
[Short title + Author Name - P&H title] 17 (2024) 105526

Available online 6 December 2023
1878-5352/© 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Numerical treatment for the desirability of Hall current and activation 
energy in the enhancement of heat transfer in a nanofluidic system 

Muhammad Shoaib a, Sana Ullah Saqib b, Kottakkaran Sooppy Nisar c,*, 
Muhammad Asif Zahoor Raja d,*, Imtiaz Ali Mohammed e 

a Yuan Ze University, AI Center, Taoyuan 320, Taiwan 
b Department of Applied Mathematics and Statistics, Institute of Space Technology, Islamabad, Pakistan 
c Department of Mathematics, College of science and Humanities in Alkharj, Prince Sattam bin Abdulaziz University, 11942, Saudi Arabia 
d Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section.3, Douliou, Yunlin 64002, Taiwan 
e Department of Chemistry, College of science and Humanities in Alkharj, Prince Sattam bin Abdulaziz University, 11942, Saudi Arabia   

A R T I C L E  I N F O   

Keywords: 
Nanofluid 
Hall current 
Intelligent computing 
Nanoliquid 
Nanoparticle aggregation 
Binary chemical reaction 

A B S T R A C T   

The growing attractiveness of Artificial Neural Networks (ANNs) derives from their exceptional effectiveness in 
handling difficult and exceptionally nonlinear mathematical ideas. In complicated disciplines such as fluid 
mechanics, biological computation, and the field of biotechnology ANNs provide a diverse computing framework 
that is extremely valuable. This article’s major aim is to harness the capabilities of the Levenberg-Marquardt 
technique with backpropagation intelligent neural networks (LM- BPINNs) to study there is still a lack of 
clarity regarding the mechanics underlying the increased heat transfer caused by dispersed nanoparticles. The 
using proposed LM-BPINNs to improve the heat transmission use activation energy and Hall current phenomena 
in nanofluid (HTAHCNF). The data set is obtained by using Lobatto-III. A method and then ANNs is applied. The 
LM- BPINNs technique is applied by utilizing reference datasets, with 80% of the dataset devoted to training, 
10% to testing, and 10% to verification. The precision/accuracy and converging of developed LM- BPINNs are 
validated based on the obtained reliability via efficient fitness achieved on mean squared error (MSE), 
comprehensive regression analysis, and appropriate error histogram visualizations. A diminished MSE indicates 
that the model’s predictions are more reliable. The outcome is consistent with getting a minimal absolute error 
close to zero, exhibiting the effectiveness of the proposed approach.   

1. Introduction 

Scientists and investigators seem more interested in Artificial Neural 
Networks (ANNs) approaches due to its worth and suitableness in 
treating challenging, stiff, and high nonlinear mathematical models for 
use in domains like fluid dynamics, computational biology and 
biotechnology. Researchers are paying a lot of attention to artificial 
neural networks these days. Because ANN is an artificial intelligence- 
based technology that might be employed in the categorizing process. 
According to its many possible applications in microelectronics, trans-
portation, paper manufacture, conductive reducing, and medical qual-
ities, such as heat transmission in muscle, prescription pharmaceutical 
aiming, and so on, it has a long list of prospective applications. Among 
the most significant recent AI techniques are artificial neural networks 

(ANNs). ANNs are ecologically adapted in many circumstances and 
depending on the understanding that analyses the input throughout the 
learning experience, whether it originates from inside or beyond the 
network. A neural network (NN)-based technology is now being 
designed to learn, identify trends, predict occurrences, and address is-
sues in any corporate entity. A set of algorithms known as neural net-
works are designed to emulate the brain function and are used to 
recognize trends. Comparable to computer vision, they categorize or 
merge raw inputs to comprehend visual information. All real statistics, 
including pictures, sounds, texts, and timelines, must be converted into 
the visual statistical patterns known as vectors. Since the invention of 
the computer, artificial intelligence networks have existed. Mathema-
ticians Warren McCulloch and Walter Pitts created a rotation system in 
1943 that used efficient algorithms to simulate how the human brain 
works. An ANN is composed of a considerable multiprocessor that 
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operates in parallel and is set up in levels. Because of their famed flex-
ibility, neural networks are constantly adapting as they take in new 
information from their fundamental training and future running.. Arti-
ficial networks can provide a solution to this problem (ANNs). ANNs, 
modeled on how the brain works, are a different kind of standard pro-
grammed computer. Connecting neurons to a network gives neural 
calculations their power. When more neurons are added to a connected 
network, it is better to predict the output. ANNs have a broad array of 
applications because to their unique attributes. A new way for achieving 
convergence stabilization, the Levenberg-Marquardt (LM) back propa-
gation method for ANNs offers numerical solutions to a wide variety of 
fluid flow issues. Recently, many scientists have experimented with 
Newtonian and Non-Newtonian fluid systems using the LM- BPINNs. 
ANNs are used in a broad spectrum of industries, notably engineering, 
avionics, pharmaceuticals, the automobile industries, the military, and 
numerous others (Dubey and Yadava, 2008; Notton et al., 2019). The 
value of LM- BPINNs is shown by heartbeat Model (Zhang et al., 2021), 
COVID-19 model (Cheema, 2020), Neuro-fuzzy (Tabbussum and Dar, 
2021), the pantograph (Sabir et al., 2022), and differentiated designs 
(Ilyas et al., 2021; Ilyas et al., 2021; Ahmad et al., 2019; Cheema and 
Naz, 2021). 

