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Abstract The potential of the synthesized nano hydroxyapatite to remove Sn2+ from aqueous solu-

tionswas investigated in a batch reactor under different experimental conditions. The study also inves-

tigates the effects of process parameters such as initial concentration of Sn2+ ions, temperature, and

adsorbentmass.Various thermodynamic parameters, suchasDGo,DHoandDSo havebeen calculated.

The thermodynamics of an Sn2+ ion onto nanoHAp system indicates a spontaneous and endothermic

nature of the process. Tin uptake was quantitatively evaluated using the Langmuir, Freundlich and

Dubinin–Kaganer–Radushkevich models. The adsorption data follow the adsorption equilibrium

described well by the Langmuir isotherm model with maximum adsorption capacity of 2500 mg/g

of Sn2+ ions on nanoHAp.Using the second-order kinetic constants, the activation energy of adsorp-

tion (Ea) was determined as 4.125 kJ mol�1 according to the Arrhenius equation.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Over the past few decades, rapid industrialization has led to a
tremendous increase in the use of heavy metals, which has

inevitably resulted in an increased flux of metallic substances
in the aquatic environment. Tin is one of the toxic metals
found in most wastewaters. Many industries produce large
quantities of waste streams containing low concentrations of

tin, along with other metals from processes such as tin electro-
plating, aluminum anodizing, printed circuit board manufac-
turing, and metal pickling. Recycling metals from such
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solutions is attractive for environmental reasons and for the
value of metals (Wasewar et al., 2009).

A level of tin (250 mg/kg) in canned food is generally ac-

cepted as a maximum tolerance level for humans. If a large
amount of tin in canned food is taken daily over a long period,
acute effects such as stomachache, anemia, and liver and kidney

problems occur. The Occupational Safety and Health Adminis-
tration (OSHA) has designated a workplace exposure limit of
0.1 mg/m3 for organic tin compounds, and 2 mg/m3 for inor-

ganic tin compounds, except oxide. There are various treatment
processes for the removal and/or recovery of heavy metal ions,
including precipitation, oxidation, ultrafiltration, electrodialy-
sis, solvent extraction, ion exchange, adsorption, etc. (Aksu

andTunc, 2005). For high strength and lowvolumes ofwastewa-
ter, heavy metal removal by adsorption is a good proposition.

Hydroxyapatite is an ideal material for long-term contain-

ment of contaminants because of its high sorption capacity for
actinides and heavy metals, low water solubility, high stability
under reducing and oxidizing conditions, availability, and low

cost (Krestou et al., 2004). It was used in stabilization of a wide
variety ofmetals (e.g., Cr, Co, Cu, Cd, Zn,Ni, Pu, Pb,As, Sb,U,
and V) by many investigators (Chen et al., 1997; Czerniczyniec

et al., 2003; Vega et al., 1999; Reichert and Binner, 1996; Leyva
et al., 2001; Fuller et al., 2002;McGrellis et al., 2001;Mobasher-
pour et al., 2011). They reported the sorption to take place
through ionic exchange reaction, surface complexation with

phosphate, calcium and hydroxyl groups and/or co-precipita-
tion of new partially soluble phases.

Calcium hydroxyapatite (CaHAp), Ca10(PO4)6(OH)2, is

used for the removal of heavy metals from contaminated soils,
wastewater and fly ashes (Laperche et al., 1996; Ma et al.,
1993; Ma et al., 1994; Mavropoulos, 2002; Nzihou and Shar-

rock, 2002; Takeuchi and Arai, 1990). Calcium hydroxyapatite
(CaHAp) is a principal component of animal hard tissues and
has been of interest in industrial and medical fields. Its synthetic

particles find many applications in bioceramics, chromato-
graphic adsorbents to separate protein and enzyme, catalysts
for dehydration and dehydrogenation of alcohols, methane oxi-
dation, and powders for artificial teeth and bones paste germi-

