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A B S T R A C T   

Hypoxia exerts a great influence on multiple cancer development while the role of hypoxia in chronic obstructive 
pulmonary disease (COPD) remains an enigma. Here we focused on differential expression genes (DEGs) between 
COPD and negative normal groups and the hypoxia-associated genes (HRGs) to explore the association between 
hypoxia and COPD progression. GSE54837 and GSE151052 datasets in the Gene Expression Omnibus (GEO) 
database were collected to perform data processing and DEGs in two datasets were analyzed (GSE54837 as the 
training set and GSE151052 as the validation set). 7 overlapping hypoxia-related DEGs (HRDEGs, TPD52, and 
RORA down-regulated vs PPP1R15A, DDIT3, DUSP1, and PDK3 up-regulated) were identified in DEGs of 
GSE54837 and HRGs. Also, the expression of 6 HRDEGs was investigated in GSE151052. PPP1R15A, DUSP1, and 
PDK3 were also up-regulated in the GSE151052 dataset. Three HRDEGs (TPD52, DDIT3, and DUSP1) were finally 
picked out to further analysis according to the best method. In addition, we discovered that Amygdalus Com-
munis Vas could target DUSP1, and diclofenac was able to simultaneously target three HRDEGs. Subsequently, 
COPD samples were divided into three subtypes (C1, C2, and C3) according to three HRDEGs in both the training 
set and validation set. There was a positive relationship between TPD52 and immune features while DDIT3 and 
DUSP1 were negatively associated with immune features in GSE54837. The immune cells and immune features 
between COPD and normal groups differed from each other. C1 subtypes carried more significant immune sig-
natures. We observed that the KEGG pathways between the three subtypes differed from each other. Interest-
ingly, small molecules including TTNPB, arachidonyltrifluoromethane, MK.886, MS.275, and exisulind were 
more sensitive to COPD with severe hypoxic subtypes. Our findings revealed the association between hypoxia 
and COPD, which offered a novel layer for developing promising therapeutic targets in COPD treatment.   

1. Introduction 

Chronic obstructive pulmonary disease (COPD) is a pervasive and 
troublesome obstructive airway disease propelled by chronic inflam-
mation of the respiratory tract that places an increasing burden on 
health care in industrialized and developing countries (Barnes, 2007; 
López-Campos et al., 2016). It is characterized by nonreversible airflow 
obstruction; primarily drags peripheral airways, that spells from air 
stagnation to dynamic hyperinflation and intermittent exacerbations 
(Tangedal et al., 2019; Fleming, 2019). COPD ails approximately 10 % 

of adults with age over 40 years old; and is a dominant count for 
admission, ranking as the third leading cause of death worldwide 
(Barnes et al., 2015). Although COPD typically presents as part of a 
multimorbidity pattern in old age; evidence has piled up to illustrate 
that some early life events disturb lung function, indicating that risk 
factors beyond those extensively reputed (examples abound: cigarette 
smoking and particles and gases inhaling) are glittering in the etiology of 
the disease (Svanes et al., 2010; Postma et al., 2015). Indeed, there is a 
long-standing interest in disentangling the genetic determinants from a 
wide range of COPD susceptibilities (Silverman, 2020). COPD is a 
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heterogeneous disease that is subjected to genetic and environmental 
factors operating in a developmental climate (Decramer et al., 2012; 
Zhou et al., 2022). Painting a clear picture of genetic determinants in 
COPD allows for an unbiased evaluation of the crucial molecular de-
terminants of disease pathobiology; which may yield encouraging in-
sights into COPD pathogenesis (Huang et al., 2022). 