A new class of fluids called NFs was created by distributing compo-
nents with a size of nanometers (nanorods, nanoparticles, nanotubes, 
nanosheet, or droplets, nanofibers, nanowires) in basic fluids. In other 
terms, NFs are compressed nanomaterials suspended in nanoscale ag-
gregates. Generally, the nanoparticles are formed of carbon nanotubes, 
oxides, carbides, or metals. For illustrate, the base fluids include water, 
ethylene, glycol, oil, and a variety of others. It is noted to possess a 
number of significant and advantageous characteristics of a NF, 
including an increase in heat transmission and a NFs rate of stretching. 
NF coolants are typically utilized to enhance the quality of aerodynamic 
structures. In comparison to base fluids like water or oil NFs have been 
discovered to have improved heat capacity, temperature gradient, 
viscous, and coefficients of convective heat transfer. It has shown 
excellent promise for use in numerous fields. NFs have gained a 

significant level of attention in recent years. Numerous applications are 
the main impetus for NF research. In previous years, nanotechnology has 
significantly contributed to many heat transmission techniques and 
made notable advancements in energy-related applications. By 
enhancing the fluids’ characteristics, nanotechnology has significantly 
advanced the study of heat transmission. Due to the rapid advancement 
of technologies in all realms of life, the energy requirement is currently 
constantly rising globally. NFs are essentially improved heat trans-
mission fluids that can be used instead of pure base fluids to enhance 
heat transport by including nanoparticles substances with better ther-
mally conductivity. NFs are becoming an important component of heat 
transfers technology because they offer a viable opportunity for 
improving technology efficiency, which leads to apparatus size reduc-
tion and energy savings. 

At first, Choi (Choi and Eastman, 1995) concurred with this theory 
and developed a novel new class of NFs that exhibits a significant 
thermal conductivity. A NFs flow and heat transmission over a surface 
that was non - linearly extending were evaluated by Rana and Bhargava 
(Rana and Bhargava, 2012). Several authors suggested some additional 
pertinent and unique investigations conducted under various circum-
stances (Gajbhiye et al., 2023; Jayavel et al., 2023; Oreyeni et al., 2023; 
Shah et al., 2023; Vemulawada et al., 2023; Özerinç et al., 2010; Rasool 
et al., 2019; Kumar et al., 2019; Irfan et al., 2019; Khan et al., 2020). 
Mustafa (Mustafa, 2017) studied the flow of a NF through a rotating disc 
that was being warmed convectively. Mahanthesh et al. (Mahanthesh 
et al., 2018) investigated influence of erratic thermal sources on nano-
liquid flow. Upadhyaet al. (Abraham, 2018) studied at the thermal 
transfer attributes of the nanoliquid that was heated internally. Iqbal 
et al. (Ono and Sakashita, 2010) glanced into the repercussions of car-
bon nanotubes on the advancement of thermal transport over a 
revolving surface. They asserted that NPs being suspended increases the 
flow and heat structure. There is a variety of literature (Afridi et al., 
2016; Afridi, n.d.; Afridi et al., 2019; Afridi et al., 2019) about NFs 
enhanced ability to transmit thermal. Recent advancements from the 
perspectives of NFs have greatly saturated the domain of fluid 

Nomenclature 

Ω Angular velocity 
f Fluid 
Tw Uniform Temperature 
J =

(
Jr, Jϕ, Jz

)
Current density 

E = (0, 0, 0) Electric field, 
Pe Electrical shear 
τe Time of an electron collision 
ne Density of electron 
p pressure 
Kr Reaction rate 
C Concentration 
n Constant fitted rate 
δ Temperature ratio parameter 
np nanoparticle 
NFs Nanofluids 
Le (Lewis number 
Cp Specific heat capacity 

Abbreviations 
HTAHCNF heat transmission, use activation energy and Hall current 

phenomena in nanofluid characteristics 
Er.H.As Error histogram analysis 
AI Artificial intelligence 
MSE Mean square error 
NN Neural Network 

ACE Activation energy 
B0 Magnetic field 
U,V,W Velocity components 
cw Uniform Concentration 
B = (0,B0, 0) Magnetic induction 
DB Diffusivity of mass 
e The electron’s charge 
σ Electrical conductivity 
m = ωeτe Hall parameter 
T Temperature 
Pr Prandtl number 
Ea Activation energy coefficient 
κ Boltzmann constant 
φa nanoparticle volume fraction 
l Base fluid 
nl Nanoliquid 
β Chemical reaction parameter 
Dnl Diffusivity 

