

King Saud University

Arabian Journal of Chemistry

www.ksu.edu.sa www.sciencedirect.com

ORIGINAL ARTICLE

Thymus musilii Velen. as a promising source of potent bioactive compounds with its pharmacological properties: *In vitro* and *in silico* analysis

Khalil Mseddi ^{a,b}, Fathi Alimi ^{c,d}, Emira Noumi ^{a,e}, Vajid N. Veettil ^a, Sumukh Deshpande ^f, Mohd Adnan ^a, Assia Hamdi ^g, Salem Elkahoui ^{a,h}, AhmedAlghamdi ^a, Adel Kadri ⁱ, Mitesh Patel ^j, Mejdi Snoussi ^{a,k,*}

- ^a Department of Biology, University of Hail, College of Science, P.O. Box 2440, 81451 Ha'il, Saudi Arabia
- ^b Department of Biology, Sfax University, Faculty of Science of Sfax, 3000 Sfax, Tunisia
- ^c Department of Chemistry, College of Science, University of Hail, P.O. Box 2440, 81451 Hail, Saudi Arabia
- ^d Natural Water Treatment Laboratory, Water Researches and Technologies Centre of Borj-Cedria (CERTE), Carthage University, BP 273, 8020 Soliman, Tunisia
- ^e Laboratory of Bioresources: Integrative Biology and Valorization, (LR14-ES06), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP 74, 5000 Monastir, Tunisia
- ^f Central Biotechnology Services, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
- ^g Laboratoire de Développement Chimique Galénique et Pharmacologique des Médicaments, Faculté de Pharmacie, 5000 Monastir, Tunisia
- ^h Laboratory of Bioactive Substances, Centre of Biotechnology of Borj Cedria, BP 901 Hammam lif 2050, Tunisia
- ⁱ Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha, Saudi Arabia

^j Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India

^k Laboratory of Genetics, Biodiversity and Valorization of Bio-resources, Higher Institute of Biotechnology of Monastir, University of Monastir, Tunisia

Received 1 May 2020; accepted 23 June 2020 Available online 9 July 2020

Peer review under responsibility of King Saud University.

https://doi.org/10.1016/j.arabjc.2020.06.032

^{*} Corresponding author at: Department of Biology, University of Hail, College of Science, P.O. Box 2440, 81451 Ha'il, Saudi Arabia. E-mail address: snmejdi@yahoo.fr (M. Snoussi).

¹⁸⁷⁸⁻⁵³⁵² Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

KEYWORDS

Thymus musilii Velen.; GC–MS; Antioxidant; Antibacterial; Antifungal; Molecular docking Abstract For the first time, we reported the phytochemical composition of the volatile oil from Thymus musilii Velen (T. musilii). The antioxidant and antimicrobial activities against various food-borne and clinical pathogenic microorganisms were also tested. The thyme oil was particularly rich in thymol (67.697 \pm 0.938%), and thymyl acetate (12.993 \pm 0.221%). The strongest antioxidant activity of the essential oil was registered with the tests: ABTS (IC₅₀ = 5.6×10^{-4} mg/ mL) and β -carotene/linoleic acid (IC₅₀ = 3.2×10^{-3} mg/mL). This thymol-chemotype oil was active against all microorganisms tested with an inhibition growth zone ranging from 21.33 ± 1.52 mm for Proteus mirabilis (P. mirabilis) to 37.33 ± 1.15 mm for Candida vaginalis (C. vaginalis) strain. Overall, the tested oil exhibited bactericidal and fungicidal activities and only a small quantity of the tested essential oil was found to be sufficient for inhibiting the growth of the tested microorganisms. Furthermore, molecular docking results implies that, among the bioactive compounds, β -caryophyllene interacted strongly with the active site residues of TyrRS, GLMS and Gyrase enzymes and consequently support our in vitro results with the highest inhibition potential of this essential oil against tested pathogens, especially Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Our results suggested that essential oil of T. musiliii exhibited strong biological activities with a promising source of various natural compounds.

Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The use of medicinal plants as a source of therapy against various disorders have been practiced in Saudi Arabia since ages and many practices reported in the Prophetic Medicine are currently used in folk medicine in the Arabian Peninsula (Al-Essa et al., 1998). Among this category of plants, there are cultivated plants and others are spontaneous ones. These aromatic plants are grown as needed for their aerial parts (flowers, seeds, leaves, stems, bark) or their underground parts (bulbs, roots). Studies in the past have reported the presence of valuable medicinal plants from the different regions of Saudi Arabia (El-Tawil, 1983). However, the information of the indigenous medicinal plants of Saudi Arabia is scattered in a disorganized manner (Al-Asmari et al. 2014). Scientific studies have proven that these plants, including garlic, pomegranate, black seeds, costus, miswak, henna, ferns, Eucalyptus, ginger, and fenugreek are effective for treating human diseases (Noumi et al., 2017; Adnan, 2019; Reddy et al., 2020; Adnan et al., 2020). These species are exploited in human food, traditional medicine as well as for industrial purposes (agro-food, perfumery, cosmetics, pharmaceutical, etc.).

The mint family (Lamiaceae) is one of the largest and most distinctive families of flowering plants, with about 220 genera and almost 4000 species worldwide (Pirbalouti et al., 2015). This family has an almost cosmopolitan distribution. These plants are frequently aromatic in all parts and include many widely used culinary herbs, such as thyme. The genus *Thymus* L. belongs to the *Nepetoideae* subfamily of Lamiaceae family is a well-known aromatic herb and consists of about 330 species of herbaceous perennials and small shrubs in the world (Nickavar et al., 2005; Salehi et al., 2019).

The Mediterranean region can be described as the center of the genus (Cronquist, 1988; Morales, 2002; Jamzad, 2010). *Thymus* plants also includes many aromatic perennial and herbaceous plant that are cultivated in frequency due to their wide use in the food, cosmetic, and pharmaceutical industries (Nabavi et al., 2015). The genus *Thymus* is a taxonomically

complex group of aromatic plants, traditionally used for medicinal purposes because of their antiseptic, antispasmodic and antitussive properties (Pina-Vaz et al., 2004, Nabavi et al., 2015). Previous chemical investigation on *Thymus* species have shown the presence of aromatic terpenes and terpenoids, flavonoids, and phenolic acid (Miri et al., 2002; Miguel et al., 2004; Ebrahimi et al., 2008; Tohidi et al., 2017). Thymol and carvacrol are the main phenolic compound of thyme oil. The major non-phenolic compounds were linalool and *p*-cymene (Piccaglia and Marotti, 1991).

Recent studies have shown that *Thymus* species have antibacterial, antifungal, and antioxidant activities (Bassam et al., 2004; Rahimmalek et al., 2009; Jordan et al., 2009). Gedikoğlu, et al. (2019) reported that the essential oil of thyme showed antimicrobial activity against *Bacillus cereus* NRRL (B3711), *Staphylococcus aureus* (ATCC 9144), *Staphylococcus epidermidis* (ATCC 12228), *Escherichia coli* ATCC (25922), *Salmonella enteritidis* (ATCC 13076) and *Salmonella typhimurium* (ATCC 14028). The anti-bacterial characteristic of *Thymus* spp. is due to the occurrence of thymol in this genus. This substance can be used as a disinfectant.

In Saudi Arabia, at least three species of *Thymus* (endemic and introduced) were identified: *T. bovei* Benth., *T. decussatus* Benth. and *T. musilii* Velen. In addition, *T. vulgaris* was largely cultivated in many regions of the kingdom. This species, *T. musilii* Velen. belongs to division: Tracheophyta, subdivision: Spermatophytina, Class: Magnoliopsida, Superorder: Asteranae, Order: Lamiales, Family: *Lamiaceae* Lindl., and Genus: *Thymus* L. It is distributed mainly in Iraq, Palestine, and Saudi Arabia (World Checklist of Selected Plant Families, 2010).

Growing to 30–70 cm tall by 40–60 cm wide, it is a bushy, woody-based evergreen subshrub with highly aromatic, green leaves and clusters of white flowers in early summer. Preferred the dry slopes, rocks and maquis, it was always found on clay or limestone soils. It has sessile leaves varying from elliptic to linear or diamond-shaped towards the apex. The flowers have a tube-like calyx and tubular corolla with a three lobed lower lip, and are united in spikes at the top of the branches (Fig. 1).

Fig. 1 *T. musilii* Velen specimen. (A): whole plant at flowering stage, (B): clusters of white flowers, (C): green leaves.

The roots are robust, and the fruit consists of a smooth, dark colored nutlet. In Bedouin population of Saudi Arabia, leaves and flowering tops of T. *musilii* were used as a garnish or added as a flavoring in cooking variety of foods, as well as in preparing infusion tea. An aromatic tea is made from the fresh or dried leaves. The leaves can be used either fresh or dried. If the leaves are to be dried, the plants should be harvested in early and late summer just before the flowers open and the leaves should be dried quickly.

The *in vitro* antimicrobial and antioxidant activities of the essential oil and extract of *T. vulgaris* have recently been reported. Al-Asmari et al. (2017) have studied the essential oil composition, whereas, Alharbi (2017) reported that the whole plant was used in traditional medicine to treat abdominal pain, and as anti-helminthic and carminative effects. Belonging this genus, *T. musilii* is a very interesting medicinal plant closely distributed on Arabian Peninsula, Iraq and Jordan landscapes (Batanouny and Sheikh, 1972; Govaerts, 2003). In the north of Saudi Arabia, it is locally used as an antiseptic traditional drug. This species has also been used for curing many bacterial and fungal diseases in traditional medicine in Saudi Arabia (survey, data not shown). In fact,

it used by local Saudi population to cure many ailments. Leaves are used in treating respiratory diseases and the flowering tops are used as anti-helminthic, antiseptic and antispasmodic drug. However, antimicrobial and antioxidant properties of *T. musilii* Velen seem not to have been reported before.

To the best of our knowledge, this study is the first report on the biological properties of *T. musilii* Velen. The aim of this work was to investigate the chemical composition of the volatile oil obtained from the aerial parts of *T. musilii* cultivated under greenhouse conditions in Al-Gaad, Hail (Saudi Arabia) by using GC–MS technique. Additionally, the antioxidant and antimicrobial activities of the oil were assessed. To reach this objective, molecular docking studies of the bioactive compounds were also performed against tyrosyl-tRNA synthetase TyrRS from *S. aureus*, glucosamine 6-phosphate synthase (GLMS) from *E. coli* and Gyrase from *S. aureus* enzymes to better understand their mechanism of action.

2. Material and methods

2.1. Plant material sampling and essential oil extraction

The plant used in this study were collected in October 2019 from a nursery belonging to the Ministry of Agriculture in the region of Hail (Al-Gaad, Ha'il, Saudi Arabia). Dr. Ahmed Alghamdi, from the Department of Biology, Faculty of Science, University of Hail, Saudi Arabia identified the plant at the species level. A voucher specimen (AN 001) was deposited in the Department of Biology, University of Hail, Saudi Arabia. The volatile oil was collected using a clevenger-type apparatus after 3 h of hydro-distillation using 100 g from the aerial air-dried organs (flowering stage). The obtained oil was dried using anhydrous sodium sulfate and stored until use at -20 °C. The yield of extraction was calculated after three running cycle and expressed according to the dry weight.

2.2. Characterization of the volatile oil

A Hewlett-Packard 6890 chromatograph equipped with a flame ionization detector (FID) and an electronic pressure control injector was used to study the chemical composition of the obtained volatile oil from T. musilii aerial parts. A gas chromatography apparatus coupled to mass spectrometry (GC-MS) on a gas chromatograph HP 7890 (II) and HP 5975 mass spectrometer (Agilent Technologies, Palo Alto, CA, USA) with an electron impact ionization of 70 eV was used. An HP-5MS capillary column (Agilent Technologies, Hewlett-Packard, CA, USA; 30 m \times 0.25 mm), with 0.25 m film thickness was used. Temperature was fixed to rise from 40 °C to 280 °C at a rate of 5 °C/min. The carrier gas was helium with a flow rate of 1.2 mL/min, a split ratio of 60:1, scan time and mass range of 1 s and 40–300 m/z, respectively. The identification of the bioactive components in T. musilii volatile oil was based on the calculated retention index (RI) relative to (C8-C22) n-alkanes and in comparison, with authentic compounds. Further identification of compounds was made by matching their recorded mass spectra with those stored in the Wiley/ NBS mass spectral library of the GC-MS data system and

other published mass spectra (Adams, 2007) and data expressed as relative percentage of the total peak area as previously described by Essid et al. (2015) and Salem et al. (2018).

2.3. Antioxidant assays

2.3.1. DPPH radical-scavenging activity

The free radical-scavenging activity of the tested essential oil was measured using the protocol described by Chakraborty and Paulraj (2010) and Adnan et al. 2018. The ability to scavenge the DPPH radical was calculated using the following equation (Eq. (1)):

DPPH scavenging activity $(\%) = (A_0 - A_1) / A_0 \times 100$ (1)

where

 A_0 is the absorbance of the control and A_1 is the absorbance of the sample.

The antioxidant activity was expressed as IC_{50} (mg/mL) which represented the extract concentrations scavenging 50% of DPPH radicals (Nishaa et al., 2012).