cides (Elliott, 1994). These properties relate to various surface
characteristics of HAp, e.g., surface functional groups, acidity
and basicity, surface charge, hydrophilicity, and porosity. It

has been found that HAp surface possesses 2.6 groups nm�2

of P–OH groups acting as sorption sites (Tanaka et al., 2005).
The sorption properties ofHApare of great importance for both

environmental processes and industrial purposes.
The objective of this study was to investigate the possible

use of nano crystalline hydroxyapatite as an alternative adsor-
bent material for the removal of Sn2+ ions from aqueous solu-

tions. The Langmuir, Freundlich and D–K–R models were
used to fit the equilibrium isotherm. The dynamic behavior
of the adsorption was investigated on the effect of initial metal

ion concentration, temperature, and adsorbent mass of solu-
tion. The thermodynamic parameters were also evaluated from
the adsorption measurements.

2. Material and methods

2.1. Preparation of nano crystalline hydroxyapatite sorbents

All chemicals used in this work were of analytical grade and

the aqueous solutions were prepared using double distilled
water. Nanocrystalline hydroxyapatite compounds were pre-
pared by a solution-precipitation method (Mobasherpour
et al., 2007) using (NH4)2HPO4 (Merck No. 1205) and Ca(-

NO3)2Æ4H2O (Analar No. 10305) as starting materials and
ammonia solution as agents for pH adjustment. A suspension
of Ca(NO3)2Æ4H2O was vigorously stirred and its temperature

was maintained at 25 �C. A solution of (NH4)2HPO4 was
slowly added dropwise to the Ca(NO3)2Æ4H2O solution. In all
experiments the pH of Ca(NO3)2Æ4H2O solution by adding

ammonia solution was 11. The precipitate HAP was removed
from the solution by the centrifuge method at a rotation speed
of 3000 rpm. The resulting powder was dried at 100 �C. The
particles thus synthesized were characterized by the following

methods. Transmission electron microscopy (TEM) was used
to characterize the synthesized particles of HAp. For this pur-
pose, particles were deposited onto Cu grids, which support a

‘‘holey’’ carbon film. The particles were deposited onto the
support grids by deposition from a dilute suspension in ace-
tone or ethanol. The crystalline shapes and sizes were charac-

terized by diffraction (amplitude) contrast and, for crystalline
materials, by high resolution (phase contrast) imaging. The
specific surface area was determined from N2 adsorption iso-

therm by the BET method using a Micromeritics surface area
analyzer model ASAP 2010. The concentrations of Ca2+ and
PO3�

4 in the synthesized particles were determined by induc-
tively coupled plasma atomic emission spectrometer (ICP-

AES) by first dissolving the particles in HCl solution. The Fou-
rier transform infrared spectra (FT-IR) of nano hydroxyapa-
tite were recorded using a Perkin–Elmer 2000 FTIR

spectrometer calibrated with a deuterated triglycine sulfate
(DTGS) detector covering the frequency range of 500–
4000 cm�1. The sample cell was purged with nitrogen gas

throughout data collection to exclude carbon dioxide and
water vapor. Ten milligrams of the dried samples was dis-
persed in 200 mg of spectroscopic grade KBr to record the

spectra.
The crystal phase was identified by powder X-ray diffrac-

tion (XRD) using Siemens (30 kV and 25 mA) X-ray diffrac-
tometer with Cu Ka radiation (k ¼ 1:5404 A�) and XPERT

software.
2.2. Sorption study

All sorption experiments were carried out without any pre
equilibrium processes that were imposed during the perfor-
mance of any experiments. In order to determine the sorption

capacity of nano HAp for Sn2+ cations, as well as the influ-
ence of the initial concentration of Sn2+ ion, adsorbent dosage
and temperature, sorption experiments were performed by the
batch equilibration technique.