COPD is frequently underdiagnosed or misdiagnosed. In general, 
spirometry is liable for the diagnosis of COPD; a post-bronchodilator 
FEV1/FVC < 0.70 acknowledges the existence of persistent airflow 
limitation and distinguishes patients with COPD suffering appropriate 
symptoms and predisposing risks (Buist et al., 2007; Singh, 2019). Ac-
cording to an investigation of the National Health and Nutrition Ex-
amination Survey (NHANES), more than 70 % of participants with 
chronic airway obstruction were not formally diagnosed with COPD 
(Martinez et al., 2015). The results of another analysis in five health 
plans have manifested that 32 % of patients with a new presumptive 
COPD diagnosis had been performed with spirometry to verify the 
detection (Han, 2007). Additionally, standardized dyspnea and symp-
tom evaluation tools, for instance, the modified Medical Research 
Council (mMRC) dyspnea scale and COPD assessment test (CAT), could 
be capitalized on the stratification and surveillance of COPD progression 
(Mahler and Wells, 1988; Jones et al., 2009; Gupta et al., 2014). In the 
past 20 years, novel inhaled and oral medications (e.g., inhaled corti-
costeroids, ICS; and long-acting β2-agonists, LABAs) as well as emerging 
surgical and bronchoscopic procedures have been introduced for COPD 
treatment (Halpin, et al., 2020; Ferrera et al., 2021). Available phar-
maceutical treatment for COPD can provide relief of burdensome 
symptoms and grind down exacerbation risk (Guo et al., 2023; Zhou 
et al., 2022; Lu, 2024). 

In addition to medical therapy, supplementing oxygen is a momen-
tous strategy of COPD interventions to consider in the context of severe 
hypoxemia. Severe hypoxia is a characteristic feature of COPD and is 
instrumental in inciting disease progression. Simultaneously, hypoxia is 
a ubiquitous attribute of a solid tumor microenvironment (TME) and is 
reputed as a pivotal factor in the hallmarks of cancers (Cui et al., 2022; 
Xu et al., 2020). 

Recently, considerable research efforts are dedicated to unveiling the 
role of hypoxia in tumor development; however, only a few studies are 
in the running to dissect the function of hypoxia-related genes (HRGs) in 
COPD progression. A more comprehensive molecular classification and 
biological understanding of the HRGs in COPD could help to stratify 
patients into distinct phenotypes, thus contributing to the diagnosis and 
innovative drug development of COPD. In this study, we were posed to 
tap into the exact role and underlying mechanisms of HRGs in the 
pathological process of COPD. Notably, we interrogated the potential 
drug candidates targeting HRDEGs. The immune characteristics of 
COPD were also elucidated. Our research enlarged the current knowl-
edge concerning the association between hypoxia and COPD. 

2. Material and methods 

2.1. Data acquisition 

Two COPD-associated datasets, GSE151052 and GSE54837 were 
downloaded from the public GEO database. The HRGs were acquired 
from the hallmark hypoxia gene set on the hallmark website. Data were 
investigated by the R project. Briefly, the limma package was used to 
correct data background and normalization. The original probe IDs in 
GSE151052 and GSE54837 were transformed into gene symbols ac-
cording to the probe annotation profiles. The overlapping genes between 
DEGs in GSE 54837 and HRGs were picked out by Venn diagrams for the 
subsequent analysis. We take GSE151052 as a validation cohort to 
further investigate the expression of these hypoxia-related DEGs (also 
termed as HRDEGs). The threshold of DEGs definition was P < 0.05 and | 
log2 FC|>1. 

2.2. Identification of significant HRDEGs 

Three machine learning methods including random forest (RF), 
generalized linear model (GLM), and support vector machine (SVM) 
were applied to screen out the crucial genes in distinguishing COPD 
from the normal sample by the DALEX package in R. Briefly, the met-
adata was divided into training sets and validation sets. The optimal 
model index of three machine learning algorithms determined the main 
classifier method in the following analysis. GLM was observed to pro-
duce the lowest residual in three regression models. Also, the major 
HRDEGs associated with COPD and normal samples were identified by 
the GLM method. 

2.3. Prognostic model construction based on HRDEGs and validation 

The important HRDEGs derived from the GLM filter were incorpo-
rated into the construction of the clinical nomograph, and the predictive 
accuracy of the column line graphs was verified using calibration curves 
and ROC curves. 