2.3.2. ABTS radical scavenging activity assay

The radical scavenging activity against ABTS radical cations was measured using the method of Chakraborty and Paulraj (2010). The inhibition percentage of ABTS radical was calculated using the following equation (Eq. (2)):

ABTS scavenging activity (%) =
$$(A_0 - A_1) / A_0 \times 100$$
(2)

where

 A_0 is the absorbance of the control and A_1 is the absorbance of the sample.

The antiradical activity was expressed as IC_{50} (mg/mL) which represented the extract concentrations scavenging 50% of ABTS radicals (Nishaa et al., 2012). A lower IC_{50} value represents a stronger ABTS scavenging capacity.

2.3.3. Reducing power capability assay

The reducing power was determined using the method of Bi et al. (2013). The extract concentration providing 0.5 of absorbance (IC_{50}) was calculated from the graph of absorbance at 700 nm against sample concentration (Barros et al., 2008). Ascorbic acid was used as a standard.

2.3.4. β -carotene/linoleic acid method

The β -carotene method was carried out according to Ikram et al. (2009). Antioxidant activity (inhibition percentage, PI %) was evaluated using the following equation (Eq. (3), Miraliakbari and Shahidi, 2008):

$$PI\% = A_{\beta-\text{carotene T120}} / A_{\beta-\text{carotene t0}} \times 100$$
(3)

where

 $A_{\beta\text{-carotene t0}}$ and $A_{\beta\text{-carotene T120}}$ refer to the corresponding absorbance values of the test sample, standard and control measured before and after incubation for 2 h, respectively.

All tests were performed in triplicate and ascorbic acid (standard) was used for comparison.

2.4. Screening of antimicrobial activities

The antimicrobial activity of the obtained essential oil was tested against four type strains namely *E. coli* ATCC 35218, *P. aeruginosa* ATCC 27853, *P. mirabilis* ATCC 29245, and *K. pneumoniae* ATCC 27736. Two clinical strains, *S. aureus* MDR (multidrug resistant bacteria), and *Enterobacter cloacae* (*E. cloacae*) were used. The antifungal activity was performed using *Candida albicans* (*C. albicans*) ATCC 10231, *Cryptococcus neoformans* (*C. neoformans*) ATCC 14116, *C. vaginalis* (clinical strain), and *Candida* sp. (clinical strain). Two fungal strains (*Aspergillus spp.*) were also tested: *A. fumigatus* ATCC 204305 and *A. niger*.

Two techniques were used to screen the antimicrobial effect of the obtained essential oil and its main component thymol purchased from Sigma Aldrich®, Germany. The disc diffusion assay was performed on Mueller-Hinton agar plates for all bacteria, Sabouraud chloramphenicol agar for yeasts, and Potato Dextrose agar for the *Aspergillus* strains. 10 mg of essential oil and thymol/6 mm-disc were tested in triplicate. Ampicillin and Amphotericin B were used as control. The minimal inhibitory concentration (MIC) and minimal bactericidal/fungicidal concentration (MBC/MFC) values were determined by using the microdilution assay as previously described by Snoussi et al. (2018). MBC/MIC ratio and MFC/MIC ratio were used to interpret the activity of the essential oil as described by Gatsing et al. (2009).

2.5. Molecular docking analysis of TyrRS, GLMS and Gyrase with phytochemicals of T. musilii

Crystal structures of tyrosyl-tRNA synthetase TyrRS from S. aureus (PDB: 1JIJ.pdb) (Qiu et al., 2001), glucosamine 6phosphate synthase (GLMS) from E. coli (PDB: 1XFF.pdb) (Isupov et al., 1996), and Gyrase from S. aureus (PDB: 2XCT.pdb) (Bax et al., 2010) were fetched from Protein Data Bank (RCSBPDB). Following to the retrieval of crystal structures, LCMS identified phytochemicals 3-dimensional α-thujene, structures such as α-pinene, β-myrcene, α-terpinene, (1,8)-cineole, γ-terpinene, p-cymene, α -terpinolene, Borneol, Terpinen-4-ol, α-terpineol, 2-Isopropyl-5-methylanisole, Thymol, Carvacrol, Thymyl acetate, Carvacryl acetate, and β-caryophyllene were acquired from eminent database PubChem and converted to PDB format using Open Babel (O'Boyle et al., 2011). These seventeen compounds were then docked separately against the receptor structure (1JIJ, 1XFF and 2XCT) using molecular docking software Autodock 4.2.6 (Morris et al., 2009). Docking protocol was performed in a similar manner, which can be related to previous analyses (Sonawane and Barage, 2015; Parulekar and Sonawane, 2018). Apart from the grid centre and grid size, all other parameters used for docking with these seventeen compounds were kept same. For the preparation of the grid map using a grid box, Auto Grid (Morris et al., 2009) was used. The grid size was set to $126 \times 126 \times 126$ xyz points for TyrRS and gyrase receptors. For GLMS, grid size was set to $96 \times 122 \times 126$ xyz points. Grid spacing was kept to 0.375 Å for all the receptors. The grid centre for TyrRS was designated at dimensions (x, y and z): -11.897, 17.862 and 91.741, for GLMS at (x, y and z): 1.979, 37.952 and 20.512, and for gyrase at (x, y and z): 7.841, 39.224 and 118.021. The grid box is cantered in such a way that it encloses the entire binding site of both the receptors and provides enough space for translation and rotation of ligands. The generated docked conformation was ranked by predicted binding energy and topmost binding energy docked conformation was analyzed using UCSF Chimera (Pettersen et al., 2004) for intermolecular hydrogen bonding of active site amino acid residues from the receptors with docked ligands.

2.6. Statistical analysis

The laboratory biological assays were conducted in triplicates for each sample. The IC_{50} of DPPH, ABTS, and β -carotene bleaching methods values were calculated by linear regression analysis. ANOVA and Duncan tests were performed with SPSS 16.0. The means of the test's values were also evaluated with the Least Significant Differences test at 0.05 significance level.

3. Results and discussion

3.1. Chemical composition of T. musilii Velen. essential oil

The air-dried aerial-parts of *T. musilii* yielded 2.736 \pm 0.015% (v/w) essential oil on hydro-distillation. Seventeen components were identified in the obtained oil, belonging mainly to oxygenated monoterpenes (87.010 \pm 0.279%) followed by monoterpenes hydrocarbons (11.013 \pm 0.039%) and sesquiterpenes hydrocarbons (1.953 \pm 0.005%). These data

are summarized in Table 1. The chemical structure of the seventeen compounds identified in T. *musilii* essential oil were depicted in Fig. 2.

This essential oil can be defined as thymol/thymyl acetate chemotype (67.697/12.993%) as shown in the chromatogram (Fig. 3). Thymol (67.697 \pm 0.938%), thymyl acetate (12.993 \pm 0.221%), o-cymene (4.617 \pm 0.119%), carvacrol (3.417 \pm 0.105%), and γ -terpinene (2.633 \pm 0.072).

Numerous studies have reported that oxygenated monoterpenes were the dominant family of compounds found in the Thymus genus essential oil (De Martino et al., 2009; Zarshenas and Krenn, 2015). The diversity of the composition of the volatile oil obtained from different species and subspecies belonging to the genus *thymus* can be explicated by endogenous (plant varieties, vegetative state, organ tested) and exogenous factors like climatic features, soil characteristics, and seasons (Tzakou et al., 1998; Cosentino et al., 1999; Pirbalouti et al., 2013a,b). It has also been reported that the frequency of irrigation and salicylic acid concentration can affect the yield and the content of essential oil obtained from T. daenensis Celak, and T. vulgaris L. (Khazaie et al., 2008, Pirbalouti et al., 2013c; Alavi-Samani et al., 2013). In addition, application of fertilizers increases the vegetative biomass, oil yield and diversity, and antioxidant activities of T. daenensis Celak. (Bistgani et al., 2018).

Thymol and carvacrol are the main phenolic compound of thyme oil. The major nonphenolic compounds were linalool and *p*-cymene (Piccaglia and Marotti, 1991). Thymol was the dominant phenolic compound detected in several *Thymus* species with different percentage as reported by Tohidi et al. (2019) including: *T. carmanicus* (40.8%), *T. daenensis* (20–80.4%), *T. eriocalyx* (5.3–66.34%), *T. fallax* (19.88–65.9%), *T. fedtschenkoi* (31.8%), *T. kotschyanus* (6.8–66.15%), *T. migricus* (55.6–79.74%), *T. pubescens* (37.9–63.5%),

Peak #	RI* on HP-5MS column	Compounds	Chemical formula	Percentage (Mean ± SD)
1	931	α-Thujene	C10H16	0.437 ± 0.015
2	939	α-Pinene	$C_{10}H_{16}$	0.303 ± 0.015
3	992	β-Myrcene	C10H16	0.710 ± 0.034
4	1018	α-Terpinene	$C_{10}H_{16}$	0.853 ± 0.028
5	1026	<i>p</i> -Cymene	$C_{10}H_{14}$	4.617 ± 0.119
6	1033	1,8-Cineole	$C_{10}H_{18}O$	0.397 ± 0.005
7	1062	γ-Terpinene	C10H16	2.633 ± 0.072
8	1087	α-Terpinolene	C10H16	1.460 ± 0.081
9	1165	Borneol	$C_{10}H_{18}O$	0.763 ± 0.030
10	1174	Terpinen-4-ol	C ₁₀ H ₁₈ O	0.390 ± 0.017
11	1189	α-Terpineol	$C_{10}H_{18}O$	0.890 ± 0.036
12	1227	2-Isopropyl-5-methylanisole	$C_{11}H_{16}O$	0.080 ± 0.138
13	1290	Thymol	$C_{10}H_{14}O$	67.697 ± 0.938
14	1292	Carvacrol	$C_{10}H_{14}O$	3.417 ± 0.105
15	1356	Thymyl acetate	$C_{12}H_{16}O_2$	12.993 ± 0.221
16	1367	Carvacryl acetate	$C_{12}H_{16}O_2$	0.383 ± 0.015
17	1404	β-caryophyllene	C15H24	1.953 ± 0.102
Chemical	classes			
Monoterpe	ene hydrocarbons		11.013 ± 0.039	
Oxygenate	ed monoterpenes		87.010 ± 0.279	
Sesquiterp	enes hydrocarbons		1.953 ± 0.005	
Total com	pounds Identified (%)			100

Table 1Chemical composition of *T. musilii* Velen. essential oil.

RI: Retention index on a HP-5MS column. The data are expressed as mean \pm SD (n = 3); SD: Standard Deviation.

Fig. 2 Chemical structures of 17 bioactive molecules identified in *T. musilii* essential oil using GC–MS technique. Numbers in the figure correspond to the codes in Table 1.

T. serpyllum (52.45%), *T. transcaucasicus* (35.83–62.92%), and *T. trauveterri* (24.43–63.33%).

It has also been reported that thymol is the main phenolic compound in the essential oil of *T. cappadocicus* Boiss. (Albayrak and Aksoy, 2012), *T. pulegioides* (Pinto et al., 2006), *T. fontanesii* (Dob et al., 2006), *T. hyemalis* (Rota et al., 2008), *T. ciliatus* Desf. Benth. (Kabouche et al., 2009), *T. marschallianus* Willd (Cavar Zeljkovic et al., 2015), *T. pannonicus* (Pluhár et al., 2010), *T. vulgaris* (Asbaghian et al., 2011), *T. zygis* (Ballester-Costa et al., 2013), *T. numidicus* Poiret (Mina et al., 2014), *T. quinquecostatus* Celak. (Kim et al., 2014) and *T. lanceolatus* (Khadir et al., 2016a,b). More recently, Jan et al. (2020) reported that *T. afghanicus* harvested from the Himalayan-Afghanistan area was a thymol chemotype (27.7%).

In this study, thymyl acetate, which is formed after acetylation of thymol produced directly by terpene synthases (Keszei et al. 2008), was found to be the second phenolic compound in *T. musilii* oil (12.993%). This molecule has been reported in the essential oil of some *Thymus* species with different percentage including *T. longicaulis* (0–12.8%) and *T. pulegioides* L. (0.4–0.7%) from Italy (De Martino et al., 2009), *T. caespititius* Brot. from Portugal (11–15%, Mendes et al., 2013), *T. serpyllum* L. from Serbia (38.5%, Cancarevic et al., 2013), and *T. lanceolatus* from Algeria (0.006%; Khadir et al., 2016a,b).

3.2. Antioxidant activities of T. musilii essential oil

Because of the complex chemical compounds effect of the plants volatile oil, the antioxidant capacity of *T. musilii* essential oil is studied by four methods, DPPH, ABTS, FRAP and β -carotene bleaching methods in order to estimate the effectiveness of these compound diversity. Table 4 summarizes the free radicals scavenging activities of *T. musilii* essential oil and the commercialized standards, ascorbic acid and buty-lated hydroxyl-toluene (BHT). The IC₅₀ of the essential oil and

Fig. 3 Chromatogram obtained for *T. musilii* Velen essential oil. The main components identified are: 1 (Thymol), 2 (Thymol Acetate), and 3 (*o*-cymene).

