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Abstract The anodic etching of n+-type GaAs (1 0 0) substrate in HCl aqueous solution has been

investigated experimentally using an in situ current–voltage J (V) and capacitance–voltage C (V)

measurements. In situ current–voltage, J (V), characteristics of the n+-GaAs/HCl interface exhibit

the presence of three potential regions, which are attributed to different reaction mechanisms

between HCl and n+-type GaAs surface. Also, current peaks appear in the J (V) characteristics

which delimit the different potential regions. According to the Mott–Schottky relation, the charac-

teristic C�2 (V) exhibits the presence of two linear regions separated by a shoulder at about 1.15 V.

This shoulder indicates the formation of porous GaAs/HCl interface. Scanning electron microscopy

(SEM) images shows that GaAs etched in HCl can produce various surface morphologies depend-

ing on the anodization current density. Reasonable assumptions on the dissolution mechanisms

according to the variety of morphologies are given.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Pore formation is a well-known feature of many semiconduc-
tors under anodic conditions in different electrolytes, where
the majority of research efforts have been concentrated on por-

ous silicon (Foll et al., 2002). In recent years, III–V compound
semiconductors, essentially InP, GaAs and GaP have been ren-
dered porous in spite of the few and limited available data
(Takizawa et al., 1994; Langa et al., 2001; Schmuki et al.,

1996a,b; Sabataityte et al., 2002; Beji et al., 2003a,b, 2005;
Belogrokhov et al., 1994; Mayerink et al., 1996). Electrochem-
ical studies of the interface n+-type GaAs/HCl provide neces-

sary information about the anodization process and also some
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insight into the fundamentals of the charge transfer and disso-
lution process. Moreover, the in situ J (V) measurements offer
information about the range of potentials and current densities

over which current flows and anodic films evolve, and/or dis-
solution takes place (Schmuki et al., 1996a,b; Jonathan
et al., 2001; Clausen et al., 2003). However, in order to take full

advantage of the formation of porous GaAs, we need a good
understanding of the process which is taking place at the semi-
conductor/electrolyte interface. The aim of this work is to elu-

cidate the electrochemical conditions under which local
dissolution and pore formation occur and the factors control-
ling this process.

2. Experimental

Electrochemical etching was performed on commercialized

epi-ready n+-type GaAs (Si-doped) substrate with a carrier
concentration of 1.8 · 1018 cm�3 and (1 0 0)2� off toward
(1 1 0) orientation. Prior to each experiment, the samples were
degreased with acetone, propanol, and methanol, extensively

rinsed with deionized water, and then blown dry in N2. Electric
contact to the samples was established by smearing Ga–In eu-
tectic onto the backside of the cleaved samples. The samples

were then pressed against an o-ring in a Teflon electrochemical
cell, with a platinum electrode, leaving 0.5 cm2 exposed to the
etching solution prepared from 37 wt.% HCl. The samples

were then maintained in the etch solution for 12 s to remove
the native oxide. A Teflon coated magnet stirred the etch solu-
tion to maintain uniform distribution of the electrolyte. J (V)
measurement of n+-type GaAs substrate in HCl solution is re-

corded using a computed SR310 Voltalab. The working elec-
trode is our semiconductor sample whereas the counter
electrode is the platinum electrode and the reference electrode
Figure 1 Schematic band diagram of the n+-ty
is a saturated calomel electrode (SCE). Scanning electron
microscopy (SEM) images were acquired using a PHILIPS
XL30 equipped with a digiscan image acquisition archiving

system and energy dispersive X-ray analysis (EDX).

