

King Saud University

Arabian Journal of Chemistry

www.ksu.edu.sa

REVIEW ARTICLE

Biodiversity and application prospects of fungal endophytes in the agarwood-producing genera, *Aquilaria* and *Gyrinops* (Thymelaeaceae): A review

Tianxiao Li^{a,b}, Zidong Qiu^a, Shiou Yih Lee^c, Xiang Li^a, Jiaqi Gao^d, Chao Jiang^a, Luqi Huang^{a,b,*}, Juan Liu^{a,*}

^a National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China ^b Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China ^c Faculty of Health and Life Sciences, INTI International University, 71800 Nilai, Negeri Sembilan, Malaysia ^d Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617 Tianjin, China

Received 28 August 2022; accepted 13 November 2022 Available online 17 November 2022

KEYWORDS

Agarwood; Fungal endophytes; Aquilaria; Gyrinops **Abstract** Agarwood is originated from the resinous part of *Aquilaria* and *Gyrinops* plants and has been a precious biomaterial for applications in traditional medicine, perfumery, cosmetics, and religious purposes all over the world. In the wild, the formation of agarwood is related to the defense mechanism of the tree in response to physical damage that allows further microbial infestation into its wood, while having the whole tree covered with agarwood would take up a long time, and it rarely happens. For *Aquilaria* and *Gyrinops*, the presence of endophytes is mainly found derived from the tree. The isolated endophytes could be important sources of natural products, while some could contribute to the formation of agarwood in the tree, which is safe for the environment and human health. This review summarized the biodiversity of fungal endophytes recorded in *Aquilaria* and *Gyrinops* and their potential effects on host trees. Till now, 67 endophytic genera have been isolated from *Aquilaria* and *Gyrinops*, and 18 ones were found responsible for the promotion of agarwood formation. Additionally, 92 compounds have been reported to be produced by the agarwood endophytes, and 52 ones displayed biological activities, most of which have anti-inflammatory, anti-bacterial, and anti-cancer activities. Nevertheless, fungal endophytes are promising agents that deserved to be further studied

* Corresponding authors at: No. 16, Dongzhimen Southern Street, Beijing 100700, China.

E-mail addresses: huangluqi01@126.com (L. Huang), juanliu126@126.com (J. Liu). Peer review under responsibility of King Saud University.

https://doi.org/10.1016/j.arabjc.2022.104435

1878-5352 © 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). and scaled up to a commercial level for the production of agarwood oil, but the role of endophytes in the agarwood host trees needs to be furtherly investigated in future studies.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Members of the agarwood-producing genera, Aquilaria and Gyrinops, are tropical evergreen trees commonly grown in the lowland forest regions, which are mainly distributed in southeast Asia. Agarwood is a highly valuable fragrance derived from the resinous wood of Aquilaria and Gvrinops trees. The intriguing aroma of agarwood makes it a valuable ingredient that has a long history record in the production of traditional medicines as well as used in religious activities, while at present, it is regarded as a luxury biomaterial in perfumery and cosmeceutical industries (Huang et al., 2013; Sun et al., 2020; Xie et al., 2020). Although all 30 species (21 Aquilaria species and 9 Gyrinops species) are believed to be able to produce agarwood, to date, evidence of agarwood formation was only reported for 14 species of Aquilaria and eight species of Gyrinops (Auri et al., 2021; Compton and Zich, 2002; Hou 1964; Kiet et al., 2005; Lee and Mohamed, 2016; Ng et al., 1997; Subasinghe et al., 2012; Turjaman et al., 2016) (Table 1). The high demand but rare occurrence of agarwood in the wild has led to the over-exploitation of these valuable species in the past, causing the decline in the population size of these agarwood-producing species in the wild. As a consequence, some of these species are classified as "Vulnerable", "Endangered", and "Critically Endangered" (IUCN 2022), as well as to aid in conserving the resources, all members of the agarwood-producing genera, Aquilaria and Gvrinops, are currently placed under strict monitoring by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) in Appendix II (UNEP-WCMC, 2022).

Due to the conservation status and low yield of agarwood production in the wild, relying on the natural population as a source of agarwood to meet the increasing market demand is rather unviable (Deng et al., 2020; Wang et al., 2018). Therefore, the domestication of agarwood-producing trees was introduced and mass cultivation coupled with good agriculture practices was promoted (Liu et al., 2013; Persoon and Beek, 2008). In general, agarwood is naturally formed in *Aquilaria* and *Gyrinops* trees as a result of self-defense against physical damage or microbial infection on the trees (Soehartono and Newton, 2000; Xu et al., 2013). While physical damage to the tree is to introduce an opening; fungal infection has always been considered to be a key factor in agarwood formation (Rasool and Mohamed, 2016).