Abbreviations 
LM- BPINNs Levenberg-Marquardt Technique’s with back 

propagation intelligent neural networks 
ANNs Artificial Neural Networks 
AI BP Back-propagation 
R.As Regression analysis 
AE Absolute error 
ArE Arrhenius equation  
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mechanics. Darcy’s phenomena (Darcy, 1856) are participated in mul-
tiple real-world issues and industrial procedures. As an instance, the 
flow of water through a rugged surface occurs naturally. The physical 
phenomenon is, in some way, surrounded by the characteristics of 
permeability. The ensuing drag contribution is generally disregarded for 
a narrow range for the permeability factor. Because of the wide range of 
industrial applications, mass and heat transfer across NF flows is a 
complicated subject for scientists to study. Experimental tests, Fourier’s 
concept (Fourier and Darboux, 1822) of radiant heat is rather restricted 
as a scientific explanation for the conundrum of heat transfer perfor-
mance in its usual form. Cattaneo (Cattaneo, 1948) was successful in 
achieving this goal by incorporating a transient relaxation aspect into 
the heat transport flux representation. Christov (Christov, 2009) intro-
duced significant mathematical improvements to this heat concept to 
compensate for the requirement of using the higher convective de-
rivatives within the same situation. 

Aggregates are a phenomenon where molecules or particles come 
together to form lengthy patterns. The aggregation procedure is 

important in interfacial research and technology since it is an inevitable 
phenomenon. Amalgamation and aggregating, while on the other side, 
vary a little. Amalgamation is the arrangement of molecules in a 
particular sequence with binding interactions, as opposed to loosely 
coupled agglomeration, which can be destroyed by mechanical force. 
Via using fractal geometry, this aggregation structure can be recognized. 
There is much contention about how to increase the thermal conduc-
tivity of NFs. Recent research suggests that aggregation of nano-
material’s plays a significant part in the thermal efficiency of NFs. 
Keblinski et al. (SUS et al., 2002) proposed that size of the particles, 
nanoparticle aggregation, and liquid-molecule interface represent major 
enhancing aspects in comparison to the Brownian movement of the 
particles. The effective heat conductivity produced by Wang et al. 
(Vassallo et al., 2004) that the aggregation kinematics. Fractal theory 
helps successfully explain the formation of nanoscale aggregates, as 
demonstrated by Cai et al. (Fronk and Garimella, 2016). Recent publi-
cations (Rana et al., 2021; Mahanthesh, 2021; Mahanthesh et al., 2021) 
include some initiatives in this direction. 

Many technical and industrial procedures make utilization magneto 
hydrodynamic (MHD) electrically contacting fluid. Flow meters, MHD 
hydroelectric dams, nuclear reactors, stirrer, and MHD pumping are a 
few instances. This is important to understanding how the solar cycle 
and the development of sunspots work in the context of solar physics. 
Hannes Alfven (Alfvén, 1943) developed the MHD. An instance of MHD 
uses includes drug carrier aiming, refrigeration of processors built of 
liquid metal, and crystalline formation. The intensity of magnetic in-
ductions has a significant effect on MHD. Pavlov (Pavlov, 1974) was the 
first to propose the concept of a highly conductive liquid magnetically 
flowing from a stretched sheet. The electrolyte solution fluid transient 
from a pliable surface with a magnetic field has been the subject of 
discussion by numerous researchers (El-Aziz and Salem, 2007; Akbar 
et al., 2015; Khan et al., 2016). Even as magnetic field grows greater, the 
Hall effect, which is brought on by Hall currents, cannot be ignored. In 
both the Hall acceleration issue and flight MHD, the Hall current is plays 
a crucial property. The movements of nanoliquid over a rotating disc 
have been studied by various researchers (Abdel-Wahed and Akl, 2016; 
Khan et al., 2020; Mahanthesh et al., 2020) using the Hall current 
approach. However, the Hall current phenomenon in aggregation dy-
namics is not taken into consideration. 

A massive chunk of activation energy (ACE) has always been needed 
for chemical reactions, whether they are linear or quadratic. The 

Fig. 1. A graphic illustration of the problem.  

Fig. 2. LM- BPINNs System.  

Table 1 
Scenarios/cases for Significant Parameters of HTAHCNF.  

Scenario Significant Parameters m = 1.5 m = 2.0 

Case-I Case-II Case-III Case -IV Case- V Case-VI Case-VII Case-VIII Case -IX Case- X 

S(I) M 0.5 1.0 1.5 2.0 25 0.5 1.0 1.5 2.0 25   
δ = 0.3 δ = 0.35 

S(II) Le 2 3 4 5 6 2 3 4 5 6   
β = 0.2 β = 0.3 

S(III) E 0.3 0.9 1.5 2.1 2.7 0.3 0.9 1.5 2.1 2.7  
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Arrhenius equation (ArE) can be used to determine the quantity of ACE 
in a model that incorporates chemical reactions. ArE describes the in-
ternal system temperature change induced on by chemical process. 
Svante Arrhenius (Herbert, 1907) published the discovery on ACE in 
1889 that he described as the level of energy required to react with the 
least amount of effort. Oil reserves, petrochemical engineering, and 
geological sciences are a few examples of ACE applications. Abdelmalek 
et al. (Abdelmalek et al., 2020) investigated the Casson NFs flow 
behavior beyond an extended surface with a binary chemical process, 
and they found that a larger ACE increases the concentrations boundary 
layer’s thickness. Kumar et al. (Kumar et al., 2021) explored the sig-
nificance of improved ArE on MHD for the nanoliquid flow through a 
spinning surface and how mass transfer rate increases with larger ACE. 
Mainly focusing on ACE from recently is contained in (Muhammad et al., 
2021; Shahid et al., 2021; Bég et al., 2015). 