Aqueous solutions containing Sn2+ ions of concentration
(80, 100,120 and 140 mg/L) were prepared from Sn2+ chloride
(SnCl2Æ2H2O, Merck No. 7815). 0.01 g of nano HAp was intro-

duced in a stirred tank reactor containing 500 mL of the pre-
pared solution. The stirring speed of the agitator was
300 rpm. The temperature of the suspension was maintained

at 25 ± 1 C. The initial pH of the solution was adjusted to
the value 6.5 by adding NH3 and HCl. Samples were taken
after mixing the adsorbent and Sn2+ ion bearing solution at

pre determined time intervals (5, 10, 20, 30, 60, and 120 min)
for the measurement of residual metal ion concentration in
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the solution and to ensure equilibrium was reached. After any
specified time the sorbents were separated from the solution by
centrifuge and filtration through the filter paper (Whatman

grade6). The exact concentration of metal ions was determined
by AAS (GBC 932 Plus atomic absorption spectrophotome-
ter). All experiments were carried out twice. The mass balance

of tin is given by:

mq ¼ VðC0 � CÞ ð1Þ

where m, q, V, C0, and C are the mass of nano-HAp (g),
amount of tin removed by unit weight of HAp (Uptake capac-

ity: mg Sn/g HAp), volume of tin solution (L), initial tin con-
centration in the solution (mg Sn/L), and the concentration of
tin at the time t of adsorption (mg Sn/L). After 120 min, C and

q will reach equilibrium values Ce and qe.
The percent removal (%) was calculated using the following

equations:

%Removal ¼ ðc0 � cfÞ
c0

� 100 ð2Þ

where C0 and Cf are the concentrations of the metal ion in ini-
tial and final solutions (after 120 min).
3. Results and discussion

3.1. Characteristics of adsorbent

TEM micrograph of the HAp powders after drying is seen in
Fig. 1a. The microstructure of the HAp crystalline after drying
is observed to be almost like needle shape, with size in the range

of 20–30 nm.The crystal structure analysis ofHAp particles was
performed, using X-ray diffraction, and the obtained diffracto-
grams are represented in Fig. 1b. The produced reflection pat-

terns match the ICDD standards (JCPDS) for HAp. The
patterns show only the peaks characteristic of the synthesized
HAp with no obvious evidence on the presence of other addi-

tional phases. The broad patterns around (211) and (002) indi-
cate that the crystallites are very tiny in naturewithmuch atomic
oscillations. The sample was indexed in the hexagonal system

with space group P63/m and Calcium Phosphate Hydroxide
ICSD name (Ref. Code.01-074-0565 in XPERT software). The
unit cell parameters of nano Hydroxyapatite synthesized were
a = b = 0.9424 nm and c = 0.6879 nm. The analysis of the

HAp sample has confirmed a low-crystalline product, with the
specific surface area of 94.9 m2/g. The Ca/P molar ratio was
found to be 1.65 ± 0.05 instead of 1.67 that represents the char-

acteristic stoichiometric ratio. This cation deficiency is common
for the sample obtained by the wet method.

The structure of the powder was analyzed using FT-IR

spectroscopy after drying at 100 �C, as shown in Fig. 2. In
the FT-IR analysis, mainly the peaks for PO3�

4 and OH–

groups in the hydroxyapatite can be identified in Fig. 2. Peaks
at 560–610 and 1000–1100 cm�1 must be due to PO3�

4 . For the

OH– group the peak positions are 636 and 3572 cm�1.

3.2. Effect of initial Sn2+ concentration and adsorbent dosage

The sorption of Sn2+ ions was carried out at different initial
Sn2+ ion concentrations ranging from 80 to 140 mg/L, at
pH 6.5, at 300 rpm with 120 min of contact time using nano-

HAp. A rapid kinetic reaction of Sn removal by sorbent
occurred within the first 10 min (Fig. 3a). The aqueous Sn con-
centration at 10 min decreased to 42, 62, 80 and 98 mg/L by
nano-HAp for 80, 100, 120 and 140 mg/L initial concentration

respectively. Uptake of the Sn2+ also increased with increasing
the initial metal concentration tending to saturation at higher
metal concentrations. As shown in Fig. 3b, when the initial

Sn2+ concentration increased from 80 to 140 mg/L, the uptake
capacity of nano HAp increased from 1985 to 2400 mg/g. A
higher initial concentration provides an important driving

force to overcome all mass transfer resistances of the pollutant
between the aqueous and solid phases, thus increasing the up-
take (Aksu and Tezer, 2005).