Fig. 4 Selected photos showing the antibacterial (A), anti-*Candida* spp. (B), anti-*Aspergillus* spp. (C) activity of the tested essential oil and its main component thymol.

the standards, which is the concentration required for scavenging half (50%) of the tested radicals, showed that ABTS and peroxyl radicals were strongly significantly inhibited by *T. musilii* (Table 4). Interestingly, *T. musilii* oil possess high antioxidant activities using ABTS (IC₅₀ = $5.6 \times 10^{-4} \pm 2 \times 10^{-5}$ mg/mL) and β-carotene bleaching (IC₅₀ = $3.2 \times 10^{-3} \pm 5 \times 10^{-4}$ mg/mL) methods, followed by DPPH test (IC₅₀ = $0.049 \pm 1 \times 10^{-4}$ mg/mL). This essential oil is significantly active on peroxyl radicals than the both tested standards (Table 4).

Literature review showed that no previous work was countered on *T. musilii* essential oil antioxidant capacity. However, several studies were conducted on the genus *Thymus* essential oils and on its antioxidant capacity (El-Bakkal et al., 2020; Goudjil et al., 2020). For instance, the anti-radicalar essential oils from the cultivated *T. carmanicus*, *T. kotschyanus*, *T. migricus*, and *T. vulgaris* collected, under various conditions, from Iran were studied by DPPH method (Tohidi et al., 2020). Under red, red-blue, blue, white and greenhouse light treatments, T. carmanicus (IC₅₀ = 278; 259.2; 281; 467.4; 198.2 µg/mL), T. kotschyanus $(IC_{50} = 621.8; 421.1; 304.6; 557.4; 384.7 \,\mu g/mL), T. migricus$ $(IC_{50} = 358; 911.6; 176.8; 1274; 631.8 \,\mu\text{g/mL})$, and T. vulgaris $(IC_{50} = 560; 766; 400.6; 227.6; 314.3 \,\mu g/mL)$ inhibited DPPH radicals (Tohidi et al., 2020). Thymus longicaulis C. Presl subsp. longicaulis var. longicaulis essential oil collected from Turkey had strong radical inhibition percentage (IP = 87.69% at 0.4 mg/mL; 93.28% at 1 mg/mL; 94.15%at 2 mg/mL) using b-carotene-linoleic acid method. The same plant species possess moderate effect (IP = 28.17% at 0.1 mg/ mL; 46.32% at 0.2 mg/mL, 63.26% at 0.5 mg/mL) using DPPH method, moderate effect using reducing power protocol (Absorbance = 0.128 at 0.2 mg/mL, 0.241 at 0.4 mg/mL, 0.550

Table 2	• 2 Growth minoriton zone, whe and who values obtained for bacterial strains tested using disc diffusion and interoduction assays.									
Code	Strain	T. musilii Velen e	. musilii Velen essential oil		Main Compound (Thymol)				Ampicillin	
		Mean ± SD* (mm)	MIC ^a	MBC ^b	MBC/MIC ratio	Mean ± SD (mm)	MIC	MBC	MBC/MIC ratio	Mean ± SD (mm)
B ₁	E. coli ATCC 35218	$35.33 \pm 1.15^{\circ}$	12.5	50	4	12.66 ± 0.57^{b}	3.125	6.25	2	7 ± 0^{a}
B ₂	P. aeruginosa ATCC 27853	35.33 ± 1.15^{b}	12.5	100	>4	7 ± 0^{a}	12.5	50	4	7.33 ± 0.57^{a}
B ₃	Proteus mirabilis ATCC 29245	21.33 ± 1.52^{b}	12.5	25	2	6 ± 0^{a}	3.125	6.25	2	6.33 ± 0.57^{a}
B ₄	K. pneumoniae ATCC 27736	$36.33 \pm 1.15^{\circ}$	12.5	25	2	9 ± 1^{b}	3.125	6.25	2	$6.66 \pm 0.57^{\rm a}$
B ₉	S. aureus MDR (Clinical strain)	25.33 ± 1.15^{b}	12.5	25	2	6 ± 0^{a}	0.78	1.56	2	7.33 ± 0.57^{a}
B ₁₀	E. cloacae (Clinical strain)	$31.00 \pm 1.00^{\circ}$	3.125	6.25	2	8.66 ± 1.15^{b}	0.39	0.78	2	$6.66 \pm 0.57^{\rm a}$

 Table 2
 Growth inhibition zone, MIC and MBC values obtained for bacterial strains tested using disc diffusion and microdilution assays.

*Inhibition zone around the discs impregnated with the essential oil (10 mg/disk) expressed as mean of three replicates (mm \pm SD). SD: standard deviation. a: Minimal Inhibitory Concentration (mg/ml). b: Minimal Bactericidal Concentration (mg/ml). c: MBC/MIC ratio interpreted using the scheme of antimicrobial substances are considered as bacteriostatic agents when the ratio MBC/MIC > 4 and bactericidal agents when the ratio MBC/MIC ≤4 (Gatsing et al., 2009). The letters (a–c) indicate a significant difference between the inhibition zones of essential oil, thymol and ampicillin against the tested bacteria according to the Duncan test (p < 0.05).

Table 3 Growth inhibition zone, MIC and MFC values obtained for fungal and yeast strains tested using disc diffusion and microdilution assays.

Code	Strain	T. musilii Velen essential oil		Main Compound (Thymol)			Amphotericin B (10 mg/ml)			
		Mean ± SD* (mm)	MIC	MFC	MFC/MIC ratio	Mean ± SD* (mm)	MIC	MFC	MFC/MIC ratio	Mean \pm SD* (mm)
Y ₁	C. albicans ATCC 10231	$34.00 \pm 1.00^{\circ}$	6.25	25	4	13.66 ± 0.57^{a}	12.5	100	8	22.66 ± 1.15^{b}
Y ₂	C. neoformans ATCC 14116	$36.66 \pm 1.15^{\circ}$	3.125	6.25	2	12 ± 1^{a}	50	100	2	15.33 ± 0.57^{b}
Y ₃	C. vaginalis (Clinical strain)	$37.33 \pm 1.15^{\circ}$	6.25	12.5	2	12.66 ± 0.57^{b}	25	100	4	$6.66 \pm 0.57^{\rm a}$
Y ₄	Candida sp. (Clinical strain)	37.33 ± 1.15^{b}	6.25	12.5	2	11.66 ± 0.57^{a}	25	100	4	12.33 ± 0.57^{a}
M_1	A. fumigatus ATCC 204305	$88.66 \pm 1.15^{\circ}$	-	-	_	82.66 ± 2.31^{b}	-	-	-	$15.00 \pm 1.00^{\rm a}$
M_2	A. niger	$87.33 \pm 1.15^{\circ}$	-	-	-	74.33 ± 0.57^{b}	-	-	-	$6.00 \pm 0.00^{\rm a}$

* Inhibition zone around the discs impregnated with the essential oil (10 mg/disk) expressed as mean of three replicates (mm \pm SD). SD: standard deviation.

^a Minimal Inhibitory Concentration (mg/ml).

^b Minimal Fungicidal Concentration (mg/ml).

^c MBC/MIC ratio interpreted using the scheme of antimicrobial substances are considered as fungistatic agents when the ratio MFC/MIC > 4 and fungicidal agents when the ratio MFC/MIC ≤ 4 (Gatsing et al., 2009). The letters (a–c) indicate a significant difference between the inhibition zones of essential oil, thymol and amphotericin B against fungi according to the Duncan test (p < 0.05).

Table 4	Antioxidant activities of	T. musilii essential oil against DPPH, ABTS, FRAP and β-carotene/linoleic acid scavenging tests as						
compare	compared to ascorbic acid and BHT.							
Essential	oil and standards tested	Taet System						

Essential oil and standards tested	Test System					
	DPPH IC ₅₀ (mg/mL)	ABTS IC ₅₀ (mg/mL)	β- carotene IC ₅₀ (mg/mL)	FRAP IC ₅₀ (mg/mL)		
T. musilii Velen BHT Ascorbic Acid	$\begin{array}{r} 0.049 \ \pm \ 1 \ \times \ 10^{-4b} \\ 0.023 \ \pm \ 3 \ \times \ 10^{-4a} \\ 0.022 \ \pm \ 5 \ \times \ 10^{-4} \ a \end{array}$	$\begin{array}{l} 5.6 \times 10^{-4} \pm 2 \times 10^{-5 \ a} \\ 0.018 \ \pm \ 4 \times 10^{-4b} \\ 0.021 \ \pm \ 1 \times 10^{-3b} \end{array}$	$\begin{array}{r} 3.2 \times 10^{-3} \pm 5 \times 10^{-4} ^{a} \\ 0.042 \pm 3.5 \times 10^{-3c} \\ 0.017 \pm 1 \times 10^{-3b} \end{array}$	>1 ^c 0.05 \pm 3 × 10 ^{-3 a} 0.09 \pm 7 × 10 ^{-3b}		

BHT: Butylated hydroxytoluene. The letters (a–c) indicate a significant difference between the different antioxidant methods according to the Duncan test (p < 0.05).

<i>Thymus</i> species	Origin	Main Components	Bacteria and Fungi tested	Reference
T. vulgaris L.	Yemen	Thymol (51.34%), <i>p</i> -cymene (18.35%), β-caryophyllene (4.26%).	B. subtilis, S. aureus, S. epidermidis, P. aeruginosa, E. coli, Mycobacterium smegmatis, C. albicans and C. vaginalis.	Al Maqtari et al., 2011
	Romania	Thymol (47.59%), γ-terpinene (30.90%) and <i>p</i> -cymene (8.41%).	S. aureus ATCC 25923, P. aeruginosa ATCC 27853, S. Typhimurium ATCC 14028, E. coli ATCC 25922, K. pneumoniae ATCC 13882, E. faecalis ATCC 29212 and C. albicans ATCC 10231	Borugă et al., 2014
	Balkan Peninsula	Thymol (49.1%), <i>p</i> -Cymene (20%), carvacrol (3.5%), α-thujene (1.9%), α- pinene (1.2%), β-mycrene (1.3%), <i>trans</i> -β- ocimene (1.4%), γ-Terpinene (4.2%), borneol (1.7%), terpinene-4-ol (2%), β- caryophyllene (3.7%), δ-cadinene (2.3%).	C. albicans ATCC 10234, C. glabrata, C. krusei, C. tropicalis ATCC 750, P. aeruginosa, E. faecalis, S. sanguinis, S. salivarius, S. mutans, L. acidophilus, S. aureus.	Nikolic et al., 2014
	Italy	Thymol (46.2–67.5%), caryophyllene oxide (2.2–7.3%), geranyl propanoate (0–2.2%), linalool (0.3–2.7%), <i>trans</i> -myrtanol (0–2.3%), citronellyl formate (0–2.5%), ethyl-2-octynoate (0–1.8%).	S. aureus ATCC 25923, E. faecalis ATTC 29212, B. cereus ATCC 1177, B. subtilis ATCC 6633, E. coli ATCC 25922, P. aeruginosa ATCC 27853, S. epidermidis ATCC 12228, K. pneumoniae ATCC 10031, S. typhi Ty2 ATCC 19430 and P. vulgaris ATCC 13315.	Mancini et al., 2015
	France	Thymol (47.06%), <i>p</i> -cymene (20.07%), γ- terpinene (9.03%), linalool (5.00%), carvacrol (3.24%)	<i>C. albicans</i> ATCC 18804, <i>Cryptococcus</i> neoformans 24067 (serotype D or var. neoformans) Aspergillus niger ATCC 16888	Satyal et al., 2016
	Republic of Moldova	Thymol (55.44 \pm 0.62%), m-Cymene (11.88 \pm 0.32%), γ -Terpinene (5.74 \pm 0.20%), o-Cymen-5-ol (5.14 \pm 0.19%), β-caryophyllene (1.53 \pm 0.07%), Terpinen-4-ol (1.04 \pm 0.04%), 2-Carene (1.04 \pm 0.04%).	A. flavus MUCL 19006	Aprotosoaie et al., 2019
T. longicaulis C. Presl	Italy	Thymyl acetate $(0-12.8\%)$, t-Cadinol $(0.3-9.2\%)$, <i>p</i> -cymene $(0.4-9.0\%)$, β- caryophyllene $(2.2-5.7\%)$, γ -terpinene $(0.9-5.5\%)$, Germacrene D (5.3%) , thymol $(6.4-9.3\%)$, thymol methyl ether $(0.8-5.5\%)$, carvacrol $(0-12.8\%)$, Carvacryl acetate $(0-13.6\%)$	S. aureus ATTC 25923, S. faecalis ATTC 29212, B. subtilis ATCC 6633, B. cereus PCI 213, P. mirabilis ATCC 12453, E. coli ATCC 25922, S. typhi Ty2 ATCC 19430, P. aeruginosa (ATCC 27853).	De Martino et al., 2009
	Balkan Peninsula	Thymol (46.3%), δ-3-Carene (1.6%), <i>p</i> - Cymene (9.4%), γ-terpinene (16.2%), linalool (1.4%), borneol (2.2%), thymyl methyl ether (11.4%), β-Caryophyllene (2.1%), carvacrol (1.4%).	H. influenzae, N. meningitidis, S. aureus, S. pneumoniae, S. pyogenes, C. albicans	Vladimir-Knežević et al., 2012
T. pulegioides	Italy	Thymol (21.8–26.3%), p-cymene (17.6–	S. aureus ATTC 25923, S. faecalis ATTC	De Martino et al.,

 Table 5
 Literature review of some *Thymus* species thymol-chemotype and microorganisms used for the antimicrobial activities.