3. Result and discussion

3.1. In situ electrical characteristics

Fig. 1 shows the schematic representation of the band diagram
of n+-type GaAs in contact with HCl aqueous solution at zero
bias voltage. When a semiconductor is in contact with an elec-

trolyte solution, a charge transfer occurs through the interface
providing equilibrium between the Fermi level of the semicon-
ductor and the redox potential of the electrolyte. In the case of

the n+-type GaAs (n = 1.8 · 1018 cm�3) in contact with HCl
aqueous solution with redox potential (4.5 eV) higher than
the n+-type GaAs Fermi level (4.11 eV) (Beji et al., 1998), rep-
resents an electron transfer from the semiconductor to the elec-

trolyte (Fig. 1a). Furthermore, an electrically charged layer
(ionic in the electrolyte and electronic in the semiconductor)
will be formed. This situation induces the formation of an elec-

tric field in the space charge region, leveling the semiconductor
Fermi level and the potential redox of the electrolyte solution,
producing a band bending close to the electrolyte boundary

(Fig. 1b). At the surface, the n+-type GaAs becomes depleted
of majority carrier (electron) and a depletion layer, W, is
formed (Fig. 1b). Under anodic bias, an excess electric field

is induced and is responsible for electron transport at the inter-
face. The electron transfer with the surface is limited by tunnel-
ing through the depletion layer or by carriers that overcome
the barrier by thermal activation (Sze, 1981; Oscam et al.,

1997). Furthermore, the space charge layer in the n+-type
pe GaAs (1 0 0) substrate in HCl electrolyte.



-1 0 1 2 3 4 5

0.00

0.05

0.10

0.15

0.20   HCl(5 M)
C

ur
re

nt
 d

en
si

ty
 ( 

A 
cm

-2
) 

Potential ( V )

PFP

(a)

Figure 2 Polarization curves of an n+-type GaAs (1 0 0) in HCl

electrolyte acquired in the dark, under ambient conditions. Sweep

rate 5 mV/s. The potential was reported versus the saturated

calomel electrode (SCE).
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GaAs is an important current limiting factor in the electro-

chemical cell. Fig. 2 shows the current density, J, as a function
of the applied potential, V, for an n+-type GaAs in hydrochlo-
ric acid solution (HCl). The potential was scanned from �1 V,

at a rate of 5 mV s�1. Four distinctive regions are observed. At
negative potential, the band bending is too small to allow
interband tunneling and the n+-type GaAs/HCl solution be-

haves as a reverse–biased diode. Nevertheless, between poten-
tial values of 0 and 1.15 V, the magnitude of the anodic current
is too small, which can be attributed to the reduction of H+

ion according to the following equation (Nozik, 1981).

2Hþ þ 2e� ! H2 ð1Þ

The plateau range is followed by a distinct current increase at a

potential value of about 1.15 V, called the breakdown poten-
tial and also called the pore formation potential (PFP)
(Schmuki et al., 1996a,b). This value of the PFP is consistent
with other published work for a similar concentration of

HCl (Schmuki et al., 1996a,b). The occurrence of a threshold
potential at PFP can be explained by considering the n+-type
GaAs/aqueous HCl junction under anodic bias. Due to the

sufficiently high doping level of the n+-type GaAs, the width
of the space layer was thin enough. In fact, the tunneling
breakdown occurred easily. Above the PFP, an anodic current

begins to flow and the current increases markedly as the poten-
tial is varied and reaches a first maximum at about 2.62 V (see
Fig. 2). This region was attributed to the generation of the por-

ous GaAs layer, where the first pores are formed at a potential
of about 1.15 V. This occurred when GaAs was dissolved
according to Eq. (2) (Willer et al., 1994; Khader, 1995), where
a sufficient concentration of hole (h+) has to be provided at

the surface,

AsGaþ 6hþ ! Ga3þ þAs3þ ð2Þ

The holes will generate six incomplete bonds which can be sat-

urated by the species from the electrolyte. However, the GaAs
substrate does not dissolve in pairs but atom by atom, and
then eight holes will be required for dissolving a GaAs unit,
i.e., four holes for each atom. Thus depending on the etching
conditions, six or eight holes are needed for dissolving a Ga–

As pair of atoms.
For the occurrence of the material dissolution processes a

sufficient concentration of holes (h+) has to be provided at

the surface. This was preceded through trapping of valence
band holes in surface bonds, nevertheless, in n+-type GaAs
the holes are minority carriers and their density is very small.
As a consequence, dissolution processes occur significantly at

relatively high anodic bias where sufficient hole density is gen-
erated by breakdown mechanism. At relatively high anodic po-
tential (extended from PFP to the first potential peak), an

electron at the surface can be thermally excited from the va-
lence band to the conduction band via the surface state (orig-
inating by chemical oxidation mechanism). Under high electric

field, the electron created at the surface can generate electron–
hole pairs and hence, generate free holes, which can contribute
to the GaAs dissolution process. In addition, a valence band
electron can tunnel to the conduction band and create free

holes in the valence band. According to the reported data
for n+-type GaAs, the electron field at the surface during elec-
trochemical etching is of about 1.5 · 106 V cm�1 (Sze, 1981;

Oscam et al., 1997) which is sufficiently high to allow electron
tunneling.