The effect of nano-HAp dosage is presented in Fig. 4. It is

evident that adsorption increases with the increase in the mass
of sorbent and the uptake capacity of Sn2+ decreased from
2400 mg/g (34.28% removal) to 1233.33 mg/g (52.86% re-

moval) with the increasing nano-HAp concentration from
0.01 to 0.03 g/L. This is because at the higher dosage of sor-
bent due to increased surface area, more adsorption sites are

available causing higher removal of Sn2+.

3.3. Effect of temperature

To study the effect of this parameter on the uptake of Sn2+ ions
by nano-HAp, we selected the following temperatures: 25, 45
and 65 C. Fig. 5, illustrates the relationship between tempera-
ture and the amount of Sn2+ ions adsorbed onto nano-HAp

at equilibrium time (120 min). As seen in Fig. 5, the adsorption
of Sn2+ on nano-HAp increased from 2400 mg/g (34.28% re-
moval) to 2750 mg/g (39.28% removal) when temperature was

increased from 25 to 65 �C at an initial concentration of
140 mg/L. The increase in the equilibrium sorption of Sn2+with
temperature indicates that Sn2+ ions removal by adsorption on

nano-HAp favors a high temperature. Thismay be a result of in-
crease in the mobility of the Sn2+ ion with temperature. An
increasing number of molecules may also acquire sufficient en-

ergy to undergo an interaction with active sites at the surface.
Furthermore, increasing temperaturemay produce a swelling ef-
fect within the internal structure of nano-HAp enabling metal
ions to penetrate further (Dogan and Alkan, 2003).

3.4. Determination of thermodynamic parameters

Thermodynamic parameters such as free energy change (DGo

(DHo), and entropy change (DSo) can be estimated using equilib-
rium constants changing with temperature. The free energy
change of the sorption reaction is given by the following

equation:

DGo ¼ �RTLnKd ð3Þ

whereDGo is the standard free energy change (J);R is the univer-
sal gas constant, 8.314 J/mol K and T is the absolute tempera-

ture (K).The distribution ratio (Kd) was calculated using Eq. (2):

Kd ¼
amount of metal in adsorbent

amount of metal in solution
¼ qe

Ce

ð4Þ

The distribution ratio (Kd) values increased with temperature,

indicating the endothermic nature of adsorption. A plot of
Gibbs free energy changes, DGo, versus temperature, T (K);
was found to be linear. The values of DHo and DSo) were

determined from the slope and intercept of the plots according
Eq. (5):
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Figure 1 TEM micrograph (a) and XRD pattern (b) of calcium nanocrystalline hydroxyapatite after drying at 100 �C.
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DGo ¼ DHo � TDSo ð5Þ

The thermodynamic parameters Gibbs free energy change,
DGo, are shown in Table 1. The enthalpy change, DHo, and
the entropy change, DSo, for the sorption processes are calcu-
lated to be 4524 J/mol and 99.67 J/mol K, respectively. The

negative values of DGo at various temperatures indicate the
spontaneous nature of the adsorption process. The positive va-
lue of DSo indicates that there is an increase in the randomness

in the system solid/solution interface during the adsorption
process. In addition, the positive value of DHo indicates that
the adsorption is endothermic. The positive value of DSo re-

flects the affinity of nano-HAp for Sn2+ ions and suggests
some structural changes in tin and nano-HAp (Ho, 2003).
3.5. Adsorption isotherms

Analysis of the equilibrium data is important to develop an
equation which accurately represents the results and which
could be used for design purposes (Aksu, 2002). Several iso-

therm equations have been used for the equilibrium modeling
of adsorption systems.