2.4. The potential target drug analysis of crucial HRDEGs in TCMSP 

The traditional Chinese medicine systems pharmacology (TCMSP) is 
an unique systemic pharmacological platform for Chinese herbal med-
icines where we can obtain the relationships between drugs, targets, and 
diseases. The database platform provides information on the identifi-
cation of active ingredients, networks of compounds and drug targets, 
networks of related drug-target diseases, etc. We scrutinized the drug- 
HRDEGs networks and involved compounds of the HRDEGs. The 
active ingredients of drugs targeting HRDEGs were obtained separately, 
potential small molecule compounds were screened in the Drug Signa-
tures Database (DSigDB, https://ngdc.cncb.ac.cn/databasecommons/ 
database/id/4603). The molecular docking analysis was performed 
using autodock and vina tools to verify the relationship between com-
pounds and targets. 

2.5. COPD hypoxia subtypes analysis based on HRDEGs in GSE54837 

COPD samples derived from GSE54837 were classified into three 
different subtypes according to three HRDEGs by non-negative matrix 
factorization (NMF), and the subtypes were internally validated using 
nearest template prediction (NTP). The expression of three HRDEGs in 
three subtypes was also investigated, respectively. Based on the 
GSE54837 dataset, the enrichment score of hypoxia flux was calculated 
by single-sample Gene Set Enrichment Analysis (ssGSEA) to obtain the 
hypoxia score. COPD subtypes samples were further classified into se-
vere hypoxia subtypes and general hypoxia subtypes depending on the 
hypoxia score. ROC curves were used to evaluate the predictive per-
formance of three HRDEGs for hypoxia subtypes. 

2.6. Validation of COPD hypoxia subtypes in GSE151052 

Similarly, GSE151052 was also typed using NMF to externally vali-
date the typing results. The differences in expression of three HRDEGs 
and hypoxia scores among different subtypes were also analyzed. Sub-
sequently, COPD samples originating from GSE151052 were divided 
into severe hypoxia subtypes and general hypoxia subtypes according to 
hypoxia score. ROC curves were used to assess the prediction accuracy 
of three HRDEGs on hypoxia subtypes. 

2.7. Immune feature analysis 

We also explored the expression profile of 16 immune cells and 13 
immune signatures in COPD and normal groups by ssGSEA analysis. 
Then the correlation between three HRDEGs and immune cells and 
immune signatures was also probed. Next, we analyzed the differences 
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in these immune signatures between COPD and healthy groups. Finally, 
we monitored the immune feature differences between COPD subtypes. 

2.8. GSEA and small molecule compounds analysis between COPD 
hypoxia subtypes 

GSEA was implemented to dissect differential pathways between 
hypoxia subtypes. In addition, small molecule compounds sensitive to 
patients with severe hypoxic subtypes identified HRDEGs were also 
investigated by cAMP. 

3. Results 

3.1. The acquisition of HRGs and DEGs in COPD 

A total of 477 DEGs associated with COPD were discovered in the 
GSE54837 dataset (threshold as |log FC|＞ 1 and p-value < 0.05). The 
circular heatmap of DEGs between COPD and normal groups was visu-
alized in Fig. 1A. 200 HRGs were identified by the hallmark hypoxias 
gene set. 6 overlapping genes were identified between DEGs and HRGs 
by Venn analysis (Fig. 1B). Subsequently, the gene expression profiles of 
6 common HRGs were further exemplified in GSE54837. TPD52 and 
RORA were down-regulated in COPD samples while PPP1R15A, DUSP1, 
PDK3, and DDIT3 were up-regulated in COPD samples (Fig. 1C). Simi-
larly, we discovered that PPP1R15A, DUSP1, and PDK3 were also up- 
regulated in the GES151052 dataset (Fig. 1D). 

