-
dichlorophenolindophenol by L-ascorbic acid (Tonomura

et al., 1978) at pH 2 is recommended as the most practical test
for checking the performance of the apparatus.
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