6791	
------	--

Thymus species	Origin	Main Components	Bacteria and Fungi tested	Reference
L.		19.9%), linalool (4.7–5.6%), β - caryophyllene (5.9–7.5%), thymol methyl ether (6.0–10.8%), carvacrol (3.1–4.7%).	29212, B. subtilis ATCC 6633, B. cereus PCI 213, P. mirabilis ATCC 12453, E. coli ATCC 25922, S. typhi Ty2 ATCC 19,430 and P. aeruginosa ATCC 27853.	2009
T. daenensis Celak.	Iran	Thymol (3.8–78.3%), ρ -cymene (2.7– 11.6%), caryophyllene (2.1–5.6%), methyl carvacrol (2.9–4.9%), g-terpinene (2.5– 12.9%), geraniol (0–3.4%), α -humulene (0– 3.2%), carvacrol (2–15.2%), γ -terpinene (3.9–12.9%), aromadendrene (0–3.9%), carvacrol methyl ether (3.4–4.27%), δ - terpinene (0–4.3%)	L. monocytogenes, S. aureus, S. iniae, E. coli, P. aeruginosa, K. pneumonia, H. pylori, A. niger, A. fumigatus, C. albicans and S. cerevisiae.	Zarshenas and Krenn, 2015
	Iran	α-pinene (0.51%), 1,8-cineole (0.58%), γ- terpinene (5.74%), linalool (0.52%), thymol (74.32%), carvacrol (4.31%), <i>trans</i> - caryophyllene (3.56%), caryophyllene oxide (0.42%).	C. albicans vaginal, E. coli O157:H7; B. cereus, L. monocytogenes and S. aureus.	Pirbalouti et al., 2009 Pirbalouti et al., 2010 Pirbalouti et al., 2014
T. capitatus L.	Algeria	Thymol (51.22%), carvacrol (12.59%), γ - terpinene (10.3%), <i>trans</i> -13-octadecenoic acid (9.04%), linalool (2.29%), caryophyllene (2.01%), pentadecanoic acid (1.92%), α -terpinene (1.78%), β-myrcene (1.40%), carvachyllene acide (1.21%)	E. coli, S. typhi, S. aureus, S. pneumoniae, Cladosporium herbarum, Alternaria infectoria, A. ochraceus, and Trichophyton sp.	Goudjil et al., 2020
	Tunisia	(1.49%), caryophylene oxide (1.21%). Thymol (69.95–81.49%), α -cubebene (0– 3.44%), β -ocimene (3.09–3.16%), carvacrol (0–2.56%), α -terpinene (2.25–3.83%).	E. coli ATCC 8739, S. typhimurium NCTC 6017, S. aureus ATCC 29213, P. aeruginosa ATCC 27853, A. hydrophila, L. monocytogenes ATCC 7644, B. cereus, A. flavus, A. niger and C. albicans.	Aouadhi et al., 2013
		Thymol (89.06%), <i>p</i> -cimene (5.04%), γ- terpinene (3.19%).	S. aureus CIP7625, L. monocytogenes Scott A 724, E. coli ATCC 10536, K. pneumoniae CIP8291, S. cerevisiae ATCC 4226, C. albicans IPA 200, M. ramamnianus ATCC 9314, A. westerdijkiae NRRL 3174.	Mkaddem et al., 2010
T. cappadocicus Boiss.	Turkey	Thymol (70.82%), cymene (9.52%), <i>g</i> -terpinene (9.27%).	A. hydrophila, E. coli, M. morganii, K. pneumoniae, P. mirabilis, P. aeruginosa, S. typhimurium, Y. enterocolitica, B. brevis, B. cereus, B. subtilis, L. monocytogenes, S. aureus, C. albicans and S. cerevisiae.	Albayrak and Aksoy, 2012
T. striatus	Balkan Peninsula	Thymol (59.5%), γ -terpinene (11.6%), p - cymene (6.4%), carvacrol-methyl ether (5.9%), carvacrol (4.9%), α -terpinene (3.3%), E-caryophyllene (2.3%).	A. alternata, A. niger, A. ochraceus, A. versicolor, A. flavus, A. terreus, C. cladosporioides, P. funiculosum, P. helianthi, T. viride, T. mentagrophytes, M. canis, and E. floccosum	Couladis et al., 2004
<i>T. algeriensis</i> Boiss. and Reut	Balkan Peninsula	Thymol (36%), carvacrol (14%), α-pinene (1.1%), β-mycrene (2.3%), p-cymene (6.3%), β-bisabolene (4%0, α-terpinene (1.6%), γ-terpinene (4.8%), linalool (1.3%), camphor (1.1%), caryophyllene oxide (1%).	C. albicans ATCC 10234, C. glabrata, C. krusei, C. tropicalis ATCC 750, P. aeruginosa, E. faecalis, S. sanguinis, S. salivarus, S. mutans, L. acidophilus, S. aureus.	Nikolic et al., 2014
<i>T. numidicus</i> Poiret	Algeria	Thymol (40.40%), carvacrol (13.37%), thymol methyl ether (8.30%), β-myrcene (2.37%), p-cymene (7.18%), γ-terpinene (6.41%), linalool (4.06%), β-caryophyllene (2.48%), β-bisabolene (3.26%).	S. aureus ATCC 25923, E. coli, P. aeruginosa ATCC 27853, C. albicans.	Messara et al., 2016
T. zygis	Spain	$\begin{array}{l} \alpha \text{-pinene (36.8 \pm 1.7-93.9 \pm 4.8 mM),} \\ \text{myrcene (32.7 \pm 0.6-145.6 \pm 6.4 mM),} \\ \alpha \text{-} \\ \text{terpinene (14.6 \pm 0.5-102.1 \pm 5.5 mM),} \\ \rho \text{-} \\ \text{cymene (705.7 \pm 22.9-1212.8 \pm 13.0 mM),} \\ \gamma \text{-} \\ \text{terpinene (448.5 \pm 22.4-1462.8 \pm 38.2 mM),} \\ \text{linalool (223.6 \pm 2.8-386.8 \pm 13.6 mM),} \\ \text{terpinen-4-ol (8.9 \pm 0.3-45.7 \pm 0.3 mM),} \\ thymol (1923.2 \pm 27.5-160.2 \pm 20.5-160.2 \pm 20.$	S. aureus ATCC 6538, E. coli ATCC 8739, P. aeruginosa ATCC 9027, C. albicans ATCC 10231.	Cutillas et al., 2018

<i>Thymus</i> species	Origin	Main Components	Bacteria and Fungi tested	Reference
		3636.2 ± 15.2 mM), carvacrol (34.3 \pm 1.3– 112.9 \pm 2.5 mM), E- β -caryophyllene (24.1 \pm 0.3–50.4 \pm 1.0 mM)		
T. serpillum L.	Balkan Peninsula	Thymol (38.5%), carvacrol (4.7%), α -pinene (2%), camphene (2.4%), γ -terpinene (7.2%), linalool (2.4%), borneol (6%), thymol methyl ether (3.8%), thymol acetate (2.8%).	C. albicans ATCC 10234, C. glabrata, C. krusei, C. tropicalis ATCC 750, P. aeruginosa, E. faecalis, S. sanguinis, S. salivarius, S. mutans, L. acidophilus, S. aureus.	Nikolic et al., 2014
T. lanceolatus	Algeria	Thymol (69.61%), γ-terpinene (8.38%), p- cymene (5.07%), carvacrol (3.57%), α- terpinene (1.31%), linalool (1.01%), β- mycrene (1.72%), α-thujene (1.07%), α- pinene (0.73%), d-limonene (0.62%), β- pinene (0.43%).	S. aureus ATCC 29213, S. epidermidis ATCC 14990, S. capitis ATCC 35661, S. pyogenes ATCC 12344, S. agalactiae ATCC 27956, Bacillus subtilis ATCC 6051, P. fluorescens ATCC 13525, S. typhimurium ATCC 14028, S. flexneri ATCC 700930, E. coli ATCC 25922, A. fumigatus ATCC 1022, Geotrichum candidum ATCC 12784, S. racemosum ATCC 14831, C. albicans (ATCC 90028).	Khadir et al., 2016a. b
<i>T. linearis</i> Benth.	India	Thymol (54.9%), γ -terpinene (16.6%), <i>p</i> - cymene (5.2%), α -thymol methyl ether (3.2%), terpinene (2.6%), thymyl acetate (2.8%), β -bisabolene (2.3%), (E)- caryophyllene (2.0%), myrcene (1.8%), α - thujene (1.6%), carvacrol (1.5%), borneol (1.1%).	<i>S. aureus</i> MRSA 33591, <i>S. epidermidis</i> MRSE 51625, <i>S. aureus</i> MRSA (BAA-44), <i>S. aureus</i> MTCC-96, <i>S. epidermidis</i> MTCC- 435, <i>E. faecalis</i> MTCC-439, <i>C. albicans</i> ATCC 14053, <i>C. tropicalis</i> ATCC 2013180, <i>C. glabrata</i> ATCC-15126.	Kumar et al., 2020
T. kotschyanus	Iran	α-pinene (5.49–12.72%), β-Myrcene (0.80– 1.51%), α-terpinene (1.62–1.80%), <i>p</i> -cymene (0–21.35%), m-cymene (0–8.87%), 1,8- cineole (4.57–4.79%), γ-terpinene (4.00– 8.01%), 4-terpineol (0–2.19%), α-terpineol (0.92–1.08%), thymol methyl ether (2.10– 2.44%), carvacrol methyl ether (0–4.14%), thymol (29.96–47.48%), carvacrol (0.62– 3.79%), β-bourbonene (0.15–3.30%), caryophyllene (1.27–2.92%).	E. faecalis ATCC 29212, S. aureus ATCC 25952, S. aureus ATCC 33591, S. aureus ATCC 29213, S. sanguis PTCC 1449, E. aerogenes ATCC 13048, K. pneumoniae ATCC 700603, P. mirabilis ATCC 43071, E. coli O157:H7	Mobaiyen et al., 2017
T. eigii	Turkey	Thymol (24.77%), carvacrol (14.00%), <i>p</i> - cymene (10.91%), γ-terpinene (6.53%), borneol (6.48%), caryophyllene (3.92%), α- pinene (2.03%), α-thujene (2.34%), β- myrcene (2.68%), α-terpinene (2.28%), 1- octen-3-ol (2.94%), 17 <i>trans</i> -sabinene hydrate (2.19%), 4-terpineol (2.55%), (-)- caryophyllene oxide (2.01%).	E. faecalis ATCC 29212, E. casseliflavus ATCC 700327, S. aureus ATCC 29213, S. aureus ATCC BAA 977, E. hormaechei ATCC 700323, K. pneumoniae ATCC 700603, P. aeruginosa ATCC 27853, E. coli ATCC 25922, C. parapsilosis ATCC 22019, C. albicans ATCC 14053.	Ulukanli et al., 2018.
<i>T. willdenowii</i> Boiss & Reut	Morocco	Thymol (35.5–47.3%), <i>p</i> -cymene (13.9–23.8%), γ-terpinene (8.9–20.3%), carvacrol (3–5.6%), linalool (3–3.5%), camphor (0.9–3.7%), borneol (0.7–4.7%).	E. coli ATCC 25922, P. mirabilis ATCC 35659, B. cereus ATCC 10876, C. albicans ATCC 10231, A. brasilliensis ATCC 16404.	Ouknin et al., 2019
<i>T. musilii</i> Velen	Saudi Arabia	Thymol (67.69 \pm 0.93%), thymyl acetate (12.99 \pm 0.22%), <i>p</i> -cymene (4.61 \pm 0.11%), Carvacrol (3.41 \pm 0.10%), γ -terpinene (2.63 \pm 0.07%).	E. coli ATCC 35218, P. aeruginosa ATCC 27853, P. mirabilis ATCC 29245, K. pneumoniae ATCC 27736, S. aureus MDR, E. cloacae, C. albicans ATCC 10231, Cryptococcus neoformans ATCC 14116, C. vaginalis, Candida sp., A. fumigatus ATCC 204305 and A. niger.	This study

Table 6 Literature review of the antimicrobial activity of the main component identified in *T. musilii* Velen essential oil: thymol.