3.2. The identification of three imperative HRDEGs by machine learning 
method 

We used RF, GLM, and SVM, three machine learning methods to 
figure out the HRGs that contributed greatly to COPD. The residual of 
the GLM method was the lowest of the three algorithms (Fig. 2A and 2B). 
The ROC analysis results showed that the AUC value of the GLM method 
was higher than RF and SAM (Fig. 2C). These findings demonstrated that 
the GLM algorithm performed excellently in the construction of the 
prognostic model of COPD. Results suggested that the importance of 6 
overlapping HRDEGs varied according to three methods and they were 
different from each other (Fig. 2D). According to the GLM investigation 
result, the top three HRDEGs (TPD52, DDIT3, and DUSP1) were figured 
out to further analysis. ROC analysis indicated that TPD52 obtained the 
highest AUC value while DDIT3 obtained the lowest diagnostic value in 
COPD (Fig. 2E). The clinical nomogram of the three top HRDEGs was 
shown in Fig. 2F. Three HRDEGs could well distinguish COPD from 
normal samples. The calibration plot and ROC curves validated their 
good predictive power in COPD (Fig. 2G and 2H). 

3.3. Potential drugs candidate of three HRDEGs 

The screening of the TCMSP herbal database hinted at a natural 
compound targeting DUSP1, 17-beta-estradiol, which was the active 
ingredient of Amygdalus Communis Vas (also named bitter almond) 
(Fig. 3A). The protein product of DUSP1 could bind with 17-beta-estra-
diol by molecular docking analysis (Fig. 3B), indicating that Amygdalus 
Communis Vas could recognize DUSP1. We retained the top ten 

Fig. 1. The acquisition of HRGs and DEGs in COPD. (A) The circular heatmap of DEGs in COPD groups in comparison with normal groups. (B) The Venn result of 
DEGs and HRGs. (C-D) The expression profile of 6 overlapping genes in GSE54837 and GSE151052. 

Z. Fu et al.                                                                                                                                                                                                                                       



Arabian Journal of Chemistry 17 (2024) 105666

4

compounds of the combined score of the three HRGs in the DSigDB 
database (Fig. 3C). Molecular dock analysis found that diclofenac (top 1 
compound) was able to simultaneously target TPD52 (Fig. 3D), DDIT3 
(Fig. 3E), and DUSP1 (Fig. 3F). These findings revealed that diclofenac 
may be a candidate drug for treating hypoxia associated with COPD. 

3.4. COPD subtypes analysis based on three HDRGs in GSE54837 

The COPD samples were clustered by NMF, and it was found that the 
sample typing did the best performance at r = 3 (Fig. 4A). The matrix 
heat map also showed that COPD samples could be divided into three 

Fig. 2. Identification of three crucial HRDEGs. (A) The reverse cumulative distribution of residual of three learning methods. (B) the boxes plot of residual for RF, 
GLM, and SVM. (C) The ROC curve of residual for RF, GLM, and SVM. (D) Top 6 HRDEGs lists by RF, GLM, and SVM screening. (E) The ROC curve of three HRDEGs 
identified by GLM. (F) The nomogram of three top HRDEGs. (G-H) The calibration plot and ROC analysis of prognosis nomogram. 
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subtypes (named C1, C2, and C3) (Fig. 4B). The classification was 
verified by the NTP algorithm according to the top 100 upregulated 
genes of each subtype. The samples could also be broken down into three 
subtypes (Fig. 4C). Calibration plots displayed that NTP classification 
and NMF classification had a good correlation (r = 0.64, Fig. 4D). 
Among the three HDRGs, TPD52 was highly expressed in the C1 subtype 
(Fig. 4E), DDIT3 was predominantly elevated in the C3 subtype 
(Fig. 4F), and DUSP1 showed significant upregulation in the C2 subtype 
(Fig. 4G). Hypoxia score was higher in C2 and C3 subtypes than C1 
subtype (Fig. 4H). Therefore, we defined C2 and C3 subtypes as the 
severe hypoxia subtype and C1 as the general hypoxia subtype. All three 
HDRGs had excellent predictive performance in predicting both hypoxia 

subtypes, with TPD52 being the most accurate (Fig. 4I). 