By utilizing LM-BPINNs, the present numerical work helps to create 
heat transfer converter systems that are more energy efficient, operate 
better, and also have reduced operational expenses. ANNs can predict 
complicated and nonlinear interactions, which is important given that 
most of the other connections between inputs and outputs in real life, 
both are convoluted and non-linear. The ability of NNs to learn from 
their errors lets them enhance their performance. As a consequence, NNs 
are now being employed more frequently to resolve challenging issues. 
With the help of the artificial neural network (ANN) model created 
utilizing the experimental observations, optimized results got approxi-
mated. The present numerical analysis aids in the development of 
managed heat ex-changers. techniques that operate better, use less en-
ergy, and have reduced running costs. It was reported that the ANN 
estimator is more precise in comparison to the regression model and 
experimental data. Patel et al. (GC et al., 2017) have used batching 
training session to conduct a parameterization analysis to adjust and 
optimize the neural network model. It is apparent that a numerical 
method is used to predict the heat transport characteristics of the model 
as a function of some input parameters Hartman number M. Hall current 
parameter m, Lewis number Le, temperature difference parameter δ, 

activation energy E, chemical reaction parameter β and Prandtl number 
Pr. The artificial neural networks (ANNs) were built using the data 
generated by statistically calculating these parameters for various pa-
rameters. Since this batching training technique required extremely 
employing responses equations, training data was intentionally pro-
duced. Furthermore, an ANN model was constructed and its compre-
hension were analyzed (reverse mapping) using statistically regression 
models with the aid of test cases, (forward mapping). The outcomes 
demonstrated that every ANN model created can produce both back-
ward and backward mapping forecasts that are accurate. R.A, AEA 
histograms, MSE-based merit, and comparing with the standard solution 
were used to confirm the accuracy of the ANN scheme used to solve the 
problem. The ANN model was found to be quite effective in a compar-
ison study that has been done to verify the findings presented here. 

The literature mentioned above underlines how AI-based NNs have 
not yet been applied to predict the heat transport characteristics of a 
model. The HTAHCNF problem was addressed by the suggested study’s 
authors using LM- BPINNs. Numerous AI-based approaches were applied 
in the studies (Sabir et al., 2021; Ahmad et al., 2019; Ahmad et al., 2021; 
Shoaib et al., 2021; Shoaib et al., 2021; Sabir et al., 2020; Shoaib et al., 
2019; Sabir et al., 2020; Yang et al., 2020; Çolak, 2021; Shoaib et al., 
2022; Shoaib et al., 2021; Shoaib et al., 2021). The Mathematica and 
MATLAB technologies are used to carry out these numerical calcula-
tions. To optimize the HTAHCNF solutions, BNN-LM is implemented. 
Nobody has used a LM- BPINNs supervised learning on the HTAHCNF 
model. The evidence suggests that core methods of artificial intelligence 
are applied in a variety of fields of science and technology. The following 
are some of the points we addressed in our discussion:  

• In this study, LM-BPNNs with a novel methodology or architecture 
were created for the HTAHCNF model.  

• To obtain a more accurate approximation for the HTAHCNF model, a 
novel application LM-BPNNs is implemented. 

Table 2 
Outcomes of LM-BPNNs for all scenarios of HTAHCNF.  

Scenario Case Mean Square Error Performance Mu Parameter Gradient Epochs Time 

Training Validation Testing 

S(I) I 3.22E-08 5.34E-80 3.67E-80 3.23E-08 1.00E-08 1.82E-06 1000 12 
II 3.98E-08 4.23E-08 3.45E-08 3.98E-08 1.00E-08 2.25E-06 943 11 
III 8.12E-07 1.14E-06 5.38E-07 7.92E-07 1.00E-09 1.91E-05 184 2 
IV 4.00E-08 4.93E-08 8.43E-08 4.00E-08 1.00E-05 1.23E-05 1000 5 
V 1.84E-08 2.93E-08 4.39E-08 1.85E-08 1.00E-09 2.77E-07 1000 11 
VI 7.88E-07 1.04E-06 1.04E-06 7.74E-07 1.00E-08 1.65E-06 246 02 
VII 5.34E-08 6.24E-08 5.10E-08 5.35E-08 1.00E-08 9.33E-7 1000 10 
VIII 9.30E-07 8.05E-07 7.78E-07 9.26E-07 1.00E-08 3.48E-06 102 01 
IX 5.10E-07 5.90E-07 4.54E-07 5.10E-07 1.00E-08 2.60E-07 177 01 
X 6.12E-08 9.07E-08 6.90E-08 6.13E-06 1.00E-08 1.16E-06 1000 12 

