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Abstract Nanostructured TiO2-based composites are promising materials because of their superior

optical, structural, and electronic properties relative to pristine nanostructured TiO2. The enhanced

properties of TiO2-based composites have been used in several important applications such as gas

sensors, solar cells, and photocatalytic applications. In the past, numerous materials have been cou-

pled with TiO2 to enhance their optical properties. In this work, full-spectrum (UV and Visible)

responsive TiO2 /Y2O3 nanocomposite has been synthesized via pulsed laser ablation in liquid

(PLA) to study the impact of Y2O3 on the structural, morphology, and optical property of the

TiO2. The nanostructured composites prepared were characterized by XRD, Raman spectroscopy,
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Field-Emission Scanning Electron Microscope (FESEM) attached with Energy-Dispersive X-ray

spectroscopy (EDX), Photoluminescence, XPS, and UV–Vis absorbance spectra. The result demon-

strates that the coupling Y2O3 with TiO2 not only changes the structural, optical, and morphology

of the TiO2 but also significantly amplified the light absorption characteristics of the TiO2 within the

UV and visible region. The synthesized TiO2 /Y2O3 nanocomposite could potentially be useful for

visible-light responsive applications.

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Titanium dioxide (TiO2) is a well-known semiconductor mate-

rial that has generated significant research interest due to its
wide range of applications in photo remediation (Daghrir
et al., 2013), water splitting (Nguyen et al., 2020), optical

(Inpor et al., 2008), electronic (Phani and Santucci, 2006), sen-
sors (Mele et al., 2021; Tian et al., 2021), and solar applications
(Almomani et al., 2022). The use of TiO2 for various applica-

tions is due to its unique electronic and optical properties
(Daghrir et al., 2013; Mele et al., 2021; Tian et al., 2021).
TiO2 is non-toxic, hence it is useful in cosmetics(Dréno
et al., 2019), biomedical (McNamara and Tofail, 2016), and

anti-cancer applications (Elsayed et al., 2022b). TiO2 exists
in four well-known polymorphs, namely, anatase (tetragonal),
rutile (tetragonal), brookite (orthorhombic), TiO2 (B) (mono-

clinic) (Siddiqui, 2020). The nanostructured anatase TiO2 has
received considerable interest in photocatalysis (Verbruggen,
2015) and dye-sensitized solar cells (Akila et al., 2019)

research. Meanwhile, mixed polymorphs of TiO2 �20% rutile
and 80% anatase are more efficient for biomedical applications
(Jafari et al., 2020). Different TiO2 morphologies are appropri-

ate for specific applications (Fahad et al., 2018; Gondal et al.,
2015; Nabi et al., 2020). As such, several TiO2 morphologies
have been prepared for different applications. Some of the
common TiO2 morphologies include the quantum dot (Cui

et al., 2014), nanoparticles, nanorods (Atabaev et al., 2016),
nanoflowers (Dong et al., 2017), nanotubes(Cui et al., 2014),
nanofibers (Kumar et al., 2007), etc., These morphologies are

to a large extent a function of synthesis techniques used in
the fabrication of nanostructured TiO2. The literature reflects
that the following techniques have been used in the prepara-

tion of TiO2-based materials; sol–gel, hydrothermal, solvother-
mal, direct oxidation, chemical vapor deposition, physical
vapor deposition, electrodeposition, etc (Chen and Mao,

2007).
The suitability of TiO2 for diverse application correlates

with its wide and tunable electronic bandgap which range from
3.2 to 3.35 eV. Thus, permitting appropriate bandgap engi-

neering for different applications (Chen and Mao, 2007). Stud-
ies have shown that the electronic bandgap is influenced by
particle size, the presence of impurities, the shape of materials,

surface charges, and phase transition (Mele et al., 2021; Tian
et al., 2021), (Chen and Mao, 2007).

Despite the promising versatility of TiO2, pure TiO2 shows

less promising results due to its high energy bandgap (Eg �
3.6 eV), which limits its functionality to mainly absorb ultravi-
olet (UV) light which represents only 4% of the solar spec-
trum. Therefore, to maximize the absorption of solar light

and transportation of charge, TiO2 has been doped and cou-
pled with several nanomaterials such as Carbon/TiO2 (Irie
et al., 2003), Pt/TiO2 (Yu et al., 2010), CdSe � TiO2

(Kongkanand et al., 2008), TiO2–Graphene (Wang et al.,
2009), Graphene Oxide/TiO2 (Chen et al., 2010), TiO2/Au
(Chen et al., 2010) for various applications. Despite the pro-

gress made in developing novel TiO2-based nanocomposites,
there are still materials with tremendous capacity that have
not been properly explored. One such material is yttrium
oxide, which is an air-stable and solid material that is used

for various applications such as the synthesis of inorganic
compounds, microwave filters, and ultrafast sensors used in
gamma-ray and X-rays.