Strains Tested	MIC	MBC/MFC	Reference
Bacillus corous	327 581 ppm		Falcone et al. 2005
Bacillus subtilis	422 332 ppm	_	Talcone et al. 2005
Bacillus licheniformis	422.852 ppm	_	
Lactobacillus curvatus	723 45 ppm	_	
Lactobacillus plantarum	941.01 ppm	_	
Candida lusitaniae	307.901 ppm	_	
Pichia subpelliculosa	422.781 ppm	_	
Saccharomyces cerevisiae	337.761 ppm	-	
			T 1 (1 2005
Staphylococcus aureus ATCC 68580	5.00 mg/mL	-	Tombetta et al., 2005
Escherichia con ATCC 15221	5.00 mg/mL	_	
Candida albicans ATCC 10231	$0.16 \ \mu l/mL$	0.32 µl/mL	Pinto et al., 2006
Candida guilliermondii MAT23	0.16 µl/mL	0.16 µl/mL	
Candida parapsilosis ATCC 90018	0.32 µl/mL	0.32 μl/mL	
Candida krusei ATCC 6258	0.16 µl/mL	0.32 µl/mL	
Candida tropicalis ATCC 13803	$0.16 \mu l/mL$	$0.32 \mu l/mL$	
Canaiaa albicans	$0.16 \mu/mL$	$0.32 \mu/mL$	
Candida alabuata	$0.16 \mu/mL$	$0.32 \ \mu l/mL$	
Candida Izusoj	(0.16 m/m)	$0.32 \mu l/mL$	
Trichophyton rubrum	$0.16 \mu/mL$	$0.32 \mu l/mL$	
Trichophyton ruorum Trichophyton mentagrophyte	$0.16 \mu/mL$	$0.10 \ \mu l/mL$	
Enidermonhyton floccosum	$0.16 \mu l/mL$	0.16 µl/mL	
Microsporum gypseum	$0.16 \mu l/mL$	0.32 µl/mL	
Microsporum canis	$0.08 \ \mu mL$	0.16 µl/mL	
Aspergillus niger ATCC 16404	$0.16 \mu l/mL$	$0.64 \ \mu l/mL$	
Aspergillus niger CECT 2574	0.16 µl/mL	0.64 µl/mL	
Aspergillus fumigatus CECT 2071	0.16 µl/mL	0.64 µl/mL	
Aspergillus fumigatus ATCC 46645	0.16 µl/mL	0.64 µl/mL	
Aspergillus flavus	0.32 µl/mL	0.64 µl/mL	
Aspergillus niger	$0.16 \ \mu l/mL$	0.64 µl/mL	
Aspergillus fumigatus	0.16 µl/mL	0.64 µl/mL	
Salmonella typhimurium SGI1	2.5 mM	_	Palaniappan and Holley, 2010
Escherichia coli N00-666	2.5 mM	-	
Staphylococcus aureus blaZ+	2.5 mM	-	
Streptococcus pyogenes ermB+	0.31 mM	-	
Escherichia coli O157:H7	500–1000 ug/mL	1000–2000 µg/mL	Rivas et al., 2010
Escherichia coli O26	$1000 \ \mu g/mL$	$1000 \ \mu g/mL$	
Escherichia coli O111	$1000 \ \mu g/mL$	2000 µg/mL	
Escherichia coli O103	$1000 \ \mu g/mL$	$1000 \ \mu g/mL$	
Escherichia coli O145	$1000 \ \mu g/mL$	$> 2000 \ \mu g/mL$	
Salmonella Typhimurium	$2000 \ \mu g/mL$	$2000 \ \mu g/mL$	
Listeria monocytogenes	1000 µg/mL	1000 µg/mL	
Hafnia alvei	500 µg/mL	500 μg/mL	
Staphylococcus aureus	$500 \ \mu g/mL$	500 μg/mL	
Lactobacillus sakei	1000 µg/mL	2000 µg/mL	
Pseudomonas putida	1000 µg/mL	2000 μg/mL 250 μg/mL	
Baculus inermosphacia	—	250 µg/mL	
Streptococcus mutans MTCC 890	125 µg/mL	-	Mathela et al., 2010
Staphylococcus aureus MTCC 96	62.5 μg/mL	-	
Bacillus subtilis MTCC 121	125 µg/mL	-	
Staphylococcus epidermidis MTCC 435	$125 \ \mu g/mL$	-	
Escherichia coli MICC 723	250 μg/mL	-	
Escherichia coli	< 0.019 - 0.039 mg/mL	-	Pirbalouti et al., 2011
Pseudomonas aeruginosa	$< 0.019 - 0.039 \ mg/mL$	-	
Staphylococcus aureus	< 0.019 - 156 mg/mL		
Bacillus cereus	< 0.019–0.156 mg/mL		
Micrococcus luteus	1250 μg/mL		Hernández-Hernández et al., 2014
Phytophthora infestans	400.26 µl/l	-	Ben and Hamada, 2014
Phytophthora ultimum	263 µl/l	-	

(continued on next page)

T 11 (

l'able 6 (continued)			
Strains Tested	MIC	MBC/MFC	Reference
Botrytis cinerea Rhizoctonia solani	> 600 µl/l 64.56 µl/l		
Aspergillus niger Aspergillus fumigatus Aspergillus flavus Aspergillus ochraceus Alternaria alternata Botrytis cinerea Cladosporium spp. Penicillium citrinum Penicillium citrinum Fusarium oxysporum Rhizoctonia oryzae Escherichia coli Clostridium perfringens	100 mg/mL 150 mg/mL 100 mg/mL 187.5 µg/mL	 375 μg/mL 750 μg/mL	Abbaszadeh et al., 2014 Du et al., 2015
Salmonella Typhimurium Salmonella Enteritidis Salmonella Pullorum Lactobacillus acidophilus Lactobacillus reuteri Lactobacillus salivarius	375 µg/mL 750 µg/mL 375 µg/mL 1500 µg/mL 1500 µg/mL 1500 µg/mL	750 μg/mL 1500 μg/mL 750 μg/mL 3000 μg/mL 3000 μg/mL 3000 μg/mL	
Pythium insidiosum Helicobacter pylori Mycobacterium tubercolosis Mycobacterium bovis	160–320 μg/mL 0.043 ± 0.024 μl/mL 0.75 μg/mL 2.02 μg/mL		Jesus et al., 2015 Falsafi et al., 2015 Andrade-Ochoa et al., 2015
Candida albicans Candida krusei Candida tropicalis Aspergillus flavus CGMCC 32890	39 μg/mL 39 μg/mL 78 μg/mL 80 μg/mL		De Castro et al., 2015 Shen et al., 2016
Bacillus cereus Salmonella Typhimurium Escherichia coli Staphylococcus aureus	0.007 mg/mL 0.003 mg/mL 0.007 mg/mL 0.007 mg/mL	- 0.12 mg/mL 0.12 mg/mL 0.12 mg/mL	Guimarães et al., 2019
Cronobacter sakazakii lv27 Cronobacter malonaticus lv31 Cronobacter muytjensii s50 Cronobacter turicensis lv53 Cronobacter condimenti s37	0.05% 0.05% 0.05% 0.05% 0.05%	- - - -	Berthold-Pluta et al., 2019
Escherichia coli ATCC 35218 Pseudomonas aeruginosa ATCC 27853 Proteus mirabilis ATCC 29245 Klebsiella pneumoniae ATCC 27736 Staphylococcus aureus MDR Enterobacter cloacae Candida albicans ATCC 10231 Cryptococcus neoformans ATCC 14116 Candida vaginalis (Clinical strain) Candida sp. (Clinical strain)	3.125 mg/mL 12.5 mg/mL 3.125 mg/mL 3.125 mg/mL 0.78 mg/mL 0.39 mg/mL 12.5 mg/mL 50 mg/mL 25 mg/mL 25 mg/mL	6.25 mg/mL 50 mg/mL 6.25 mg/mL 1.56 mg/mL 0.78 mg/mL 100 mg/mL 100 mg/mL 100 mg/mL 100 mg/mL	This study

at 1 mg/mL), and it had no chelating activity till 1 mg/mL (Sarikurkcu et al., 2010).

Compared to the previous studies, T. musilii essential oil in the present study exhibited a strong antioxidant effect. This activity can be explained by the chemical composition classes, monoterpene hydrocarbons (11.01%) and oxygenated monoterpenes (87.01%), of the volatile oil. Most researchers revealed the antiradical effect of monoterpenes (Badawy et al., 2019; Wojtunik-Kulesza et al., 2019). The antioxidant capacity of thymol (IC₅₀ = 31.426 mg/mL), β-cymene (IC₅₀ = 916.89 mg/mL), α -terpineol (IC₅₀ = 480.56 mg/m L), myrcene (IC₅₀ = 22.136 mg/mL), α -pinene (IC₅₀ = 880. 74 mg/mL) were evaluated using N,N-dimethyl-1,4-phenylene diamine (DMPD) reagent (Badawy et al., 2019).

Other study focused on the antioxidant of α -terpinene (IC_{50} = 0.6 and 7.5 mM) and $\gamma\text{-terpinene}$ (IC_{50} = 2.8 and 30.0 mM) using ABTS and DPPH methods, respectively (Li and Liu, 2009). Previous work demonstrated that γ -terpinene

 Table 7
 Binding affinities of top-rated pose of ligand-receptor complex. Binding affinity measured in kcal/mol.

		,	
Compounds	1XFF	1JIJ	2XCT
α-Thujene	-4.5	-5.5	-4.9
α-Pinene	-4.4	-5.6	-4.5
β-Myrcene	-3.3	-5.1	-4
α-Terpinene	-4.5	-6	-4.9
p-Cymene	-4.3	-5.7	-5
1,8-Cineole	-4.8	-5.1	-4.8
γ-Terpinene	-4.5	-6	-4.9
α-Terpinolene	-4.4	-5.9	-5.3
Borneol	-4.9	-5.4	-4.8
Terpinen-4-ol	-4.6	-5.8	-5
α-Terpineol	-4.9	-6.1	-5.1
2-Isopropyl-5-methylanisole	-4.4	-4.9	-5.1
Thymol	-4.5	-5.9	-5.4
Carvacrol	-5.2	-6.3	-5.4
Thymyl acetate	-5.1	-6.1	-4.8
Carvacryl acetate	-5	-6.1	-5.6
β-Caryophyllene	-5.4	-6.8	-6.2

1XFF: glucosamine 6-phosphate synthase (GLMS) from *E. coli*, 1JIJ: tyrosyl-tRNA synthetase TyrRS from *S. aureus*, 2XCT: Gyrase from *S. aureus*.

(IC₅₀ = 15.5 mg/mL) inhibited DPPH radicals (Sonboli et al., 2005). This antioxidant assay may be related to a high area of thymol (67.7%). Several studies confirmed the strong *in vitro* and *in vivo* biological effect of thymol (Abd El-Naby et al., 2020; Arafa et al., 2020; Jafari et al., 2020). The registered effect may referred to the major compound, thymol (67.7%), and/or to the synergism between main and minor compounds of the essential oil (Ciesla et al., 2016). The antioxidant activities were studied, in literature, towards the whole essential oils, to single compounds and as well as to combination (Graßmann, 2005; Tohidi et al., 2020).

3.3. Antimicrobial activities of T. musilii essential oil

The antibacterial activity of T. musilii essential oil was tested against six bacteria, four yeasts and two fungal strains using both disc diffusion (Fig. 4) and microdilution assays. Obtained results showed that, the tested bacteria were resistant to ampicillin with a mean diameter of growth inhibition zone ranging from 6.33 \pm 0.57 mm to 7.33 \pm 0.57 mm. In addition, the mean diameter of growth inhibition zones ranged from 21.33 \pm 1.52 mm for *P. mirabilis* to 36.33 \pm 1.15 mm for *K. pneu*moniae. The clinical strain S. aureus MDR, resistant to ampicillin, was susceptible to the oil tested (25.33 \pm 1.15 mm). Small quantities of oil (12.5 mg/mL) can inhibit the growth of all tested bacteria, except for E. cloacae (MIC value = 3. 125 mg/mL). MBCs values were ranging from 6.25 mg/mL (E. cloacae) to 100 mg/mL for P. aeruginosa. As compared to the single bioactive molecule, thymol, T. musilii essential oil exhibited bactericidal activity for all tested bacteria with MBC/MIC ratio inferior to 4 except for P. aeruginosa (MBC/MIC ratio = 8). All these data are summarized in Table 2. Using the literature review, high antimicrobial activity of Thymus species (chemotype thymol) was recorded against a large collection of bacterial and fungal species (Table 5).

Similar results were obtained with the yeast and fungi strains tested. Interestingly, high diameter of inhibition zone

was recorded for the two clinical yeast strains: *Candida* sp. $(37.33 \pm 1.15 \text{ mm})$, and *C. vaginalis* $(37.33 \pm 1.15 \text{ mm})$. The MIC and MFC values were 6.25 mg/mL and 12.5 mg/mL, respectively for both strains. Using the MFC/MIC ratio scheme proposed by Gatsing et al. (2009), *T. musilii* seems to be more effective than thymol on the four tested yeast strains as they have the lowest ratio ranging from 2 to 4. It is important to highlight also that the tested (thymol/thymyl acetate) chemotype oil was very active on the two *Aspergillus* strains with mean inhibition zone about 88.66 \pm 1.15 mm for *A. fumigatus* to 87.33 \pm 1.15 mm for *A. niger*. All these data are summarized in Table 3.

Using the disc diffusion test, Vladimir-Knežević and colleagues (2012) reported similar results with *T. longicaulis* species (Chemotype thymol, 46.3%) tested against *Haemophilus* influenzae (IZ = 42 mm), Neisseria meningitidis (IZ = 53 mm), *S. aureus* (IZ = 35 mm), *S. pneumoniae* (IZ = 43 mm), and *S. pyogens* (IZ = 41 mm). Additionally, Bozin et al. (2006) reported that *T. vulgaris* essential oil (chemotype thymol) was active against a wide range of Gram-positive and Gram-negative bacteria, including the same species tested in our study. In fact, the highest growth inhibition zones were recorded for *Micrococcus flavus* (IZ = 48.2 mm), *S. epidermidis* (IZ = 48.mm), *S. aureus* (IZ = 26.2 mm), *B. subtilis* (IZ = 40.6 mm), *E. coli* (IZ = 29.4 mm), and *P. aeruginosa* (IZ = 12 mm).

Previous reports have noticed the anti-*C. albicans* activity of different species belonging to the *Thymus* genus. In fact, Pinto et al. (2006) reported a significant activity of *T. pulegioides* oil (thymol 26%/carvacrol 21% chemotype) against *Candida*, *Aspergillus* and dermatophyte species explained by the alteration in the cytoplasmic membrane and ergosterol content.