The sorption data have been subjected to different sorption

isotherms, namely, Langmuir, Freundlich, and Dubinin–
Kaganer–Radushkevich.

The equilibrium data for metal cations over the concentra-

tion range from 80 to 140 mg/L at 25 C have been correlated
with the Langmuir isotherm (Langmuir, 1918):

Ce

qe
¼ 1

Q0K
þ Ce

Q0

ð6Þ

where Ce is the equilibrium concentration of metal in the solu-
tion (mg/L), qe is the amount absorbed at equilibrium onto
nano-HAp (mg/g), Q0 and K are Langmuir constants related

to sorption capacity and sorption energy, respectively. Maxi-
mum sorption capacity (Q0) represents the monolayer cover-
age of the sorbent with the sorbate and K represents

enthalpy of sorption and should vary with temperature. A lin-



Figure 3 Time dependent concentration (a) and effect of initial concentration on removal of aqueous Sn2+ by nano hydroxyapatite

sorbents (pH 6.5, adsorbent dosage = 0.01 g/L, 300 rpm agitating rate).

Figure 2 FTIR Spectroscopy analysis of the nano hydroxyapatite powder after drying at 100 �C.
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Figure 4 Effect of adsorbent dosage on removal of Sn2+ by nano hydroxyapatite (pH 6.5, initial metal concentration = 140 mg/L,

300 rpm agitating rate).

Figure 5 Uptake capacity of Sn2+ ions at different temperatures (pH 6.5, initial metal concentration = 140 mg/L, adsorbent

dosage = 0.01 g/L, 300 rpm agitating rate).
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ear plot is obtained when Ce/qe is plotted against Ce over the

entire concentration range of metal ions investigated.
The linearized Langmuir adsorption isotherms of Sn2+ ions

are given in Fig. 6a. An adsorption isotherm is characterized

by certain constants whose values express the surface proper-
ties and affinity of the sorbent and can also be used to find
the sorption capacity of the sorbent.

The Freundlich sorption isotherm, one of the most widely

used mathematical descriptions, usually fits the experimental
data over a wide range of concentrations. This isotherm gives
an expression encompassing the surface heterogeneity and the

exponential distribution of active sites and their energies. The
Freundlich adsorption isotherms were also applied to the re-
moval of Sn2+ on nano-HAp (Fig. 6b).

Ln qe ¼ Ln kf þ
1

n
Ln Ce ð7Þ

where qe is the amount of metal ion sorbed at equilibrium per
gram of adsorbent (mg/g), Ce the equilibrium concentration of

metal ion in the solution (mg/L), kf, and n the Freundlich mod-
el constants (Malkoc and Nuhoglu, 2003; Kadirvelu et al.,
2001). Freundlich parameters, kf and n, were determined by
plotting Lnqe versus LnCe. The numerical value of 1/n< 1

indicates that adsorption capacity is only slightly suppressed



Table 1 Thermodynamic parameters for the adsorption of

Sn2+ onto nano hydroxyapatite.

T (K) Kd DGo (J/mol) DHo

(J/mol)

DSo

(J/mol k)

298 26086.96 �25194.90
318 28651.69 �27133.30 4524 99.67

338 32352.94 �2931.70
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at lower equilibrium concentrations. This isotherm does not

predict any saturation of the sorbent by the sorbate; thus infi-
nite surface coverage is predicted mathematically, indicating
multilayer adsorption on the surface (Hasany et al., 2002).

The Dubinin–Kaganer–Radushkevich (D–K–R) equation
has been used to describe the sorption of metal ions on clays.
The D–K–R equation has the form:

LnCads ¼ LnXm � be2 ð8Þ

where Cads is the number of metal ions adsorbed per unit
weight of adsorbent (mol/g), Xm (mol/g) is the maximum sorp-
tion capacity, b (mol2/J2) is the activity coefficient related to

mean sorption energy, and e is the Polanyi potential, which
is equal to:

� ¼ RT lnð1þ 1=CeÞ ð9Þ

where R is the gas constant (kJ/mol K) and T is the tempera-

ture (K). The saturation limit Xm represents the total specific
micropore volume of the sorbent. The sorption potential is
independent of the temperature but varies according to the

nature of the sorbent and the sorbate (Khan et al., 1995).
The slope of the plot of lnCads versus e gives b (mol2/J2) and
the intercept yields the sorption capacity, Xm (mol/g). The
sorption space in the vicinity of a solid surface is characterized

by a series of equipotential surfaces having the same sorption
potential. This sorption potential is independent of the temper-
ature but varies according to the nature of the sorbent and the

sorbate. The sorption energy can also be worked out using the
following relationship:

E ¼ 1=
ffiffiffiffiffiffiffiffiffi
�2b

p
: ð10Þ

It is known that the magnitude of apparent adsorption energy
E is useful for estimating the type of adsorption and if this va-

lue is below 8 kJ/mol the adsorption type can be explained by
physical adsorption, between 8 and 16 kJ/mol the adsorption
type can be explained by ion exchange, and over 16 kJ/mol

the adsorption type can be explained by a stronger chemical
adsorption than ion exchange; (Lin and Juang, 2002; Wang,
2004; Krishna et al., 2000). The plot of LnCads against e2 for
metal ion sorption on nano-HAp is shown in Fig. 6c. The
Langmuir, Freundlich and D–K–R adsorption constants from
the isotherms and their correlation coefficients are also pre-
sented in Table 2.

The correlation factors R (0.997, 0.929 and 0.935 for Lang-
muir, Freundlich and D–K–R models, respectively) confirm
good agreement between the two theoretical models and our

experimental results. The maximum sorption capacity, Q0, cal-
culated from the Langmuir equation is 2500 mg/g, while Lang-
muir constant K is 0.07 L/mg. The values obtained for Sn2+

from the Freundlich model showed a maximum adsorption
capacity (Kf) of 899.64 mg/g with an affinity value (n) equal
to 4.58. The values of sorption constants, derived from the
D–K–R model are: 5092.06 mg/g (42.89 mmol/g) for Xm,
�2 · 10�9 mol2/J2 for b and 15.81 kJ/mol for E.

The values indicate that the adsorption pattern for Sn2+ on
nano-HAp followed thrid the Langmuir isotherm
(R2 > 0.997), the D–K–R isotherm (R2 > 0.935), and the Fre-

undlich isotherm (R2 > 0.929) at all experiments. It is clear
that the Langmuir isotherm is the best fit for the sorption of
Sn2+ on nano-HAp. When the system is in a state of equilib-

rium, the distribution of Sn2+ between nano HAp and the
Sn2+ solution is of fundamental importance in determining
the maximum sorption capacity of nano HAp for the Sn2+

ion from the isotherm. The E values are 15.81 kJ/mol for

Sn2+, on the nano HAp. It is the orders of an ion-exchange
mechanism, in which the sorption energy lies within 8–16 kJ/
mol.

Generally, HAp selectivity toward divalent metal cations is
a result of the ion-exchange process with Ca2+ ions (Monteil
Rivera and Fedoroff, 2002). Ionic radius of Sn2+ (0.71 Å)

slightly differ from that of Ca2+ (0.99 Å), and it can substitute
Ca2+ in the HAp crystal lattice. Fig. 7 presents the XRD pat-
terns of the Sn2+-loaded sample. No structural changes of

nano HAp were detected by the powder X-ray diffraction anal-
ysis of the solid residue with the maximum amount of uptake
capacity of Sn2+, obtained after interaction of 0.01 g/L of
nano HAp with 140 mg/L Sn2+ solution, at pH 6.5, at

300 rpm with 120 min of contact time. The sample was indexed
in the hexagonal system with space group P63/m. The diffrac-
togram’s evidence clarifies that all XRD peaks were shifted to-

ward upper diffraction angles for Sn-HAp particles (maximum
peak: from 2h ¼ 31:94

�
to2h ¼ 32:11

�
). These shifts are indica-

tive of the decrease in unit cell dimensions which is due to the

replacement of Sn2+ (ionic radius 0.71 Å), which is smaller
than Ca2+ (ionic radius 0.99 Å), into the crystal lattice of apa-
tite molecules.