S(II) I 8.49E-08 1.06E-07 7.73E-08 8.50E-08 1.00E-09 2.29E-06 1000 13 
II 1.29E-06 1.12E-06 9.76E-07 1.02–06 1.00E-07 3. 58E-06 91 01 
III 1.04E-06 8.49E-07 6.54E-07 1.99E-06 1.00E-08 9.97E-06 215 02 
IV 6.77E-08 8.08E-08 4.83E-08 6.78E-08 1.00E-09 3.09E-06 1000 11 
V 1.97E-08 1.83E-08 1.73E-08 1.97E-08 1.00E-09 1.52E-06 938 10 
VI 1.60E-06 1. 31E-06 1.53E-06 1.58E-06 1.00E-07 3.10E-06 938 10 
VII 4.05E-08 5.75E-08 6.51E-08 4.06E-08 1.00E-05 1.33E-05 1000 04 
VIII 9.64E-08 2.08E-07 1.27E-07 9.12E-08 1.00E-08 3.51E-06 480 05 
IX 9.77E-06 9.50E-07 8.12E-06 8.60E-10 1.00E-08 3.74E-08 288 2 
X 2.63E-08 3.19E-08 2.62E-08 2.63E-08 1.00E-08 4.65E-07 1000 11 

S(III) I 1.12E-06 9.40E-07 7.67E-07 1.12E-06 1.00E-08 5.64E-06 186 02 
II 8.29E-07 7.98E-07 1.13E-06 8.62E-07 1.00E-08 8.54E-07 240 02 
III 1.06E-06 1.03E-06 1. 32E-06 1.02E-06 1.00E-07 3.33E-06 89 01 
IV 5.97E-07 6.40E-07 5. 90E-07 5.92E-07 1.00E-09 1.82E-06 355 04 
V 8.47E-07 1.08E-06 8. 83E-07 8.26E-07 1.00E-07 3.01E-06 113 01 
VI 2.48E-08 2.96E-08 3. 21E-08 2.43E-08 1.00E-09 3.35E-05 711 09 
VII 1.14E-06 6.90E-07 6. 03E-06 1.14E-06 1.00E-08 3.10E-06 247 03 
VIII 5.19E-08 7.16E-08 4.37E-08 5.20E-08 1.00E-08 1.82E-06 1000 10 
IX 4.80E-08 1.436E-07 7.54E-08 4.80E-08 1.00E-05 7.22E-06 1000 06 
X 2.85E-08 3.48E-08 2.44E-08 2.85E-08 1.00E-08 3.95E-07 1000 10  
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• Developed a set of data from Labatao-IIIA, used it for training, 
testing, and validation, and compared the result with the accurate 
solution.  

• Model convergence and consistency are displayed on the MSE graph.  
• To highlight the great outcome of the LM- BPINNs as demonstrated 

by fitness curves, MSE, R.A and E.H.A.  

• Implications of adding nanoparticle aggregating on the convective 
heat exchange in ethylene glycol.  

• Hall current’s influence on nanoparticles’ improved heat transfer.  
• The influence of ACE on the heat transfer of a nanoliquid as it passes 

over a disc surface. 

Fig. 3. Flow chart of the presented fluid flow problem LM- BPINNs.  
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• To construct a quadratic regression model and improve the thermal 
transfer efficiency, the surface response technique is used with a 
face-centered central composite system. 

The remainder of the article is arranged so that Section 2 offered 
mathematical modeling, Section 3 contains Solution methodology along 
with discussion of the study’s outcomes, and Section 4 is reserved for 
concluding remarks and future investigations. 

2. Mathematical modeling 

It is thought about to explore a time-independent 3D MHD flow of an 
incompressible, conductive metal nanoliquid (TiO2 based on ethylene 
glycol) through a rotating disc with a Hall current effect. The disc spins 
at a uniform rotation speed at z = 0. A magnetic field strength B0 is 
incorporated in the normal direction of the flow . According to Fig. 1, the 
flow elements (u, v,w) are orientated in the expanding dimensions (r, z)
in a comparable manner. TW and CW stand for the surface of the spinning 
disk’s uniform temperature and concentration, respectively, whereas T∞ 

and C∞ indicate the temperatures and concentrations at a distance from 
the disc surface. The binary chemical reactions and a massive chunk of 
activation energy are taken into account. Given below is a generalized 

Ohm’s law for NFs in the presence of Hall current (Debnath et al., 1979). 

(B × J) ×
τeωe

B0
+ J =

(

B × V +
Pe

ene
+ E

)

σnl , (1)  

here, the electric field magnetic induction, the current density and ve-
locity vectors are denoted by 

E = (0,0, 0), = (0, B0, 0), J =
(
Jr, Jϕ, JZ

)
and V = (u, v,w),

respectively (Rana et al., 2022): 

Jr = m2(mv − u)
σnlB0

m2 + 1
, Jϕ= (mu + v)

σnlB0

m2 + 1
, (2) 

Where m = ωeτe is the Hall parameter, and (u, v,w) are the velocities 
along the r, ϕ and z directions, respectively. 