It is important to state that studies on Y2O3/TiO2 -
nanocomposite are limited in the literature. A few examples
of these studies are highlighted as follows: (Jun-ping and

Ping, 2002) prepared Y2O3/TiO2 catalysts by the impregnation
method, and the catalysts were used for the decomposition of
sodium dodecylbenzene sulphonate. The report concluded that
the photocatalytic activity of the Y2O3/TiO2 catalyst is about

2.4 times better than TiO2. Also, (Ravishankar et al., 2016)
prepared Y2O3/TiO2 nanocomposite photocatalysts via a con-
ventional hydrothermal method (Y2O3/TiO2 NC(HM)) and an

ionic liquid assisted hydrothermal method (Y2O3/TiO2 ). Both
materials were assessed for photocatalytic hydrogen produc-
tion via water splitting. At 25% optimized weight, the Y2O3/

TiO2 NC exhibits a 2-fold- improvement in the photocatalytic
performance relative to 25 wt% Y2O3/TiO2. The study high-
lights that the synthesis approach is very important in fine-

tuning the property of Y2O3/TiO2 nanocomposite which may
affect the application performance.

In general, the literature survey revealed that both funda-
mental and applied research on Y2O3/TiO2 nanocomposite is

lacking, as such, this present study is motivated by the gaps in
research on the Y2O3/TiO2 nanocomposite. As noted by
(Ravishankar et al., 2016), the synthesis approach affects the

performance functionality of the prepared Y2O3/TiO2 -
nanocomposite. Hence, it is highly desirable to investigate the
property of the Y2O3/TiO2 nanocomposite prepared by robust

technique to uncover new information that could potentially
be useful for different applications. In this contribution, we
report the synthesis of TiO2/Y2O3 nanocomposite via pulsed

laser ablation technique (PLA) for the first time.Further,we car-
ried out thorough characterizations of the nanocomposite to
gain better insight into the science of the material synthesized.

Interestingly, the result obtained shows a significant

improvement in the absorbance characteristics which span
the UV–visible region, which clearly shows a major improve-
ment in the prepared nanocomposite relative to the previous

studies where the absorbance enhancement is limited to the vis-
ible region. The PLA offers a green method for the synthesis of

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Experimental steps used to fabricate TiO2/P25-Y2O3 nanocomposites via PLA.

Fig. 2 XRD diffraction patterns (a) TiO2/P25, (b) Y2O3, and (c)

TiO2/P25-Y2O3 nanocomposites fabricated by PLA in water and

their corresponding standards. XRD peaks of rutile and anatase

phases are denoted by R and A, respectively.
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nanostructured materials. In PLA, a high-power nanosecond
pulsed laser is used to ablate the composites in liquid and as

a result, a nanostructured composite of TiO2/ Y2O3 is formed.
The nanomaterial formed via PLA is highly pure which might
not be easy to produce in many other chemical synthesis
routes. More importantly, the approach does not depend on

the use of a surfactant or any other chemical additives, thus,
this safety component is very useful for the preparation of
nanomaterials for biomedical applications (Drmosh et al.,

2010; Elsayed et al., 2022c, 2022a; Gondal et al., 2012, 2010).

2. Experimental work

The laser ablation in liquid setup has been used to prepare the
TiO2/ Y2O3 composite as shown in Fig. 1. A high purity TiO2

and Y2O3 (99.99%) were used as target materials. The two

powders were purchased from Aldrich. 100 mg from each pow-
der was dispersed separately in a beaker filled with 25 mL of
deionized water and sonicated for 1 h. Firstly, the TiO2 col-

loidal solution was irradiated by a focused beam of a nanosec-
ond pulsed Nd: YAG laser that operates at 266 nm, 30 m J,
10 ns, and 10 Hz for one hour. The laser beam was focused
using a UV lens with a 200 mm focal length. The focus of

the laser beam was adjusted under the surface of the liquid
to avoid any high fluence that might cause ablation on the
surface-air interface and to avoid the splashing of the liquid.