The reaction mechanism corresponds to the equimolar ex-
change of tin and calcium yielding Ca10�xSnx(PO4)6(OH)2,
where x can vary from 0 to 10 depending on the reaction time
and experimental conditions. Our results of synthesized nano-

HAp agreed with those described elsewhere that the proposed
mechanism for Sn2+ removal by HAp comprises two steps:
firstly, rapid surface complexation of Sn2+ on the „POH sites

of HAp which causes the decrease of the pH (from pH = 6.5
to pH = 6.0 for initial metal concentration = 140 mg/L, dos-
age = 0.01 g/L, 300 rpm agitating rate) and secondly, partial

dissolution of calcium followed by the precipitation of an apa-
tite with formula: SnxCa10�x(PO4)6(OH)2.

In which Sn2+ ions are first adsorbed on the nano HAp sur-
face and substitution with Ca2+ ion occurs as described by the

following equation:

Ca10ðPO4Þ6ðOHÞ2 þ xSn2þ ! Ca10�xSnxðPO4Þ6ðOHÞ2
þ xCa2þ ð11Þ
3.6. Sorption kinetics

Sorption kinetic studies were carried out in order to under-
stand the behavior of nano-HAp toward Sn2+ metal. The
sorption kinetics includes two phases: a rapid metal sorption
stage followed by a much slower stage before the equilibrium

was established. It was found that the mass transfer was the



Figure 6 Linear fits of experimental data obtained using Langmuir (a), Freundlich (b) and D–K–R (c) sorption isotherms for the

adsorption of Sn2+ onto nano Hydroxyapatite (pH 6.5, initial metal concentration = 80, 100, 120 and 140 mg/L, adsorbent

dosage = 0.01 gr/L, 300 rpm agitating rate).
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Table 2 Langmuir, Freundlish and D–K–R constants for

adsorption of Sn2+ onto nano hydroxyapatite.

Langmuir adsorption isotherm constants

Qo (mg/g) K (L/mg) R2

2500 0.07 0.997

Freundlich adsorption isotherm constants

kf (mg/g) n R2

899.64 4.58 0.929

DKR adsorption isotherm constants

Xm (mg/g) b (mol2/J2) R2

5092.06 �2 · 10�9 0.935
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key factor in the metal sorption (Chen and Wang, 2004). The
sorption kinetics describes the metal sorption rate, which in
turn governs the residence time of the sorption reaction and
also the efficiency of the sorption process. Out of the several

kinetic models available to examine the controlling mechanism
of the sorption kinetic process and to test the experimental
data, the Lagrangian equation or pseudo-first-order equation

and pseudo-second-order equation have been used for the me-
tal sorption kinetics of nano-HAp.

The linearized form of the pseudo-first-order equation:

logðqe � qÞ ¼ log qe cal �
k1

2:303
t ð12Þ

where qe is the metal sorbed at equilibrium (mg g�1), q is the
amount of the metal adsorbed (mg g�1) at any time t, k1 is

the first-order rate constant. The first-order rate constant k1
and q were determined from the slopes and intercept of plots
of log(qe � q) vs t at different metal concentration.

The linearized form of the pseudo-second-order equation
for the kinetics of absorption described by Ho and Chiang
(2001) is as follows:
Figure 7 XRD pattern of the solid residue with maximum a

concentration = 140 mg/L, adsorbent dosage = 0.01 g/L, 300 rpm agi
t

qt
¼ 1

k2q
2
e cal

þ 1

qe cal

ð13Þ

The second-order rate constant (k2) and qe cal were deter-
mined from the slope and intercept of the plot obtained by

plotting t/qt vs t.
Linear plots of log(qe � qt) versus t and t/qt versus t are de-

picted in Fig. 8a and Fig. 8b at 25, 45 and 65 C, respectively.
A comparison of the results with the correlation coefficients is

shown in Table 3. The pseudo-second-order kinetic model ob-
tained for Sn2+ sorption at various temperatures showed a
better correlation of the result than the pseudo-first-order

equation model. The correlation coefficients for the second or-
der kinetic model obtained at 140 ppm concentrations at dif-
ferent temperatures were high. The values of k2 at 25, 45 and