∂u
∂r

+
∂w
∂z

+
u
r
= 0, (3)  

(
∂u
∂r

u +
∂u
∂z

w −
v2

r

)

ρnl =

(
∂u
∂r

1
r
+

∂2u
∂r

+
∂2u
∂z2 −

u
r2

)

μnl +(mv − u)
B2

0σnl

(m2 + 1)
,

(4)  

Fig. 4. Case X of all HTAHCNF scenarios adopting LM-BPNNs Mean Square Error (MSE) representations.  
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(
∂u
∂r

u +
∂u
∂z

w +
uv
r

)

ρnl =

(
∂u
∂r

1
r
+

∂2u
∂r

+
∂2u
∂z2 −

v
r2

)

μnl − (mu + v)
B2

0σnl

(m2 + 1)
,

(5)  

∂p
∂z

+

(
∂w
∂z

w +
∂w
∂r

u
)

ρnl =

(
∂w
∂r

1
r
+

∂2w
∂r

+
∂2w
∂z2

)

μnl, (6)  

(
∂T
∂z

w +
∂T
∂r

u
)
(
ρCp

)

nl =

(
∂T
∂r

1
r
+

∂2T
∂z2 +

∂2T
∂r2

)

+ knl, (7)  

∂C
∂z

w+
∂C
∂r

u =

(
∂C
∂r

1
r
+

∂2C
∂z2 +

∂2C
∂r2

)

+Dnl − K2
r exp

(

−
Ea
kT

)(
T

T∞

)n

(C

− C∞),

(8) 

Boundary conditions 

w = 0, u = 0, v = Ωr, C = Cw, T = Tw atz = 0
p→p∞, u→0, v→0, C→C∞ , T→T∞, asz→∞

}

, (9) 

The NP volume fraction φa is defined as below (Černý, 2017; Alfven, 
1943). 

φa = φ
(

Rp

Ra

)D− 3

, (10) 

As a result, the useful viscous for the aggregating component using 
the modified KD-model and Eqn. (10) is as follows. (Černý, 2017; Alfven, 
1943) 

μnl

μl
=

(

1 −
φa

φmax

)− 2.5φmax

, (11) 

Combining the MB-model, the thermal conductivity of the nf is given 
as follows. (Bruggeman, 1936; Motevasel et al., 2018) 

knl = (2φa(ka − kl)ka + 2kl + ka − φa(ka − kl) + 2kl )kl,

ka =
kl

4

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[ − 1 + 3( − φint − 1) ] +
knp

kl
( − 1 + 3φint)+

[{
knp

kl
( − 1 + 3φint) + ( − 1 + 3( − φint + 1) )

}2

+
8knp

kl

]1
2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

φint =

(
Ra

Rp

)D− 3

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(12)  

ρnl = φaρnp + ρl( − φa + 1), (13)  

Fig. 5. Display utilizing graphics of the Training state of Case X for all HTAHCNF scenarios.  
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σnl

σl
= 1+

3
(
− 1 + σlσnp

)
φa(

2 + σlσnp
)
−
(
− 1 + σlσnp

)
φa

, (14)  

(
ρCp

)

nl = φa
(
ρCp

)

np +
(
ρCp

)

l( − φa + 1) , (15)  

Dnl = Dl( − φa + 1) , (16) 

Where φint stands for the NPs volume percent inside the aggregation.. 
The subscripts nl, l, a, np represent nanoliquid, base liquid, particle ag-
gregation, nanoparticles respectively. 

To get a system ODEs, the similarity characteristics in in Eqn. (17) 
are added in Eqns. (3)-(9) (Abdel-Wahed and Akl, 2016).   

Fig. 6. Comparison of fitness with Er.H.As for case X over all HTAHCNF circumstances utilizing LM-BPNNs.  
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The modified system of ODEs with thermo physical characteristics is 
as follows: 

[
g2 − f 2″

+ 2ff″]A1

A2
−

M
(m2 + 1)

A3

A2
(f ′ − mg)+ 2f‴ = 0, (18)  

[ − f ′g + fg′]
2A1

A2
−

M
(m2 + 1)

A3

A2
(g + mf ′)+ 2g″ = 0, (19)  

θ″+
A4

A5
Prf θ′ = 0, (20)  

s″ − exp
(

−
E

1 + δθ

)
(1 + δθ)n

2A6
LeβsPr +

LePr
A6

fs′ = 0, (21)  

f ′ = 0, f = 0, g = 1, θ = 1, s = 1atη = 0
f ′→0, g→0, θ→0, s→0, asη→∞

}

, (22) 

Where, 

A1 = (1 − φa)+φa
ρa

ρl
,A2 =

(

1 −
φa

φmax

)− 2.5φmax

, A3

=

⎛

⎜
⎜
⎝1 +

3
(

σa
σl
− 1

)

φa
(

σa
σl
+ 2

)

−

(
σa
σl
− 1

)

φa

⎞

⎟
⎟
⎠,

Fig. 7. Utilizing LM-BPNNs, (R.As) of case X of all HTAHCNF scenarios.  

(17)   
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A4 = (1 − φa)+
φa

(
ρCp

)

a(
ρCp

)

l

, A5 =
kint + 2kl + 2φa(kint − kl)

kint + 2kl − φa(kint − kl)
, A6

= 1 − a .φa .