In addition, Pirbalouti et al. (2009) founded that T. daenensis Celak. essential oil effectively inhibits the growth of vaginal C. albicans strains at high concentration (50–55 μ l). The same oil was active against E. coli O157:H7, B. cereus, L. monocytogenes, and C. albicans with a diameter of growth inhibition zone and MIC values about $(7 \text{ mm}/>10 \text{ mg}\cdot\text{mL}^{-1})$ $25 \text{ mm}/0.625 \text{ mg} \cdot \text{mL}^{-1}$, 16 mm/2.5 mg $\cdot \text{mL}^{-1}$, and 19 mm/ < 0.039 mg mL^{-1} respectively (Pirbalouti et al., 2010). Thymolrich chemotype of T. daenensis Celak essential oil can inhibit the growth of S. aureus isolated from milk with MIC and MBC values about 62 µg/mL and 630 µg/mL, respectively (Pirbalouti et al., 2014). Couladis et al. (2004) reported the high activity of T. striatus (Chemotype thymol, 59.5%) against a large collection of Aspegillus, Cladosporium, Penicillium, Trichoderma, Tricophyton, Microsporum, and Epidermophyton strains with MICs values ranging from 0.5 to 2 µl. In 2014, Nikolic and colleagues reported that T. serpyllum (Thymol, 38.5%) was active against four Candida species (C. albicans, C. tropicalis, C. glabrata, and C. krusei) with MICs values ranging from 01. to 0.2 µl. More recently, Satyal et al. (2016) demonstrated that T. vulgaris essential oils inhibit the growth of C. neoformans var. neoformans, and C. albicans with MICs values about (313/156) μ g·mL⁻¹, and (1250/625) μ g·mL⁻¹ respectively for linalool and geraniol chemotypes.

A brief literature review summarized the antimicrobial activity of thymol against a large collection of bacteria, yeast and fungi (Table 6). High activity of the *Thymus* plant species can be associated to the dominance of thymol with different percentage. In fact, this molecule is known to exhibit antimicrobial, antioxidant, immunological, anti-inflammatory, anti-

LEU B:1448

Aky

TYR B:1451

PI-AJ

cancer, and cardiovascular protection properties (Nagoor et al., 2017; D'agostino et al., 2019). This terpenoid molecule inhibits the hyphal production in *Fusarium graminearum* (Gao et al., 2016), decreases the membrane permeability leading to the loss of cytoplasmic membrane integrity and loss of electrolytes in *C. albicans* species by binding to ergosterol (De Castro et al., 2015), and inhibits the telomerase activity in *S. cerevisiae* species (Darvishi et al., 2013). It has been demonstrated that thymol can kill Methicillin-resistant *S. aureus* strain by increasing the formation of reactive oxygen species (Li et al., 2014).

3.4. Molecular docking analysis

In order to correlate the binding of isolated *Thymus* bioactive molecules with its biological activities, the main compounds were docked to the active site of TyrRS, GLMS and Gyrase, respectively to demonstrate their potential inhibition against *S. aureus* and *E. coli* pathogens. The binding affinities of top-rated pose of different ligand-receptor complex (Table 4) revealed that among all tested bioactive compounds, the best binding affinity was found with β -caryophyllene-enzymes with values of -5.4 kcal/mol, -6.8 kcal/mol and -6.2 kcal/mol, respectively for β -caryophyllene-TyrRS, β -caryophyllene-GLMS and β -caryophyllene-Gyrase, suggesting its highest binding efficiency and therefore was selected for further investigation.

To get insight into the mechanism of TyrRS, GLMS and Gyrase inhibition by β -caryophyllene, we elucidate their molecular interaction mode in the active site residues of receptors. The outcomes compiled in Table 8 showed that β caryophyllene-TyrRS complex was mainly stabilized by Alkyl interactions with Met77, Ile78 and Leu128, Pi-Alkyl interactions with Leu128 and Leu173 and Pi-sigma interactions with Phe 136 residues. Alkyl and Pi-Alkyl interactions were also formed between β-caryophyllene and GLMS residues of Ile7, Ala38 and Pro166. However, the amino acid residues involved in stabilizing the complex caryophyllene-Gyrase are Ala1374 (Pi-Alkyl), Leu1448 (Pi-Alkyl and Alkyl) and Tyr1451 (Pi-Alkyl). As shown, Phe136 and Leu173 of TyrRS from S. aureus, Ala38 from Gyrase in S. aureus and Leu1448 from GLMS in E. coli formed stronger Pi-Sigma, Alkyl and Pi-Alkyl interactions with the natural bioactive compounds (Tables 7 and 8) and therefore, could possibly inhibit the activity of enzyme resulting in the neutralization of their virulence.

4. Conclusion

In the present study, the antioxidant and the antimicrobial assays of the essential oil from *T. musilii* were evaluated. The obtained findings suggest that this cultivated species can constitute a good source of antioxidant, antibacterial and antifungal compounds, namely, thymol. Nevertheless, these biological results deserve further deep *in vivo* studies in order to use this plant as possible bio-source in food and pharmaceutical industries. Molecular docking results together with the findings of *in-vitro* antimicrobial potency suggest that *T. musilii* essential oil is a potent inhibitor of *S. aureus* and *E. coli* and subsequently lead to novel discovery of plant-based therapeutic products.

Funding

This research has been funded by Scientific Research Deanship at University of Ha'il - Saudi Arabia through project number 160991.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- Abbaszadeh, S., Sharifzadeh, A., Shokri, H., Khosravi, A., Abbaszadeh, A., 2014. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of foodrelevant fungi. J. Med. Mycol. 242, e51–e56.
- Abd El-Naby, A.S., Al-Sagheer, A.A., Negm, S.S., Naiel, M.A.E., 2020. Dietary combination of chitosan nanoparticle and thymol affects feed utilization, digestive enzymes, antioxidant status, and intestinal morphology of *Oreochromis niloticus*. Aquaculture 515, 734577.
- Adams, R.P., 2007. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Allured Publishing Corporation, Carol Stream, III, USA.
- Adnan, M., 2019. Bioactive potential of essential oil extracted from the leaves of Eucalyptus globulus (Myrtaceae). J. Pharmacogn. Phytochem. 8 (1), 213–216.
- Adnan, M., Patel, M., Deshpande, S., Alreshidi, M., Siddiqui, A.J., Reddy, M.N., Emira, N., De Feo, V., 2020. Effect of *Adiantum philippense* extract on biofilm formation, adhesion with its antibacterial activities against foodborne pathogens and characterization of bioactive metabolites: An in vitro-in silico approach. Front. Microbiol. 11, 823. https://doi.org/10.3389/ fmicb.2020.00823.
- Adnan, M., Patel, M., Reddy, M.N., Alshammari, E., 2018. Formulation, evaluation and bioactive potential of *Xylaria primorskensis* terpenoid nanoparticles from its major compound xylaranic acid. Sci. Rep. 8 (1), 1740.
- Al, M.M., Alghalibi, S.M., Alhamzy, E.H., 2011. Chemical composition and antimicrobial activity of essential oil of Thymus vulgaris from Yemen. Turk. J. Biochem. 36, 342–349.
- Al-Asmari, A.K., Athar, M.T., Al-Faraidy, A.A., Almuhaiza, M.S., 2017. Chemical composition of essential oil of *Thymus vulgaris* collected from Saudi Arabian market. Asian Pac. J. Trop. Biomed. 7 (2), 147–150.
- Al-Asmari, A.K., Al-Elaiwi, A.M., Athar, M.T., Tariq, M., Al-Eid, A., Al-Asmary, S.M., 2014. A review of hepatoprotective plants used in Saudi traditional medicine. Evid. Based Complement. Alternat. Med., 1–22
- Alavi-Samani, S.M., Pirbalouti, A.G., Kachouei, M.A., Hamedi, B., 2013. The influence of reduced irrigation on herbage, essential oil yield and quality of *Thymus vulgaris* and *Thymus daenensis*. J. Herbal Drugs 4 (3), 109–113.
- Albayrak, S., Aksoy, A., 2012. Essential oil composition and in vitro antioxidant and antimicrobial activities of *Thymus cappadocicus* Boiss. J. Food Process. Preserv., 1–10
- Al-Essa, M.A., Al-Mehaidib, A., Al-Gain, S., 1998. Parental awareness of the liver disease among children in Saudi Arabia. Ann Saudi Med. 18 (1), 79–81.
- Alharbi, N.A., 2017. Survey of plant species of medical importance to treat digestive tract diseases in Tabuk Region, Saudi Arabia. J. King Abdulaziz Univ.-Sci. 29 (1), 51–61.

- Andrade-Ochoa, S., Nevárez-Moorillón, G.V., Sánchez-Torres, L.E., Villanueva-García, M., Sánchez-Ramírez, B.E., Rodríguez-Valdez, L.M., Rivera-Chavira, B.E., 2015. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against *Mycobacterium tuberculosis* and *Mycobacterium bovis*. BMC Complement. Altern. Med. 15, 332.
- Aouadhi, C., Ghazghazi, H., Dallali, S., Sebei, H., Hasnaoui, B., Maaroufi, A., 2013. Comparison of chemical composition, antioxidant and antimicrobial activities of *Thymus capitatus* L. essential oils from two Tunisian localities (Sousse and Bizerte). Int. J. Agron. Plant. Prod. 4 (8), 1772–1781.
- Aprotosoaie, A.C., Miron, A., Ciocarlan, N., Brebu, M., Rosu, C. M., Trifan, A., Vochita, G., Gherghel, D., Luca, S.V., Nita, A., Costache, I.-I., Mihai, C.T., 2019. Essential oils of Moldavian *Thymus* species: Chemical composition, antioxidant, anti-Aspergillus and antigenotoxic activities. Flavour Frag. J. 34, 175–186.
- Arafa, W.M., Abolhadid, S.M., Moawad, A., Abdelaty, A.S., Moawad, U.K., Shokier, K.A.M., Shehata, O., Gadelhaq, S.M., 2020. Thymol efficacy against coccidiosis in pigeon (*Columba livia* domestica). Prevent. Veterin. Med. 176, 104914.
- Asbaghian, S., Shafaghat, A., Zarea, K., Kasimov, F., Salimi, F., 2011. Comparison of volatile constituents, and antioxidant and antibacterial activities of the essential oils of *Thymus caucasicus*, *T. kotschyanus* and *T. vulgaris*. Natural Prod. Commun. 6 (1), 137– 140.
- Badawy, M.E.I., Marei, G.I.K., Rabea, E.I., Taktak, N.E.M., 2019. Antimicrobial and antioxidant activities of hydrocarbon and oxygenated monoterpenes against some foodborne pathogens through in vitro and in silico studies. Pestic. Biochem. Physiol. 158, 185–200.
- Ballester-Costa, C., Sendra, E., Fernández-López, J., Pérez-Álvarez, J.A., Viuda-Martos, M., 2013. Chemical composition and in vitro antibacterial properties of essential oils of four *Thymus* species from organic growth. Ind. Crops Prod. 50, 304–311.
- Barros, L., Falcão, S., Baptista, P., Freire, C., Vilas-Boas, M., Ferreira, I.C., 2008. Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chem. 111 (1), 61–66.
- Bassam, A., Ghaleb, A., Dahood, A., Naser, J., 2004. Antibacterial activities of some plant extracts utilized in popular medicine in Palestine. Turk. J. Biol. 28, 99–102.
- Batanouny, K.H., Sheikh, M.Y., 1972. Ecological observations along baghdad-huseiba road. Western Desert, Iraq With 2 figures. Feddes Repertor. 83 (4), 245–263.
- Bax, B.D., Chan, P.F., Eggleston, D.S., Fosberry, A., Gentry, D.R., Gorrec, F., Giordano, I., Hann, M.M., Hennessy, A., Hibbs, M., Huang, J., Jones, E., Jones, J., Brown, K.K., Lewis, C.J., May, E. W., Saunders, M.R., Singh, O., Spitzfaden, C.E., Shen, C., Shillings, A., Theobald, A.J., Wohlkonig, A., Pearson, N.D., Gwynn, M.N., 2010. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466, 935–940.
- Berthold-Pluta, A., Stasiak-Różańska, L., Pluta, A., Garbowska, M., 2019. Antibacterial activities of plant-derived compounds and essential oils against *Cronobacter* strains. Eur. Food Res. Technol. 245, 1137–1147.
- Ben, Jabeur M., Hamada, W., 2014. Antifungal activity of chemically different essential oils from wild Tunisian Thymus spp., Natural Product Research: Formerly. Natural Prod. Lett., 1–5
- Bi, H., Gao, T., Li, Z., Ji, L. Wei, Yang, B Jeff, Iteku, Enxu Liu, Zhou, Yifa, 2013. Structural elucidation and antioxidant activity of a water-soluble polysaccharide from the fruit bodies of bulgaria inquinans (Fries). Food Chem. 138 (2–3), 1470–1475.
- Bistgani, Z.E., Siadat, S.A., Bakhshandeh, A., Pirbalouti, A.G., Hashemi, M., Maggi, F., Morshedloo, M.R., 2018. Ind. Crops Prod. 121 (1), 434–440.
- Borugă, O., Jianu, C., Mişcă, C., Goleţ, I., Gruia, A.T., Horhat, F. G., 2014. *Thymus vulgaris* essential oil: chemical composition and antimicrobial activity. J. Med. Life 7 (Special Issue 3), 56–60.