At a more positive potential a second current maximum is

observed, which is located at 3.62 V. The second maximum has
not been reported before for n-type GaAs or p-type GaAs, but
has been observed in silicon–hydrofluoric acid contact (Patel

and Sahu, 2001; Huang et al., 2006). Above the observed first
current maximum, the current density increases rapidly as the
anodic potential is raised (Fig. 2). This region is attributed to
the electropolishing and dissolution of the n+-type GaAs.

Above the second maximum the current decreases rapidly
to a low value which shows a weak potential dependence. This
region was suggested to be attributed to the passivation pro-

cess of the n+-type GaAs by the formation of arsenic oxides
according to the following equation.

GaAsþ 3H2Oþ 6hþ () GaðIIIÞ þH3AsO3 þ 3Hþ ð3Þ

Such I–V behavior above the second maximum, which is typ-
ical of semiconductor passivation due to oxide formation, have
not been reported before for n-type and p-type GaAs, but have

been reported for n-type GaP in H2SO4 and Si in HF (Foll
et al., 2002, 2003; Tjerkstra et al., 2002). The dependence of
the capacitance versus polarization was presented in the form

C�2 (V) in Fig. 3. This figure shows an inversion zone extended
from the negative bias to almost 0.25 V. This was followed by
a depletion zone and an accumulation zone. This behavior is
almost the same as a metal/semiconductor contact and allows

the use of the simple depletion layer theory (Morrison, 1980).

1

C2
sc

¼ 2

eee0N
V� VFB �

kBT

e

� �
ð4Þ

where C is the interface capacitance per unit area, e the elec-

tron charge (1.6 · 10�19 C), e the semiconductor dielectric con-
stant, e0 the vacuum permittivity, N the donor density, V the
applied potential, VFB the flat band potential, T the ambient

temperature and kB the Boltzmann constant. Furthermore, a
shoulder appears at the end of the depletion zone at about
1.15 V which limits two slopes. The first slope is higher than
the second one where the first shows a higher doping density.

This is due to the surface modifications caused by the porosity,
and hence a lack of material, in accordance with the second



Figure 4 (a) SEM plan view image, (b) SEM cross-section image

(45�) and, (c) EDX spectra of the porous GaAs layer produced by

HCl (5 M) electrolyte at anodization current density of

10 mA cm�2 for 60 s.
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Figure 3 Mott–Schottky plot of an n+-type GaAs in HCl (5 M)

acquired in the dark, under ambient conditions. Sweep rate

25 mV/s.
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region of the J (V) characteristic which is attributed to the dis-
solution process. The presence of the shoulder may indicate the
formation of a new interface which is porous GaAs/HCl-elec-
trolyte. This suggestion is in accordance with the predicted

pore formation potential from J (V) characteristic. From the
extrapolated intercept on the voltage axis, two flat band poten-
tials, VFB1 = 1.08 V and VFB2 = 1.68 V are observed. The va-

lue of the first flat band potential is almost equal to the barrier
potential at the interface n+-GaAs/HCl-electrolyte (Fig. 1) the
second flat band potential is suggested to be associated to the

barrier potential at the interface n-type porous GaAs/HCl-
electrolyte.

3.2. Etched GaAs surface morphologies

A porous GaAs structure can be observed at the anodization
current densities correspondent to the potential range between
the breakdown potential and the potential where the current

reaches the first maximum. This was proved by the SEM
micrograph in Fig. 4a where the first pores are observed just
after the breakdown potential. This SEM image shows the

morphology of n+-type GaAs (1 0 0) anodized with a current
density of 10 mA cm�2 in HCl (5 M) solution. It is clear that
the anodized GaAs surface has a porous appearance with

pores of various sizes and directions, the pore shapes are
mainly oval as seen in Fig. 4a.