The spot size on the liquid surface was kept at almost 5 mm.
The colloidal solution was stirred at room temperature with
a magnetic stirrer during the laser irradiation. Secondly, the

colloidal solution of TiO2 was replaced by Y2O3 colloidal solu-
tion and irradiated under the same conditions. Finally, the two
irradiated colloidal solutions of both TiO2 and Y2O3 were

mixed, and then the mixture was irradiated with the focused
laser beam for one hour to fabricate TiO2/Y2O3

nanocomposite.

3. Characterization techniques

The as-fabricated nanostructured materials were characterized
via various techniques to reveal the morphology, composition,
and microstructure. Field Emission Scanning Electron Micro-
scope (FE-SEM, Lyra3, Tescan) with an accelerating voltage

of up to 20 kV coupled with energy-dispersive X-ray spec-
troscopy (EDX) silicon drift detector (X-MaxN, Oxford
Instruments) was used to identify the morphology of the fab-
ricated samples. X-ray powder diffraction (XRD, Rigaku

MiniFlex) was utilized with Cu Ka1 radiation (k = 0.15416 n
m), an accelerating voltage of 30 kV, and a tube current of
10 mA to accurately identify the crystalline properties of the

samples. The Raman spectroscopy was carried out by a Lab-
Ram HR evolution Raman Spectrometer Horiba Scientific at
room temperature with a 633 nm laser light. The photolumi-

nescence (PL) measurements were conducted at room temper-
ature at an excitation wavelength of 350 nm by a Fluorolog-3
spectrofluorometer system (Horiba Jobin-Yvon) in the emis-
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sion spectral range 350–600 nm. The chemical composition of

the nanocomposite was assessed using an ESCALAB 250Xi X-
ray photoelectron spectroscope (XPS) that has a binding
energy resolution of ± 0.1 eV. The UV–Vis spectrophotometer
(Model SolidSpace-3700) was used to measure the optical

properties of the synthesized materials using 10 mm quartz.
The range of 200 – 900 nm was used to record the absorbance
spectra.
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Fig. 5 EDX mapping analysis of TiO2/P25-Y2O3 nanocomposites synthesized by PLA.
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4. Results and discussions

The XRD patterns of the TiO2/P25, Y2O3, and TiO2/P25-

Y2O3 nanocomposites fabricated by PLA in water are shown
in Fig. 2 a, b, and c, respectively. As shown in Fig. 2a, TiO2/
P25 patterns reveal the co-existence of rutile (ICDD-PDF

#21–1276) and tetragonal anatase (ICDD-PDF # 21–1272)
phases. The diffraction peaks of anatase TiO2 were found at
2h = 25.78�, 36.58�, 37.53�, 38.32�, 48.55�, 53.89�, 63.22�,
68.76�, and 75.58� which are indexed to (101), (103), (004),
(112), (200), (105), (211), (204), and (116) crystal planes
of anatase phase of TiO2 (JCPDS #21–1272). Meanwhile, for
the rutile TiO2, the 2h are observed at 27.94�, 36.58�, 41.23�,
44.05�, and 56.64� (ICDD-PDF #21–1276) (Guo et al., 2017;
Yao et al., 2020, 2017). The prominent peaks of the rutile
TiO2 were identified at 27.94 and 36.58 which correspond to

the (110) and (101), crystal planes, respectively. The diffrac-
tion peaks observed in Fig. 2b at 2h = 20.94�, 29.61�,
34.28�, 36.37�, 40.38�, 43.98�, 47.43�, 49.03�, 50.59�, 53.73�,
56.67�, 58.09�, 59.53�, 60.91�, 64.99�, 71.50�, and 79.09� corre-
sponded to cubic Y2O3 (ICDD-PDF #01–074-1828)
(Benammar et al., 2020; Wang et al., 2013). The XRD pattern

of TiO2/P25-Y2O3 (Fig. 2c) matches well with both Y2O3 and
TiO2/P25, suggesting the successful integration of the two
compounds. Furthermore, no other diffraction peaks except
for that of the Y2O3 and TiO2/P25 phase were observed, indi-

cating the high purity of the TiO2/P25-Y2O3 nanocomposites
sample and the successful integration of the two compounds.