3. Solution methodology with discussion of outcomes 

The Levenberg-Marquardt technique with back propagation neural 
networks (LM- BPINNs) has been used in the embedded statistical 

computing system for the HTAHCNF model. The LM- BPINNs driving 
MATLAB integration toolbox for artificial neural networks is used to 
solve driven ODEs that describe the flow model in Eqs (18)–(22). 
Initially, we established a set of data by utilizing the Lobatto III-A nu-
merical solution for the presented flow system containing systems of 
ODEs, then further utilized for LM- BPINNs. The LM-BPINNs solver is 
used to analyze the dataset that is generated using the Lobatto III-A 
numerical technique. Investigation of the evaluation ratio, mean 
square error (MSE), and absolute error (A.E) using practical data. Using 

Fig. 8. The LM-BPNNs result for f′ is compared with the corresponding solution, Lobatto III-A Strategy and Outcome A.E analysis.  
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the LM- BPINNs paradigm, stability has been achieved via promoting 
cognitive development. The LM- BPINNs has proven their accuracy and 
durability by analyzing their results in a number of circumstances and 
characteristics. A reference set for the networks LM- BPINNs is built 
between the range [01] of input matrices for Eqs. (18)–(22). 

The feed-forward (FF), back-propagation (BP), and multi-layer per-
ceptron (MLP) models are utilized in ANN models. Each node’s mea-
surement of the correlation between input data from predecessors forms 
the foundation of the fundamental learning model. There is only one 

hidden layer in an MLP network, although a few networks might include 
more over one. 70 % of the set of data was utilized in the ANN model’s 
training stage, 15 % for the validation stage, and 15 % for the testing 
stage. The quantity of neurons in the hidden layer isn’t determined by a 
specific model. Because of this, the forecasting abilities of ANN model 
derived with various numbers of neurons were tested, and the design 
with 10neurons in the hidden layer was favored. Fig. 2 depicts the 
design of the constructed ANN models. ANN models employ a variety of 
training procedures, and numerous researchers (Çolak, 2021) on the 

Fig. 8. (continued). 

M. Shoaib et al.                                                                                                                                                                                                                                 



Arabian Journal of Chemistry 17 (2024) 105526

12

effectiveness of these algorithms have been performed. The constructed 
model employs one of the elevated classification algorithms, the 
Levenberg-Marquardt classification model. 

Through the discovery of correlations and trends in data, ANNs ac-
quire (or are training). Programming does not help them learn or get 
training. During training, the inter-unit connection is continually 
improved until the prediction error is diminished and the system ach-
ieves the target precision. Information that aids in your search for the 
proper solutions carries a lot of weight. Comparable processing abilities 
imply that a network is capable of doing multiple tasks simultaneously. 
The entire system stores information, rather than only on the website, 
or network. Reading and imitating indirect, intricate relationships re-
quires the capacity to imitate interpersonal interaction in the real world. 
Information is stored throughout the network, not just on the website. 
The ability to read and mimic indirect, complex interactions helps to 
mimic real-world interactive relationships. The capacity to create output 
with insufficient information, with loss in performance proportional to 
the significance of the incomplete details. Mechanical learning means 
the ability of the neural network artificial (ANN) to learn from events 
and make judgments based on that awareness. ANNs can anticipate the 
effect of intangible data because of their productivity and mean invisible 
association of intangible data. Neural networks are a magnificent bio-
mimetic programming technique that allows a computer to adapt from 
data collected through observation. Many challenges in image identifi-
cation, audio identification, and natural language processing may now 
be solved using neural networks and deep learning. 

The set of design variables is considered to be 0.5 ≤ M ≤ 2.5,0.2 ≤

m ≤ 2.0, 0.3 ≤ δ ≤ 0.5, 0.3 ≤ E ≤ 2.7, 0.2 ≤ β ≤ 0.4, 2 ≤ Le ≤ 6. The 
variables are used as follows for graphical interpretation M = 1.5,m =

0.5, δ = 0.3, n = 0.4, E = 0.9, β = 0.2, and Le = 3 excluding the distinc-
tive one. 

When constructing the data set for LM- BPNNs, the 3 distinct sce-
narios are described, and the disparities are for various parameters M m, 
Le , δ, (ACE) E, chemical β and Pr. 

The three scenarios are described in Table.1, while the non-variable 
parameters of the outcomes are presented in Table 2. Fig. 3 depicted the 
structure of proposed techniques…..Fig. 4 demonstrates the training 
effectiveness in each 10th case of the LM-BPNNs scenarios. It can be 
observed from the figs that the MSE values, which are higher during the 
start of the training phase, get lower as the epochs advance. According to 
the MLP network’s functioning structure, MSE values decline 
throughout each epoch, and whenever the minimal MSE value is 
attained, the ANN model’s training phase is accomplished and the best 
efficiency is obtained. Extremely modest MSE values demonstrate that 
the constructed ANN models’ training stages were successfully ended 
with extremely minimal error rates. Fig. 5 shows a visualization of the 
training state of ANN model. Examining the graphs reveals that as the 
epoch’s increases, the values of μ and gradient drop. These graph-based 
results demonstrate that the training stages of the ANN models are 
successfully finished. Error histogram analysis is fundamental when 
assessing the effectiveness of ANN models. Fig. 6 shows the fitness and 
Er.H. As. The erroneous rates acquired for every data set are shown to be 
close to the zero erroneous line when the graphs are viewed. It is 
evident, though, that the statistical values of the errors depicted on the 
graphs’ x-axis are also quite small. These findings from E.H.A. graphs 
demonstrate that the ANN models were trained with an extremely 
minimal error rate. The R.As graphs are shown in Fig. 7. By checking and 
analyzing the training data, the trustworthiness of LM- BPINNs is 
confirmed for the HTAHCNF design, and according to one’s testimony, 
optimum modeling is shown by a correlation R value that is close to 
unity. Table. 2 shows the training, testing, validation, performance, Mu, 
epochs, and total time. The effectiveness of the LM-BPNNs and the ve-
racity of the generated HTAHCNF in each scenario determined the 
techniques’ outcomes.. 