3.5. The endorsement of COPD typing based on three HRDEGs in 
GSE151052 

We investigated the expression level of three HRDEGs in GSE151052 
and COPD samples could be also classified into three subtypes (C1, C2, 
and C3) by the NMF typing method (Fig. 5A). Among the three HDRGs, 
TPD52 was highly expressed in C2 (Fig. 5B), DDIT3 was with highest 
expression in C1 (Fig. 5C), and DUSP1 expression was highest in C3 
(Fig. 5D). The hypoxia score was higher in C1 and C3 subtypes (Fig. 5E). 
Similarly, we defined C1 and C3 as the severe hypoxia subtype and C2 as 

Fig. 3. The drug-HRDEGs interaction analysis. (A) The interaction between 17-beta- estradiol and DUSP1. (B) Molecular dock results of DUSP1 with 17-beta-estra-
diol. (C) DSigDB database showed the top ten compounds of the combined score of three HRDEGs. (D-F) Molecular dock results of three HRDEGs and diclofenac. 
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the general hypoxia subtype. TPD52 and DUSP1 predicted these two 
hypoxic subtypes well, and TPD52 was the most accurate prediction 
(Fig. 5F). This is essentially the same situation as in GSE54837. 

3.6. Immune characteristics analysis in COPD based on GSE54837 

Among the three HRDEGs, TPD52 was positively correlated with 
immune features compared to DDIT3 and DUSP1, while DDIT3 and 
DUSP1 were negatively correlated with immune features (Fig. 6A). 
Relative to healthy individuals, immune features such as APC co- 
inhibition, type I IFN response, type II IFN response, and mast cells 
were more highly expressed in COPD (Fig. 6B). Immune cells such as B 
cells, CD8+ T cells, neutrophils, TIL, and immune signatures including 
APC co-stimulation, inflammation-promoting, MHC class I, type II IFN 
response, and other immune signatures differed in three subtypes 

(Fig. 6C). We found that most of the immune signatures with significant 
expression were highly expressed in the C1 subtype of COPD (Fig. 6D). It 
was concluded that patients with the general hypoxic subtype had better 
immunogenicity. 

3.7. KEGG analysis in COPD hypoxia subtypes 

We investigated the pathways enrichment between three COPD 
subtypes. Results indicated that the adrenergic angiotensin system and 
sulfur metabolism pathways were downregulated in C1 while the cyto-
solic DNA sensing pathway was downregulated in C2. Glycosamino-
glycan biosynthesis keratan sulfate was down-regulated in C3 (Fig. 7A). 
Ribosome and protein export were up-regulated in C1 while porphyrin 
and chlorophyll metabolism pathways were up-regulated in C2 while 
non-homologous end- joining was up-regulated in C3 (Fig. 7B). This 

Fig. 4. Identification of COPD subtypes based on three HRDEGs (A) The sample typing result had a good performance of NMF at r = 3. (B) The heatmap of three 
COPD subtypes by NMF. (C) The heatmap of three subtypes was validated by the NTP algorithm. (D) The correlation analysis between NTP and NMF typing. (E-G) 
The expression of three HRDEGs in three COPD subtypes. (H) Hypoxia flux enrichment scores of three subtypes. (I) ROC curves of three HRDEGs in predicting COPD 
hypoxia subtypes. 
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research uncovered that COPD with different hypoxia contexts exhibited 
metabolism pathways. 

3.8. Compounds sensitive to COPD with severe hypoxic context 

The crucial metabolism signal, cAMP, was used to explore the as-
sociation between COPD subtypes and small molecule compounds. 

TTNPB, arachidonyltrifluoromethane, MK.886, MS.275, and exisulind 
were found to be sensitive to COPD patients with severe hypoxic sub-
types (Fig. 8). This could guide the treatment of patients with severe 
hypoxic subtypes of COPD. 