65 C were varied from 0.00023 to 0.000191 min�1. The higher
rate of metal sorption in the beginning (Fig. 3b) could be due
to the presence of the active site in the nano-HAp surface,

available for the sorption of metals. Once the sorptive sites
are exhausted, the uptake rate may be controlled by the rate
of intra particle diffusion. The activation energy Ea was deter-
mined using the Arrhenius equation (Aksu, 2002):

LnKad ¼ LnA� Ea

RT
ð14Þ

where kad(k2) is the rate constant value for the metal adsorp-
tion, Ea the activation energy in kJ mol�1, T the temperature

in Kelvin, and R is the gas constant (=8.314 kJ mol�1 K�1).
When Lnkad is plotted versus 1/T, a straight line with slope
�Ea/R is obtained. The activation energy for the adsorption
system of Sn2+ onto nano-HAp was found as 4.125 kJ mol�1

from the slope of this plot, indicating the physical adsorption.
As known when the rate is controlled by intra-particle diffu-
sion mechanism, the activation energy is low and hence it

can be concluded that the process is controlled by intra-parti-
mount of uptake capacity of Sn2+ (pH 6.5, initial metal

tating rate).



Figure 8 Linear fit of experimental data obtained using pseudo-first order kinetic model (a) and pseudo-second order kinetic model (b)

(pH 6.5, initial metal concentration = 140 mg/L, adsorbent dosage = 0.01gr/L, 300 rpm agitating rate).

Table 3 A comparison of the first and second order kinetic

rate constants and calculated qe cal values obtained at different

temperatures (pH 6.5, initial metal concentration = 140 mg/L,

adsorbent dosage = 0.01gr/L, 300 rpm agitating rate).

T [�C] K1 [min�1] qe cal [mg/g] R2

Pseudo-first-order kinetic model

25 0.09672 1312.20 0.67761

45 0.12436 1377.21 0.73865

65 0.17042 2157.74 0.80748

Pseudo-second-order kinetic model

25 0.00023 2440.45 0.99975

45 0.00024 2577.78 0.99985

65 0.00019 2790.49 0.99993
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cle diffusion, which is a physical step in the adsorption process
(Dogan and Alkan, 2003).
4. Conclusions

The present investigation shows that nano HAp is an effective
adsorbent for the removal of Sn2+ from aqueous Sn2+ solu-

tions. The adsorption process is a function of the adsorbent
dosage, the initial Sn2+ concentration and the temperature.
The efficiency of Sn2+ adsorption increased with an increase

in the adsorbent dosage. Isotherm studies indicate that the
Langmuir model fits the experimental data better than Freund-
lich and D–K–R models. The adsorption equilibrium was de-

scribed well by the Langmuir isotherm model with a
maximum adsorption capacity of 2500 mg/g of Sn2+ ions on
nano HAp. The results of XRD analysis strongly support
the ion-exchange as a main mechanism for Sn2+ removal by

nano HAp. The results show that the Sn2+ uptake by nano
hydroxyapatite proceeds with a rapid surface complexation
of the Sn2+ on the „POH site before the formation of a com-

pound of formula Ca10�xSnx(PO4)6(OH)2. Thermodynamic
calculations showed that the Sn2+ sorption process of nano
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HAp has an endothermic and spontaneous nature. The kinetic
behavior of the metal toward nano-HAp demonstrated pseu-
do-second-order kinetics rather than pseudo-first-order kinet-

ics. The second order kinetic model was successfully applied
to the experimental data, confirming that adsorption was con-
trolled by intra-particle diffusion.
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