4. Results and discussion 

The radial velocity f′(η), transversal velocity g(η), temperature θ (η), 
and concentration s(η) shows in Fig. 8 (a,c,i,g) the fluctuation caused by 
an raise in the Hartman number M and the Hall current parameter m. 
Fig. 8 (a,c,i,g). It has been found that an enhanced M increases the 
magnitude of the f′(η), g(η), θ(η), and s(η) profiles to decline. The Lor-
entz force (L.F), which is generated by the magnetic field, has an impact 
on the M. As M is raised, the resistant L.F, which causes friction between 
the fluid and the surface and lowers velocities increases. A rise in the 
value of m causes the thermal and concentrating fields to enlarge. The A. 
E for M and m on f′(η), g(η), θ (η), and s(η) shown in Fig. 8 (b,d,j,h) 
ranging from 10− 2 to 10− 7, 10− 2 to 10− 10, 10− 2 to 10− 7 and 10− 2 to 
10− 8. 

The influence of Le and δ on the concentrating distribution s(η) is 
shown in Fig. 8 (e). It has been found that an drop in s(η) field is caused 
by enhancing Le and δ because mass diffusivity is decreased. Fig. 8 (k). 
shows the impact of (ACE)E and β on the concentration field. Here, as 
the A.E rises, the modified Arrhenius function diminishes. In the result, 
this produces a beneficial chemical reaction that raises the s(η). In 
addition, the relationship between the chemical reaction parameter and 
the concentration boundary layer is reversed. The A.E for Le and δ on s 
(η) shown in Fig. 8 (f) ranging from 10− 2 to 10− 7. The A.E for E and β on s 
(η) shown in Fig. 8 (f) ranging from 10− 2 to 10− 7. 

5. Conclusion and future studies 

In this research, we provide an AI-based computational design that 
solves the mathematical model corresponding to the investigation of 
HTAHCNF for different scenarios by using application LM-BPNNs. This 
research explored a 3D-MHD flow of the nanoliquid over a spinning disc 
with NPs aggregating is computationally investigated by providing for 
Hall current and binary chemical reactions. The Lobatto-IIIA numerical 
solver is used to generate HTAHCNF reference data by altering Hartman 
number M,Hall current parameter (m) Lewis number Le, temperature 
difference parameter δ, activation energy E, Prandtl number Pr. and 
chemical reaction parameter β using data sets for various flow scenarios. 
70 % of the set of data was utilized in the ANN model’s training stage, 
15 % for the validation stage, and 15 % for the testing stage. The 
remarkable consistency of proposed results with reference solutions and 
the accuracy of 10− 2 to 10− 10 show the framework’s applicability is 
produced for each scenario in the HTAHCNF in all 10th cases.  

• The M is directly proportional to the thickness of the momentum 
layer structure, which has an inverse relationship to the magnetic 
field. 

• The magnetic field and the M are inversely related to the concen-
tration and temperature layer structure.  

• δ and chemical reaction are negatively related to the raise of the 
concentration layer structure. 

• A chemical reaction that is more successful and enhances the con-
centration layer is caused by higher activation energy.  

• The outcomes of the MSE, H.E.A and R. A computations used to 
evaluate the effectiveness of the ANN design model by HTAHCNF for 
the ability to forecast with great precision.  

• A smaller MSE demonstrates that the model’s predictions are more 
reliable.  

• It is observed that the error margins obtained for model is extremely 
low values.  

• Achieved results have demonstrated that the created ANN models 
can forecast HTAHCNF values with extraordinarily low error mar-
gins and high reliability.  

• The result is consistent to achieving a minimal absolute error near to 
zero, proving the significance of the proposed technique. 
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Future research on the improvement of varying factors using the 
ANN model can be used to examine the effectiveness of different flow 
patterns. The results of this investigation have inherent worth for future 
research endeavors because they experimentally illustrated the analyt-
ical implications of using computer models in the scientific literature. 
The work contributes to a better understanding of the application and 
efficiency of these theoretical strategies in addressing challenging sci-
entific challenges by proving their efficacy. Furthermore, LM-BPNNs can 
be used to solve a variety of challenges (Bukhari et al., 2023; Hsu et al., 
2023; Fang et al., 2019; Anwar et al., 2023). 
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