- Bozin, B., Mimica-Dukic, N., Simin, N., Anackov, G., 2006. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food. Chem. 54 (5), 1822–1828.
- Cancarevic, A., Bugarski, B., Savikin, K., Zdunic, G., 2013. Biological activity and ethnomedicinal use *Thymus vulgaris* and *Thymus serpyllum*. Med. Mater. 33 (33), 3–17.
- Cavar Zeljković, S., Maksimović, M., 2015. Chemical composition and bioactivity of essential oil from *Thymus* species in Balkan Peninsula. Phytochem. Rev. 14, 335–352.
- Chakraborty, Kajal, Paulraj, R., 2010. Sesquiterpenoids with freeradical-scavenging properties from marine macroalga Ulva fasciata Delile. Food Chem. 122 (1), 31–41.
- Ciesla, L.M., Wojtunik-Kulesza, K.A., Oniszczuk, A., Waksmundzka-Hajnos, M., 2016. Antioxidant synergism and antagonism between selected monoterpenes using the 2, 2-diphenyl-1picrylhydrazyl method. Flavour Fragrance J. 31 (6), 412–419.
- Cosentino, S., Tuberoso, C.I.G., Pisano, B., Satta, M., Arzedi, E., Palmas, F., 1999. In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett. Appl. Microbiol. 29, 130–135.
- Couladis, M., Tzakou, O., Kujundzic, S., Sokovic, M., Mimica-Dukic, N., 2004. Chemical analysis and antifungal activity of *Thymus striatus*. Phytother. Res. 18 (1), 40–42.
- Cronquist, A., 1988. The Evolution and Classification of Flowering Plants. The New York Botanical Garden, New York, USA.
- Cutillas, A.B., Carrasco, A., Martinez-Gutierrez, R., Tomas, V., Tudela, J., 2018. Thyme essential oils from Spain: Aromatic profile ascertained by GC-MS, and their antioxidant, anti-lipoxygenase and antimicrobial activities. J. Food Drug. Anal. 26, 529–544.
- D'agostino, M., Tesse, N., Frippiat, J.P., Machouart, M., Debourgogne, A., 2019. Essential oils and their natural active compounds presenting antifungal properties. Molecules 24, 3713–3734.
- Darvishi, E., Omidi, M., Bushehri, A.A., Golshani, A., Smith, M.L., 2013. Thymol antifungal mode of action involves telomerase inhibition. Med. Mycol. 51, 826–834.
- De Castro, R.D., de Souza, T.M.P.A., Bezerra, L.M.D., Ferreira, G. L.S., Costa, E.M.M., Cavalcanti, A.L., 2015. Antifungal activity and mode of action of thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: An in vitro study. BMC Complement. Altern. Med. 15, 417.
- De Martino, L., Bruno, M., Formisano, C., De Feo, V., Napolitano, F., Rosselli, S., Senatore, F., 2009. Chemical composition and antimicrobial activity of the essential oils from two species of *Thymus* growing wild in southern Italy. Molecules 14 (11), 4614–4624.
- Dob, T., Dahmane, D., Benabdelkader, T., Chelghoum, C., 2006. Composition and antimicrobial activity of the essential oil of *Thymus fontanesii*. Pharm. Biol. 44 (8), 607–612.
- Du, E., Gan, L., Li, Z., Wang, W., Liu, D., Guo, Y., 2015. *In vitro* antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with *Clostridium perfringens*. J. Anim. Sci. Biotechnol. 24 (6), 58–69.
- Ebrahimi, S.N., Hadian, J., Mirjalili, M.H., Sonboli, A., Yousefzadi, M., 2008. Essential oil composition and antibacterial activity of *Thymus caramanicus* at different phonological stages. Food Chem. 110, 927–931.
- El-Bakkal, S.E., Zeroual, S., Elouazkiti, M., Mansori, M., Bouamama, H., Zehhar, N., El-Kaoua, M., 2020. Comparison of yield chemical composition and biological activities of essential oils obtained from *Thymus pallidus* and *Thymus satureioides* Coss. grown in wild and cultivated conditions in Morocco. J. Essential Oil Bear. Plants, 1–14.
- El-Tawil, B.A.H., 1983. Chemical constituents of indigenous plants used in native medicine of Saudi Arabia. Arab Gulf J. Sci. Res. 1, 395–419.
- Essid, R., Rahali, F.Z., Msaada, K., Sghair, I., Hammami, M., Bouratbine, A., Aoun, K., Limam, F., 2015. Antileishmanial and

cytotoxic potential of essential oils from medicinal plants in northern *Tunisia*. Ind. Crop. Prod. 77, 795–802.

- Falcone, P., Speranza, B., Del Nobile, M.A., Corbo, M.R., Sinigaglia, M., 2005. A Study on the Antimicrobial Activity of Thymol Intended as a Natural Preservative. J. Food Prot. 68 (8), 1664–1670.
- Falsafi, T., Moradi, P., Mahboubi, M., Rahimi, E., Momtaz, H., Hamedi, B., 2015. Chemical composition and anti-Helicobacter pylori effect of *Satureja bachtiarica* Bunge essential oil. Phytomedicine 221, 173–177.
- Gatsing, D., Tchakoute, V., Ngamga, D., Kuiate, J.-R., Tamokou, J. D.D., Nji-Nkah, B.F., Tchouanguep, F.M., Fodouop, S.P.C., 2009. *In vitro* antibacterial activity of *Crinum purpurascens* Herb. leaf extract against the *Salmonella* species causing typhoid fever and its toxicological evaluation. Iran. J. Med. Sci. 34, 126–136.
- Gedikoğlu, A., Münevver, S., Ayşe, Ç., 2019. Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Sci. Nutrit. 7 (5), 1704–1714.
- Gao, T., Zhou, H., Zhou, W., Hu, L., Chen, J., Shi, Z., 2016. The Fungicidal activity of thymol against *Fusarium graminearum* via inducing lipid peroxidation and disrupting ergosterol biosynthesis. Molecules. 21, 770–782.
- Goudjil, M.B., Zighmi, S., Hamada, D., Mahcene, Z., Bencheikh, S. E., Ladjel, S., 2020. Biological activities of essential oils extracted from *Thymus capitatus* (Lamiaceae). S. Afr. J. Bot. 128, 274– 282.
- Govaerts, R., 2003. World checklist of selected plant families database in ACCESS: 1-216203. The Board of Trustees of the Royal Botanic Gardens, Kew. (Thymus musilii Velen., Sitzungsber. Königl. Böhm. Ges. Wiss., Math.-Naturwiss. Cl. 11: 5 (1911 publ. 1912). R.Govaerts.
- Graßmann, J., 2005. Terpenoids as Plant Antioxidants. In: Litwack, G. (Ed.), Vitamins & Hormones. Academic Press, pp. 505–535.
- Guimarães, A.C., Meireles, L.M., Lemos, M.F., Guimarães, M.C.C., Endringer, D.C., Fronza, M., Scherer, R., 2019. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules. 24 (13), 2471–2481.
- Hernández-Hernández E., Regalado-González C., Vázquez-Landaverde P., Guerrero-Legarreta I., & García-Almendárez B. E., 2014. Microencapsulation, chemical characterization, and antimicrobial activity of Mexican Lippia graveolens H.B.K. and European Origanum vulgare L. oregano essential oils. Sci. World J., 641814.
- Ikram, E.H.K., Khoo, H.E., Abbe, M.M.J., Amin, I., Salma, I., Azrina, A., Halimatul, S.M.N., Norzatol, A.M.D., Ruzaidi, A.M. M., 2009. Antioxidant capacity and total phenolic content of Malaysian underutilized fruits. J. Food Compos. Anal. 22 (5), 388– 393.
- Isupov, M.N., Obmolova, G., Butterworth, S., Badet-Denisot, M.A., Badet, B., Polikarpov, I., Littlechild, J.A., Teplyakov, A., 1996. Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 å crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase. Structure 4 (7), 801–810.
- Jafari, A., Karimipour, M., Khaksar, M.R., Ghasemnejad-Berenji, M., 2020. Protective effects of orally administered thymol against titanium dioxide nanoparticle–induced testicular damage. Environ Sci. Pollut. Res. Int. 27 (2), 2353–2360.
- Jamzad, Z., 2010. Thymus and Satureja spp. of Iran, Research instituted of Forests and Rangelands Press, 172 P.
- Jan, A.K., Khan, S.W., Khan, N.M., Sher, H., Khuda, F., 2020. Composition of the essential oil of *Thymus afghanicus*. Chem. Nat. Compd. 56 (1), 156–157.
- Jesus, F., Ferreiro, L., Bizzi, K., Loreto, É., Pilotto, M., Ludwig, A., Alves, S., Zanette, R., Santurio, J., 2015. *In vitro* activity of carvacrol and thymol combined with antifungals or antibacterials against *Pythium insidiosum*. Journal de Mycologie Médicale 252, e89–e93.

- Jordan, M.J., Martinez, R.M., Martinez, C., Martinez, M.I., Sotomayor, J.A., 2009. Polyphenolic extract and essential oil quality of *Thymus zygis* ssp. gracilis shrubs cultivated under different watering levels. Ind. Crop. Prod. 29, 145–153.
- Kabouche, A., Ghannadi, A., Kabouche, Z., 2009. *Thymus ciliatus* the highest thymol containing essential oil of the genus. Nat. Prod. Commun. 4 (9), 1251–1252.
- Keszei, A., Brubaker, C.L., Foley, W.J., 2008. A molecular perspective on terpene variation in Australian Myrtaceae. Aust. J. Bot. 56, 197–213.
- Khadir, A., Sobeh, M., Gad, H.A., Benbelaid, F., Bendahou, M., Peixoto, H., Sporer, F., Ashour, M.L., Wink, M., 2016a. Chemical composition and biological activity of the essential oil from Thymus lanceolatus. Z. Naturforsch. 71, 155–163.
- Khadir, A., Sobeh, M., Gad, H.A., Benbelaid, F., Bendahou, M., Peixoto, H., Sporer, F., Ashour, M.L., Wink, M., 2016b. Chemical composition and biological activity of the essential oil from *Thymus lanceolatus*. Z. Naturforsch C. J. Biosci. 71 (5–6), 155–163.
- Khazaie, H.R., Nadjafi, F., Bannayan, M., 2008. Effect of irrigation frequency and planting density on herbage biomass and oil production of thyme (*Thymus vulgaris*) and hyssop (*Hyssopus* officinalis). Ind. Crop. Prod. 27 (3), 315–321.
- Kim, Y.S., Hwang, J.W., Kang, S.H., Kim, E.H., Jeon, Y.J., Jeong, J. H., Kim, H.R., Moon, S.H., Jeon, B.T., Park, P.J., 2014. Thymol from *Thymus quinquecostatus* Celak. protects against tert-butyl hydroperoxide-induced oxidative stress in Chang cells. J. Nat. Med. 68 (1), 154–162.
- Kumar, A., Kamal, A., Singh, S., Padalia, R.C., Tandon, S., Chauhan, A., Saikia, D., Verma, R.S., 2020. Chemical composition, antimicrobial activity, kinetics and mechanism of action of Himalayan-thyme (*Thymus linearis* Benth.). J. Essent. Oil Res. 32, 64–73.
- Li, G.X., Liu, Z.Q., 2009. Unusual antioxidant behavior of α -and γ -terpinene in protecting methyl linoleate, DNA, and erythrocyte. J. Agric. Food Chem. 57 (9), 3943–3948.
- Li, H., Yang, T., Li, F.Y., Yao, Y., Sun, Z.M., 2014. Antibacterial activity and mechanism of action of Monarda punctate essential oil and its main components against common bacterial pathogens in respiratory tract. Int. J. Clin. Exp. Pathol. 7, 7389.
- Mancini, E., Senatore, F., Del Monte, D., De Martino, L., Grulova, D., Scognamiglio, M., Snoussi, M., De Feo, V., 2015. Studies on chemical composition, antimicrobial and antioxidant activities of five *Thymus vulgaris* L. essential oils. Molecules 20, 12016–12028.
- Mathela, C.S., Singh, K.K., Gupta, V.K., 2010. Synthesis and in vitro antibacterial activity of thymol and carvacrol derivatives. Acta Poloniae Pharm.-Drug Res. 67 (4), 375–380.
- Mendes, M.D., Figueiredo, A.C., Oliveira, M.M., Trindade, H., 2013. Essential oil production in shoot cultures versus field-grown plants of *Thymus caespititius*. Plant Cell Tiss. Organ Cult. 113, 341– 351.
- Messara, Y., Fernane, F., Meddour, R., 2016. Chemical composition, antibacterial, and antifungal activities of the essential oil of *Thymus numidicus* Poiret from Algeria. Phytothérapie, 1–6.
- Miguel, G., Simoes, M., Figueiredo, A.C., Barroso, J.C., Pedro, L.G., Carvalho, L., 2004. Composition and antioxidant activities of the essential oils of *Thymus caespititius*, *Thymus camphoratus* and *Thymus mastichina*. Food Chem. 86, 183–188.
- Mina, K., Salima, B., Abdelghani, D., Saoudi, A., 2014. Antipseudomonal activity of the essential oil of *Thymus numidicus* Poiret. Int. J. Pharm. Sci. Rev. Res. 25 (2), 149–153.
- Miraliakbari, H., Shahidi, F., 2008. Antioxidant activity of minor components of tree nut oils. Food Chem. 111 (2), 421–427.
- Miri, R., Ramezan, M., Javidnia, K., Ahmadi, L., 2002. Composition of the volatile oil of *Thymus transcaspicus* Klokov from Iran. Flavour Frag. J. 17, 245–246.
- Mkaddem, M.G., Romdhane, M., Ibrahim, H., Ennajar, M., Lebrihi, A., Mathieu, F., Bouajila, J., 2010. Essential oil of *Thymus capitatus* Hoff. et Link. from Matmata, Tunisia: gas chromatog-

raphy-mass spectrometry analysis and antimicrobial and antioxidant activities. J. Med. Food. 13 (6), 1500–1504.