The pore openings are small and less clearly defined, indi-
cating the progressive dissolution of the GaAs at the surface.

In fact, with increasing of the current density to 60 mA cm�2

(Fig. 5a), the distribution density of the pores increased, and
almost the entire surface was converted into a porous struc-

ture. Also, the diameter and the shape of the pores varied with
the current density and the anodization time. The SEM cross-
section (Fig. 4b) shows elongate cylindrical pores and when

increasing current density, pores with a helicoidal structure
are sometimes observed and the proportion of helical pores
seems to increase with current density (Fig. 5b). Fig. 6a shows

the morphology of n+-type GaAs (1 0 0) anodized with a cur-
rent density of 100 mA cm�2 (located above the first maximum
of the J (V) characteristics) in 5 M HCl solution. Some mac-
ropores separated by large flat surfaces appear on the surface
of this sample. The large flat surface was caused by the electro-
polishing process and the pores by the dissolution process.
Those two processes compete to govern the surface morphol-

ogy of the porous structure in the mentioned region, and sta-
tistically the flat area on this surface and the very low
intensity of the O (Ka) peak of oxygen in Fig. 6c prove that
the electropolishing is predominant. Furthermore the SEM



Figure 5 (a) SEM plan view image, (b) SEM cross-section image

(45�) and, (c) EDX spectra of the porous GaAs layer produced by

HCl (5 M) electrolyte at anodization current density of

60 mA cm�2 for 60 s.

Figure 6 (a) SEM plan view image, (b) SEM cross-section image

(45�) and, (c) EDX spectra of the porous GaAs layer produced by

HCl (5 M) electrolyte at anodization current density of

100 mA cm�2 for 60 s.
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cross-section (Fig. 6b) shows that the inner structure is highly
porous with no defined form.

Energy dispersive X-ray analysis (EDX) (Figs. 4c, 5c and

6c) reveals that the spectrum is that of As + Ga, where the in-
tense bands are related to Ga (La) and As (La) peaks. The low
intense band located at 0.52 keV is attributed to O (Ka) due to
superficial oxidation during the electrochemical anodization
process. The amount of gallium, arsenic and oxygen depend
on the electrochemical anodization conditions. Arsenic and
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oxygen amount increased and decreased, respectively with
increasing current density. Furthermore the variation of the
amount of gallium element was random with the electrochem-

ical conditions and lower than that of arsenic. Indeed, the ob-
tained porous structures are arsenic-rich as a result of
dissolving Ga. Because, it is known that, Ga is preferentially

dissolved during the anodic etching in acidic media (Alqara-
dawi et al., 2003).

Before corrosion takes place, the surface of GaAs after

etching and cleaning is arsenic-rich. Furthermore, the outer-
most exposed layer will be an As (1 0 0) plane with dangling
bonds.

The first oxidation step is a hole captured by the surface

bond with one Ga–As bond being broken. This process leaves
a positive charge on the Ga instead of the As, since Ga has a
lower electronegativity. AsGa+ is easily attacked by water

molecules from aqueous solution because of the positive
charge located at Ga. Two kinds of interactions may be
involved.

One is the general interactions between the positive charges
and the dipole from water molecules and/or the cation in the
solution, i.e., non-specific adsorption. The other is the much

stronger chemical reaction between water and the positive
charge on the Ga atom. AsGa–OH can be formed and H+

is generated.

AsGaþ hþ ! AsGaþ ð5Þ
AsGaþ þ e� ! AsGa ð6Þ
AsGaþ þH2O() AsGa�OHþHþ ð7Þ

We can suggest that this selective removal of Ga leaves an ele-
mental arsenic-rich surface. More quantitatively, we can write
the following reactions to describe the chemistry of Ga and As
in 5 M HCl. For the spontaneous dissolution of Ga we have:

Gaþ 3Hþ þ 4Cl� () GaCl�4 þ
3

2
H2 ð8Þ

In fact, the reaction will proceed to the right. In the case of As,

which has known simple As3+ aqueous chemistry, we may
write Eq. (9):

Asþ 2H2O
� () HAsO2 þ

3

2
H2 ð9Þ

We can suggest, that the arsenite species is the dominant form
of arsenic in the (+3) state in aqueous solution, and the pro-
tonated species HAsO2 will dominate in our HCl experiments

(Frese and Morrison, 1981). Therefore, the favoured pathway
for dissolution of GaAs by HCl is the formation of GaCl�4 , and
elemental arsenic.