Fig. 5. Validation of COPD hypoxia typing in GSE15102 (A)The heatmap of three subtypes identified by three HRDEGs in GSE151052 via NMF. (B-D) The expression 
of three HRDEGs in three subtypes in GSE151052. (E) Hypoxia flux enrichment scores of three subtypes. (F) ROC curves of three HRDEGs in distinguishing COPD 
hypoxia subtypes. 
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4. Discussion 

Despite the yawning clout of cigarette smoking, genetic factors are 
also essential determinants of COPD. Indeed, numerous genomic regions 

that affect COPD susceptibility have been defined during the genome- 
wide correlation analysis, of which a quintessential example would be 
alpha-1 antitrypsin deficiency, a pervasive single-gene disorder among 
Northern Europeans and North Americans (Chiuchiolo and Crystal, 

Fig. 6. Immune cell and immune feature analysis of three HRDEGs in COPD dataset GSE54837. (A) The correlation between three HRDEGs and 16 immune cells and 
13 immune signatures. (B) The expression profile of 16 immune cells and 13 immune signatures in COPD and normal groups. (C) The expression profile of 16 immune 
cells and 13 immune signatures in three subtypes. (D) Immune feature landscape in COPD subtypes. 
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2016). Simultaneously, some genomic regions correlated with COPD- 
related phenotypes, for instance, quantitative measures of emphy-
sema, have been identified (Silverman, 2018; Chen et al., 2019). Dis-
entangling the functional variants and core genes within these linked 
regions is still riddled with challenges. The current study was designed 
to come to grips with the role of HRGs in COPD progression and their 
diagnostic value (He et al., 2019; Peng et al., 2022). 

We first gleaned 477 DEGs between the healthy and COPD samples of 
the GSE54837 dataset. Further, 200 HRGs were obtained and 6 over-
lapping HRDEGs (TPD52, RORA, PPP1R15A, DDIT3, DUSP1, and PDK3) 
were screened between the DEGs and HRGs. Interestingly, the expres-
sion levels of TPD52 and RORA were tail off while counterparts of 
PPP1R15A, DDIT3, DUSP1, and PDK3 exhibited a mounting trajectory 
in COPD. The trend of PPP1R15A, DUSP1 and PDK3 were also observed 
in the validated set (GSE151052). PPP1R15A, serving as a stress- 
induced regulatory subunit, was sufficient to negatively modulate 
eIF2α dephosphorylation (Hölzer et al., 2016). Phosphorylation of eIF2α 
is an evolutionarily conserved and critical cellular defense system that 
can counteract multiple forms of stress (Carrara et al., 2017). Studies 
have shown that PPP1R15A was sinking in lung fibroblasts of patients 

with idiopathic pulmonary fibrosis (IPF; an unrelenting; chronic, and 
progressive lung disease that could be triggered by smoking) (Monkley 
et al., 2021; Richeldi et al., 2017). TGF-β-educated fibroblasts further 
shrunk PPPIR15A. The absence of PPPIR15A or its pharmacological 
handcuff aggravated experimental lung fibrosis. Whether such an effect 
is thrown on COPD remains currently unclear. 

Three machine learning algorithms (GLM, RF, and SVM) demon-
strated the varied clout of 6 HRDEGs in COPD progression; and, 
consequent to that, 3 paramount HRDEGs (TPD52, DDIT3, and DUSP1) 
were finally identified based on GLM analysis as it presented the largest 
area under ROC curve. Taken as a whole, the top three key HRDEGs, 
albeit with distinct predictive probability, performed well in dis-
tinguishing patients with COPD. The tumor protein D52 (TPD52) family 
was generally interpreted as a crucial driver in the proliferation and 
metastasis of a wide range of cancers (Fan et al., 2021; Byrne et al., 
2005). TPD52L2, a member belonging to the TPD52-like protein family, 
was overexpressed and associated with unfavorable prognosis in a va-
riety of cancers, including lung adenocarcinoma, glioblastoma, and 
prostate cancer (Zhong et al., 2021; Qiang et al., 2018; Ren et al., 2017). 
However, studies centered around TPD52 in COPD are still scarce. Our 
study gives a window to decode the role of TPD52 in COPD progression 
and its potential in clinical diagnosis. 