- Mobaiyen, H., Dehghan, G., Elmi, F., Talebpour, A.H., 2017. The Comparison of Composition and biological activities in wild and cultivated of *Thymus kotschyanus* essential oils and methanolic extracts from East Azarbayjan, Iran. Crescent J. Med. Biol. Sci. 4, 17–22.
- Morales, R., 2002. The history, botany and taxonomy of the genus Thymus. In: Stahl-Biskup., Saez, F. (Eds.), Thyme: The Genus Thymus. Taylor & Francis, London. pp. 1–43.
- Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30 (16), 2785–2791.
- Nabavi, S.M., Marchese, A., Izadi, M., Curti, V., Daglia, M., Nabavi, S.F., 2015. Plants belonging to the genus Thymus as antibacterial agents: from farm to pharmacy. Food Chem. 15 (173), 339–347.
- Nagoor, M.M.F., Javed, H., Al, T.H., Azimullah, S., Ojha, S.K., 2017. Pharmacological properties and molecular mechanisms of Thymol: prospects for its therapeutic potential and pharmaceutical development. Front. Pharmacol. 26 (8), 380.
- Nickavar, B., Mojab, F., Dolat-Abadi, R., 2005. Analysis of the essential oils of two *Thymus* species from Iran. Food Chem. 90, 609–611.
- Nikolic, M., Glamoclija, J., Ferreira, I., Calhelha, R.C., Fernandes, A., Markovic, T., Markovic, D., Giweli, A., Sokovic, M., 2014. Chemical composition, antimicrobial, antioxidant and antitumor activity of *Thymus serpyllum* L., *Thymus algeriensis* Boiss. and Reut. and *Thymus vulgaris* L. essential oils. Ind. Crops Prod. 52, 183–190.
- Nishaa, S., Vishnupriya, M., Sasikumar, J.M., Hephzibah, P.C., Gopalakrishnan, V.K., 2012. Antioxidant activity of ethanolic extract of *Maranta Arundinacea* L. tuberous rhizomes. Asian J. Pharm. Clin. Res. 5 (4), 85–88.
- Noumi, E., Snoussi, M., Merghni, A., Nazzaro, F., Quindós, G., Akdamar, G., Mastouri, M., Al-Sieni, A., Ceylan, O., 2017. Phytochemical composition, anti-biofilm and anti-quorum sensing potential of fruit, stem and leaves of *Salvadora persica* L. methanolic extracts. Microb. Pathog. 109, 169–176.
- O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R., 2011. Open Babel: An open chemical toolbox. J. Cheminform. 3, 33.
- Ouknin, M., Romane, A., Costa, J., Majidi, L., 2019. Comparative study of the chemical profiling, antioxidant and antimicrobial activities of essential oils of different parts of *Thymus willdenowii* Boiss & Reut. Nat. Prod. Res. 33, 2398–2401.
- Palaniappan, K., Holley, R.A., 2010. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int. J. Food Microbiol. 1402, 164–168.
- Parulekar, R.S., Sonawane, K.D., 2018. Molecular modeling studies to explore the binding affinity of virtually screened inhibitor toward different aminoglycoside kinases from diverse MDR strains. J. Cell Biochem. 119 (3), 2679–2695.
- Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., 2004. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25 (13), 1605–1612.
- Piccaglia, R., Marotti, M., 1991. Composition of the essential oil of an Italian *Thymus vulgaris* L. ecotype. Flavour Frag. J. 6, 241– 244.
- Pina-Vaz, C., Rodrigues, A.G., Pinto, E., Costa-de-Oliveira, S., Tavares, C., Salgueiro, L.R., Cavaleiro, C., Gonçalves, M.J., Martinez-de-Oliveira, J., 2004. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad. Dermatol. 18, 73–78.
- Pinto, E., Pina-Vaz, C., Salgueiro, L., Gonçalves, M.J., Costa-de-Oliveira, S., Cavaleiro, C., Palmeira, A., Rodrigues, A., Martinez-

de-Oliveira, 2006. Antifungal activity of the essential oil of *Thymus pulegioides* on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 55, 1367–1373.

- Pirbalouti, A.G., Bahmani, M., Avijgan, M., 2009. Anti- Candida activity of Iranian medicinal plants. Electron. J. Biol. 5, 85–88.
- Pirbalouti, A.G., Barani, M., Hamedi, B., Kachouei, M.A., Karimi, A., 2013a. Environment effect on diversity in quality and quantity of essential oil of different wild populations of kerman Thyme. Genetika 45 (2), 441–450.
- Pirbalouti, A.G., Hashemi, M., Ghahfarokhi, F.T., 2013b. Essential oil and chemical compositions of wild and cultivated *Thymus daenensis* Celak and Thymus vulgaris L. Ind. Crop. Prod. 48, 43– 48.
- Pirbalouti, A.G., Jahanbazi, P., Enteshari, S., Malekpoor, F., Hamedi, B., 2010. Antimicrobial activity of some of the Iranian medicinal plants. Arch. Biol. Sci. Belgrade. 62, 633–642.
- Pirbalouti, A.G., Neshat, S.H., Rahimi, E., Hamedi, B., Malekpoor, F., 2014. Chemical composition and antibacterial activity of essentials oils of Iranian herbs against *Staphylococcus aureus* isolated from milk. Int. J. Food Prop. 17, 2063–2071.
- Pirbalouti, A.G., Samani, M.R., Hashemi, M., Zeinali, H., 2013c. Salicylic acid affects growth, essential oil and chemical compositions of thyme (*Thymus daenensis* Celak.) under reduced irrigation. Plant Growth Regul., 1–13
- Pirbalouti, A.G., Zohreh, E.B., Fatemeh, M., 2015. An overview on genus *Thymus*. J. Herbal Drug. 6 (2), 93–100.
- Pirbalouti, A.G., Rahimmalek, M., Malekpoor, F., Karimi, A., 2011. Variation in antibacterial activity, thymol and carvacrol contents of wild populations of *Thymus daenensis* subsp. *daenensis* Celak. P.O. J. 4 (4), 209–214.
- Pluhár, Z., Sárosi, S., Pintér, A., Simkó, H., 2010. Essential oil polymorphism of wild growing Hungarian thyme (*Thymus pannonicus*) populations in the Carpathian Basin. Nat. Prod. Commun. 5, 1681–1686.
- Qiu, X., Janson, C.A., Smith, W.W., Green, S.M., McDevitt, P., Johanson, K., Carter, P., Hibbs, M., Lewis, C., Chalker, A., Fosberry, A., Lalonde, J., Berge, J., Brown, P., Houge-Frydrych, C.S., Jarvest, R.L., 2001. Crystal structure of *Staphylococcus aureus* tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors. Protein Sci. 10, 2008–2016.
- Rahimmalek, M., Bahreininejad, B., Khorrami, M., Sayed, T.B.E., 2009. Genetic variability and geographical differentiation in *Thymus daenensis* subsp. daenensis Cleak, an endangered aromatic and medicinal plant as revealed by Inter Simple Sequence Repeat (ISSR) markers. Biochem. Genet. 47, 831–842.
- Reddy, M., Adnan, M., Alreshidi, M., Saeed, M., Patel, M., 2020. Evaluation of anticancer, antibacterial and antioxidant properties of a medicinally treasured fern tectaria coadunata with its phytoconstituents analysis by HR-LCMS. Anti-Cancer Agents Med. Chem. 20, 1–12.
- Rivas, L., McDonnell, M.J., Burgess, C.M., O'Brien, M., Navarro-Villa, A., Fanning, S., Duffy, G., 2010. Inhibition of verocytotoxigenic *Escherichia coli* in model broth and rumen systems by carvacrol and thymol. Int. J. Food Microbiol. 1391, 70–78.
- Rota, M.C., Herrera, A., Martínez, R.M., Sotomayor, J.A., Jordán, M.J., 2008. Antimicrobial activity and chemical composition of *Thymus vulgaris*, *Thymus zygis* and *Thymus hyemalis* essential oils. Food Control 19 (7), 681–687.
- Salehi, B., Abu-Darwish, M.S., Tarawneh, A.H., Cabral, C., Gadetskaya, A.V., Salgueiro, L., Hosseinabadi, T., Rajabi, S., Chanda, W., Sharifi-Rad, M., et al, 2019. Thymus spp. Plants-Food applications and phytopharmacy properties. Trends Food Sci. Technol. 85, 287–306.
- Salem, N., Kefi, S., Tabben, O., Ayed, A., Jallouli, S., Feres, N., Hammami, M., Khammassi, S., Hrigua, I., Nefisi, S., Sghaier, A., Limam, F., Elkahoui, S., 2018. Variation in chemical composition of *Eucalyptus globulus* essential oil under phenological stages and

evidence synergism with antimicrobial standards. Ind. Crop. Prod. 124, 115–125.

- Sarikurkcu, C., Sabih, Ozer M., Eskici, M., Tepe, B., Can, Ş., Mete, E., 2010. Essential oil composition and antioxidant activity of *Thymus longicaulis* C. Presl subsp. longicaulis var. longicaulis. Food Chem Toxicol. 48 (7), 1801–1805.
- Satyal, P., Murray, B.L., McFeeters, R.L., Setzer, W.N., 2016. Essential Oil characterization of *Thymus vulgaris* from various geographical locations. Foods 5, 70–81.
- Shen, Q., Zhou, W., Li, H., Hu, L., Mo, H., 2016. ROS involves the fungicidal actions of thymol against spores of aspergillus flavus via the induction of nitric oxide. PLoS ONE 11 (5), e0155647.
- Snoussi, M., Noumi, E., Devasya, P.R., Trabelsi, N., Kanekar, S., Nazzaro, F., Fratianni, F., Flamini, G., De Feo, V., Al-Sieni, A., 2018. Antioxidant properties and anti-quorum sensing potential of *Carum copticum* essential oil and phenolics against *Chromobacterium violaceum*. J. Food Sci. Technol. 55 (8), 2824–2832.
- Sonawane, K.D., Barage, S.H., 2015. Structural analysis of membrane-bound hECE-1 dimer using molecular modeling techniques: insights into conformational changes and Abeta1-42 peptide binding. Amino Acids 47 (3), 543–559.
- Sonboli, A., Salehi, P., Kanani, M.R., Ebrahimi, S.N., 2005. Antibacterial and antioxidant activity and essential oil composition of *Grammosciadium scabridum* Boiss. from Iran. Z. Naturforsch C J. Biosci. 60 (7–8), 534–538.
- Tohidi, B., Mehdi, R., Ahmad, A., 2017. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 220, 153–161.
- Tohidi, B., Rahimmalek, M., Arzani, A., Sabzalian, M.R., 2020. Thymol, carvacrol, and antioxidant accumulation in *Thymus*

species in response to different light spectra emitted by lightemitting diodes. Food Chem. 307, 125521.

- Tohidi, B., Rahimmalek, M., Trindade, H., 2019. Review on essential oil, extracts composition, molecular and phytochemical properties of *Thymus* species in Iran. Ind. Crop. Prod. 134, 89–99.
- Tombetta, D., Castelli, F., Sarpietro, M.G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G., Bisignano, G., 2005. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 496, 2474–2478.
- Tzakou, O., Verykokidou, E., Rousis, V., Chinou, I., 1998. Chemical composition and antibacterial properties of *Thymus longicaulis* subsp. chaoubardii oils: three chemotypes in the same population. J. Essent. Oil Res. 10, 97–99.
- Ulukanli, Z., Cenet, M., Ince, H., Yilmaztekin, M., 2018. Antimicrobial and Herbicidal Activities of the Essential Oil from the Mediterranean *Thymus eigii*. J. Essent. Oil Bear. Plants. 21, 214– 222.
- Vladimir-Knežević, S., Kosalec, I., Babac, M., Petrović, M., Ralić, J., Matica, B., Blažeković, B., 2012. Antimicrobial activity of *Thymus longicaulis* C. Presl essential oil against respiratory pathogens. Cent. Eur. J. Biol. 7 (6), 1109–1115.
- World Checklist of Selected Plant Families, 2010. copyright © The Board of Trustees of the Royal Botanic Gardens, Kew. Thymus musilii Velen.. Accessed through: Euro + Med PlantBase at http:// ww2.bgbm.org/euroPlusMed/PTaxonDetail.asp?UUID = B7F1730F-E243-4A96-9592-12FB15BFDE1A.
- Zarshenas, M.M., Krenn, L.A., 2015. Critical overview on *Thymus daenensis* Celak: phytochemical and pharmacological investigations. J. Integr. Med. 13 (2), 91–98.