There is a reduction in the (101) peak belonging to the anatase
TiO2 in the TiO2/P25-Y2O3 nanocomposites. The size of the
nanoparticles is calculated via Debye Scherrer’s formula
D = k k/b cosh (Cullity, 1956), where k, k, b and h are a con-

stant (0_s94), the X-ray wavelength (0_s154016 nm), the full
wavelength at half maximum, and the half diffraction angle,
respectively. The result demonstrated that the crystal size of

the TiO2/P25 nanoparticles fabricated via PLA and the
TiO2/P25 nanoparticles in the TiO2/P25-Y2O3 nanocomposites
sample is about 21 ± 5 nm. The average crystal size of the

Y2O3 synthesized using PLA and the Y2O3 in the TiO2/P25-
Y2O3 nanocomposites sample is about 39 ± 10 nm.

To further investigate the structural properties of the fabri-
cated samples, Raman spectra were performed, and the

obtained results are displayed in Fig. 3a and b. The nanostruc-
tured TiO2/P25 sample showed Raman bands at 132 cm�1

(Eg), 184 cm�1 (Eg), and 382 cm�1 (B1g), which could be

ascribed to the O–Ti–O bending vibration of anatase TiO2.
Other peaks observed at 505 cm�1 (A1g/ B1g), and 628 cm�1

(Eg) were ascribed to the stretching vibration modes of anatase

TiO2 (Benammar et al., 2020; Wang et al., 2013). It is also
important to mention that unlike the XRD the Raman spectra
do not show the rutile phase in the TiO2/P25 sample and this is

because Raman is slightly insensitive compared to XRD to the
crystal structure of materials (Lu et al., 2013). According to
several published works such as (Diego-Rucabado et al.,
2020; Kruk, 2020), there are 22 active Raman lines in the
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Y2O3 Raman spectra (14Fg (triply degenerated), 4Eg (doubly

degenerated) + 4Ag (singly degenerated)) as predicted by
the theory. However, a few modes were experimentally
observed which could be due to the superposition of different
types of bands (Diego-Rucabado et al., 2020; Kruk, 2020). In

this work, 10 characteristic lines of Y2O3 are observed at
155 cm�1 (Ag + Fg), 216 cm�1 (Eg), 320 cm�1 (Eg),
372 cm�1 (Ag + Fg), 459 cm�1 (Ag + Fg), 504 cm�1,

559 cm�1 (Ag + Fg), 584 cm�1, 634 cm�1, and 728 cm�1.
The most intense line observed at around 372 cm�1 is charac-
teristic of cubic Y2O3, indicating a large polarizability varia-

tion (Kumar et al., 2016). The Raman spectra of the TiO2/
P25-Y2O3 sample show the Raman features of TiO2 with a
small peak at 365 cm�1 related to Y2O3. Furthermore, the
characteristic peaks of TiO2 are slightly shifted and become

broader, indicating the decrease of TiO2 crystallinity or/and
due to the decrease of TiO2 particle size in the nanocomposite
sample. This observation is consistent with the XRD result

shown in Fig. 2.
The fabricated materials were analyzed via a field-emission

scanning electron microscope (FESEM) attached with energy-

dispersive X-ray spectroscopy (EDX) to investigate the mor-
phology of TiO2/P25 and its dispersion on the Y2O3 sheet.
Fig. 4 exhibits the FESEM micrographs of TiO2/P25, Y2O3,

and TiO2/P25-Y2O3 nanocomposites fabricated by PLA. Ini-
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tially, TiO2/P25 nanoparticles demonstrated in Fig. 4a display
sizes below 40 nm and random adhesion of nanoparticles. Fur-
thermore, it can be observed from the FESEM image that the

Y2O3 fabricated by PLA consists of several sheets or plate-like
structures attaching. The image of After TiO2/P25-Y2O3

nanocomposites (Fig. 4c d) shows the loading of TiO2/P25

nanoparticles on the surface of Y2O3, which confirmed the for-
mation of TiO2/P25-Y2O3 nanocomposites. Besides, Fig. 5
shows the elemental mapping of the TiO2/P25-Y2O3 sample

in which the elements Ti, O, and Y are mapped in green, yel-
low, and red colors, respectively. This mapping confirmed
the laser-anchoring of TiO2/P25 nanoparticles on Y2O3 sheets.
Due to the unique attributes of the PLA technique,

contamination-free TiO2/P25-Y2O3 nanocomposites were fab-
ricated with a straightforward procedure.