In recent years, a large number of studies concerning traditional 
herbal medicine have been published, and many attractive applications 
have been explored (Li and Weng, 2017; Zhao et al., 2019). Having a 
series of surfing among the TCMSP herbal medicine, it was observed 
that, 17-β- estradiol, the biologically active component of Amygdalus 
Communis Vas, could bind to DUSP1. Low-expressed DUSP1 galvanized 
alternation later expression pattern of genes engaged in certain biolog-
ical pathways, including angiogenesis, cellular communication, and 
tyrosine-kinase receptor activity (Moncho-Amor et al., 2011). Such 
alternation was largely boiled down to the administration of c-Jun-N- 
terminal kinase and/or p38 activity by DUSP1 (Hao et al., 2015). It has 
been reported that upregulation of DUSP1 abundance and consequently 
altered patterns of JNK and p38 activities are strongly associated with 
NSCLC initiation, invasion, and metastasis (Moncho-Amor et al., 2011). 
A proportion of patients with COPD progressed rapidly to SCLC, despite 
the molecular mechanisms linking COPD with lung cancer development 
being far from clear (Cho et al., 2018; Xiao et al., 2017). Overall, we 
identified a novel kind of herbal medicine that can target DUSP1, thus 
manipulating its expression levels. Moreover, we found that diclofenac, 
with the highest combined score, could act on TPD52, DDIT3, and 
DUSP1. 

Given the importance of HRGs in the progression of COPD, it could 
be advantageous to develop key HRGs as biomarkers that contribute to 
distinguishing COPD patients. We defined three hypoxia subtypes 
(namely C1, C2, and C3) by consensus clustering based on the expression 

Fig. 7. KEGG analysis in COPD hypoxia subtypes. (A-B) The KEGG enrichment results for COPD subtypes in the GSE54837 and GSE151052 datasets.  

Fig. 8. Compounds sensitive to COPD with severe hypoxia.  
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landscape of three HRDEGs. In GSE54837, TPD52, DDIT3, and DUSP1 
showed an overexpression tendency in the C1, C3, and C2 subtypes, 
respectively. According to the hypoxia score, we nominated C2 and C3 
as the severe hypoxia subgroup and C1 as the normal hypoxia subgroup. 
The three pivotal HRDEGs, in particular, TPD52, performed well in 
stratifying COPD patients into the two subgroups with varying degrees 
of hypoxia. Such characteristics of the HRDEGs exhibited a high diag-
nostic value in terms of COPD. In the validated set GSE151052, we found 
that the expression of TPD52 was upregulated in C2, and DDIT3 was 
overexpressed in C3. We defined C1 and C3 as the severe hypoxia sub-
group and C2 as the normal hypoxia subgroup. Within this framework, 
TPD52 also showed considerable precision in identifying the specific 
hypoxia subgroups among COPD patients, reinforcing its utility in the 
molecular stratification of the disease based on hypoxia status. 

There are, to date, very limited studies comparing the pathology 
between COPD and other causes of disease other than cigarette smoking 
(e.g., immunopathology), to this end, we were in the running to tackle 
this issue through ascertaining immune landscape among different 
subtypes (Birring et al., 2002; Rivera et al., 2008). Interestingly, TPD52 
exhibited a positive correlation with immune characteristics, while 
DDIT3 and DUSP1 displayed a negative association. Immune features 
like APC co-inhibition, type-I IFN response, type II IFN response, and 
mast cells contributed to the identification just mentioned. These could 
be employed to estimate the immunity of patients with COPD. Alter-
natively, hypoxia subtypes could be cooperated with the immune fea-
tures to make a comprehensive consideration of the patient’s condition. 
Such a combination might not only identify patients who could benefit 
from immunotherapy but also cast light on predicting the prognosis of 
COPD patients. 

Enrichment analysis demonstrated the difference in pathways among 
the three subtypes, further confirming the specific immune landscape in 
them. Aside from these, we also explored some agents, for example, 
TTNPB, MK.886, and MS.275, that were engineered to alleviate the 
progression of COPD patients in the severe subtype. 

5. Conclusion 

In conclusion, our study emphasized the role of HRGs in COPD 
progression and identified three COPD hypoxia subtypes based on pre-
dominant HRDEGs (TPD52, DUSP1, and DDIT3). The immune charac-
teristics of COPD hypoxia subtypes differed from each other. These 
observations may provide clues for the diagnosis and treatment of pa-
tients with COPD. 
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