GaAsþ 3Hþ þ 4Cl� ! GaCl�4 þ
3

2
H2 þAs ð10Þ

In fact, we can suggest that an excess of metallic arsenic will be
present on or near the surface of the GaAs semiconductor.

Then, for thin oxide layers a large electronic current may flow
parallel with ionic current. Certainly, they must involve an oxi-
dation process at the semiconductor electrode. This process

may be either runaway anodic etching of the GaAs or oxida-
tion of an electrolyte component. It is not known why regions
that may be etching do not passivate, but it is shown that con-
ditions for the formation of a good passivating anodic layer

are reasonably critical and may not be met once elemental ar-
senic is formed. The presence of elemental arsenic may for
example, catalyze a reaction route involving anodic etching

with continued generation of elemental arsenic.
4. Conclusions

Pore growth can be initiated on n+-type GaAs (1 0 0) in HCl
solution using electrochemical in situ characterization tech-
niques like J (V) and C (V). The anodization process at the

GaAs surface is governed by three regions including pore for-
mation, electropolishing and passivation. Furthermore, anodic
polarization of GaAs in acidic solution resulted in selective dis-
solution of GaAs leading to the formation of As-rich porous

surface. Mott–Scottky plot shows the formation of a new
interface porous GaAs/HCl-electrolyte and this suggestion is
in accordance with the predicted pore formation potential

from J (V) characteristics. Some chemical reactions which take
place during the electrochemical anodization process are sug-
gested and as demonstrated by SEM investigation, the mor-

phology of the porous layers depends strongly on the
electrochemical conditions. The chemical surface composition
of the porous structures are analyzed by energy dispersive X-

ray analysis (EDX) and discussed on the basis of suggested
reaction mechanisms at the interface between n+-GaAs HCl
based electrolyte.
References

Alqaradawi, Siham Y., Aljaber, Amina S., Khader, Mahmoud M.,

2003. Thin Solid Film. 444, 282.

Beji, L. et al., 1998. Phys. Stat. Sol. (a) 168, 453.

Beji, L., Sfaxi, L., Ismail, B., Zghal, S., Hassen, F., Maaref, H., 2003a.

Microelectron. J. 34, 969.

Beji, L., Missaoui, A., Fouzri, A., Ben Ouada, H., Maaref, H.,

Bouazizi, A., 2003b. Microelectron. J. 37, 783.

Beji, L., Sfaxi, L., Ismail, B., Missaoui, A., Hassen, F., Maaref, H.,

Ben Ouada, H., 2005. Physica E 25, 636.

Belogrokhov, A.I., Karavanskii, V.A., Obraztov, A.N., Timoshinko,

V.Yu., 1994. JETP Lett. 60, 274.

Clausen, J., Christophensen, M., Langa, S., Foll, H., 2003. Chaos 131,

217.

Foll, H., Christophensen, M., Carstensen, J., Hasse, G., 2002. Mater.

Sci. Eng. R 39, 93.

Foll, H., Langa, S., Carstensen, J., Christophensen, M., Tiginyanu,

I.M., 2003. Adv. Mater. 15, 183.

Frese Jr., K.W., Morrison, S., 1981. Appl. Surf. Sci. 8, 266.

Huang, Yin, Luo, Jingli, Douglas Ivey, G., 2006. Thin Solid Film. 496,

724.

Jonathan, X., Spanier, E., Alan West, C., Irving Herman, P., 2001. J.

Electrochem. Soc. 148, C663.

Khader, M.M., 1995. Langmuir 2, 1056.

Langa, S., Carstensen, J., Tiginyanu, I.M., Christophenson, M., Föll,
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