Fig. 6 (a-c) shows the TEM micrograph, High-resolution

TEM, and selected area electron diffraction (SAED) pattern
of TiO2/P25-Y2O3 nanocomposites. The dark contrast in
Fig. 6a indicates the anchoring of the TiO2/P25 on the surface

of Y2O3 nanosheets. The presence of Y2O3 material on the
TiO2/P25-Y2O3 nanocomposites can be seen clearly from the
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of the nanocomposite.
The room temperature photoluminescence (PL) spectra of

the fabricated samples were performed to investigate the opti-

cal properties. PL spectrum of TiO2/P25 (Fig. 7) excited at
350 nm displayed a wide emission band and its Gaussian fitting
showed two peaks centered at 430 nm and 501 nm, which
could be caused by self-trapped excitons and oxygen vacancies,

respectively [14–16]. The TiO2/P25-Y2O3 sample displayed
emission at a wavelength of 421 nm, and the emission peak
intensity is lower compared with that of TiO2/P25 nanoparti-

cles. This confirms that the photoexcited e/h pairs are well sep-
arated making the TiO2/P25-Y2O3 suitable for many
photocatalysts applications.

Fig. 8 shows the analysis of the chemical components of the
TiO2/Y2O3 composite by XPS investigation. A quick survey
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scan revealed the presence of titanium, oxygen, carbon, and
yttrium. The intensity of the O1s is the strongest, which can
be attributed to the contribution of oxygen ions from the

TiO2, Y2O3, and adventitious contamination from oxidation
and/or water. The presence of titanium and yttrium in the sur-
vey scan indicates the formation of TiO2/Y2O3 composite. The

carbon 1 s is the well-known adventitious carbon from atmo-
spheric contamination. Fig. 8 (b, c, and d) show a narrow scan
for O1s, Ti 2p, and Y 3d, respectively. For the O 1 s peak, two

prominent peaks were observed at 528.5 eV and 530.2 eV
which can be attributed to the oxygen in the anatase lattice
from the oxides (TiO2) as well as oxygen defects and/or chemi-
sorbed hydroxyls (OOH), respectively. For the Ti atoms, dou-

blet symmetric peaks ascribed to Ti +4 were observed at
approximately 457 eV and 462.5 eV which are assigned to Ti
2p 3/2 and Ti 2p ø, respectively (Pouilleau et al., 1997). The

peak separation of 5.5 eV was noted between the spin split
which is consistent with reported values in the standard
(Greczynski and Hultman, 2020). For the yttrium atoms, the

low XPS resolution of the two spin–orbit components (Y 3d

5/2 and Y 3d 3/2 electrons) indicates the presence of multiple
chemical states. The binding–energy separation of 2 eV is

found between the spin-split doublets, which is consistent with
the XPS standard (‘X-ray Photoelectron Spectroscopy (XPS)
Reference Pages: Yttrium’, n.d.).

Fig. 9 shows the UV–Vis absorbance spectra of TiO2/P25,

Y2O3, and TiO2/P25-Y2O3 nanocomposites in the range of
200–800 nm. The absorption edge of TiO2/P25 and Y2O3

occurred at approximately 279 and 283 nm, respectively. The

Y2O3 sample shows moderate absorbance across the visible
range, whereas the TiO2/P25 sample showed absorbance in
the UV region. Remarkably, TiO2/P25-Y2O3 nanocomposites

exhibit a very strong absorbance with the entire 250–650 nm
spectrum, which is in a good agreement with the PL results.
This result highlights the strong modification of the UV–VIS

absorbance spectra of TiO2 due to the presence of Y2O3. Fur-
thermore, the ionic radius of Y3+ is 0.088 nm, which is larger
than that of Ti4+ (0.068 nm), so the Y ions should be difficult
to get into the TiO2 lattice, in the contrary, partial Ti ions may

have a chance to enter the Y2O3 crystal lattice, thus resulting in
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crystal defects and lattice distortion. The defects levels could
make new capture centers of the light generated carriers,
impeding them to recombine and prolong the lifetime of elec-

trons and holes. This new observation provides a means of
increasing the absorbance of TiO2 which can be useful in
UV and visible light response applications.

5. Conclusion

This study successfully synthesized TiO2 /Y2O3 nanocomposite

using PLA in liquid for the first time. PLA-prepared nanos-
tructures are unique and non-toxic because of the absence of
chemical precursors or surfactants which makes nanostruc-

tures prepared via this route superior to any chemical
approach. The structural, optical, and morphological proper-
ties of the nanocomposites were investigated using XRD,

Raman spectroscopy, FESEM attached with EDX, photolu-
minescence, XPS, and UV–Vis absorbance spectra. The results
obtained demonstrate that hybridizing TiO2 with Y2O3 signif-
icantly modifies the light absorption characteristics within the

UV–visible region. This enhancement indicates that the
nanocomposite could be useful for UV and visible light-
responsive applications.
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