Endophytic fungi can live inside plant tissues without any disease symptoms. The evidence of the use of endophytic fungi to induce agarwood formation has been present for a long time, i.e. 1934 (Turjaman et al., 2016; Yoswathana, 2013), while the fungi that show promising results in the production of agarwood are developed into fungal inoculum. To mimic the mechanism of agarwood formation via microbial infestation, endophytic fungi are introduced into the cultivated stands via inoculation technique in hope that the time to form agarwood will be reduced and the yield could be increased at the same time. It is believed that the quality of the agarwood formed relies heavily on the species or strains selected among the different endophytic fungi; thus, research and exploration to discover additional useful endophytic fungi that could warrant better yield and quality of agarwood are still ongoing (Liu et al., 2022). Additionally, the secondary metabolites from endophytic fungi of agarwood lead the way as sources for various pharmacological properties.

In order to provide a comprehensive review of the information on endophytic fungi involved in the formation of agarwood, we mined various published scientific reports and summarized the distribution and biodiversity of fungal endophytes present in *Aquilaria* and *Gyri*- *nops*. In addition, the secondary metabolites produced as well as the pharmacological values of these agarwood-related fungal endophytes in *Aquilaria* and *Gyrinops* were documented and discussed too. Finally, the effects on the host trees of *Aquilaria* and *Gyrinops* by fungal endophytes were discussed. We believe that our review could be useful for researchers to find innovative directions in the research field of agarwood endophytes.

2. Ecological distribution of Aquilaria and Gyrinops species

Aquilaria and Gyrinops species are widely distributed in southeast Asia, especially Indomalesia region (Lee and Mohamed, 2016). Recently, nine from the total of 21 species in the genus Aquilaria genus are known to grow in Malavsia (data from GBIF-Global Biodiversity Information Facility; Lee and Mohamed, 2016; Lee et al., 2018; Lee et al., 2022), including A. beccariana, A. crassna, A. cumingiana, A. hirta, A. malaccensis, A. microcarpa, A. rostrate, A. sinensis, and A. subintegra (Table 1), which is the country with the most species of Aquilaria. And five species of Aquilaria are naturally distributed in Malaysia, including A. beccariana, A. hirta, A. malaccensis, A. microcarpa, and A. rostrate (Lee et al., 2016). The other four are transplanted from China, Indonesia, Thailand, and Vietnam. Meanwhile, eight of the total of nine species in the Gyrinops genus are known to naturally grow in Indonesia, except for G. vidalii which is only distributed in Thailand and Lao People's Democratic Republic (Table 1).

At present, the wild resources of Aquilaria and Gyrinops are rather limited. Thus, the reports on agarwood production are confined to 14 species of Aquilaria and eight species of Gyrinops (Table 1). More and more plantation areas are of larger scale, and A. sinensis occupies more than 5245 ha in China, which has the largest plantation size of all the species reported now (Turjaman et al., 2016; Yin et al., 2016). Additionally, A. malaccensis is the most widespread and cultivated species, including 13 countries (Table 1). Thus, A. malaccensis and A. sinensis are the most studied species recently. However, Gyrinops is less planted and studied for its slow-growing features (Lee et al., 2018). Among all the Gyrinops species, G. versteegii is the most popular species in eastern Indonesia, but it is less favored compared to A. malaccensis when it comes to agarwood cultivation in Indonesia (Faizal et al., 2022; Nasution et al., 2020; Turjaman et al., 2016).

3. Biodiversity of fungal endophytes in Aquilaria and Gyrinops

Endophytes are microorganisms that maintain endosymbiotic relationship within plants (Turjaman et al., 2016). At present, studies on endophytic biodiversity on *Aquilaria* received more attention than that of *Gyrinops*. Eventually, species that are involved in such studies are mainly those selected as cultivation species, including *A. crassna*, *A. malaccensis*, *A. microcarpa*, *A. sinensis*, *A. subintegra*, *G. caudata*, *G. verstegii*, and *G. walla*. However, the biodiversity of fungal endophytes has not been investigated in the other species of *Aquilaria* and *Gyrinops*

Species Name	Distribution*	Basionyms and synonyms	Agarwood production report
Aquilaria apiculata Merr. Aquilaria baillonii Pierre ex Lecomte	Philippines Cambodia; Viet Nam; Lao People's Democratic Republic	-	Ng et al., 1997
Aquilaria banaensis P.H. Hô Aquilaria beccariana Tiegh.	Viet Nam Brunei Darussalam; Indonesia; Malaysia	Aquilaria banaensae Aquilaria cumingiana var parvifolia; Aquilaria grandifolia; Gyrinops brachyantha; Gyrinopsis grandifolia	Faridah et al., 2009Compton and Zich, 2002Turjaman et al., 2016
Aquilaria brachyantha (Merr.) Hallier f.	Phillipines	Gyrinopsis brachyantha	
Aquilaria citrinicarpa (Elmer) Hallier f.	Phillipines	Gyrinopsis citrinicarpa	
Aquilaria crassna Pierre ex Lecomte	Cambodia; Viet Nam; Thailand; China; Malaysia	-	Yoswathana, 2013Ng et al., 1997
Aquilaria cumingiana (Decne.) Ridl.	Phillipines; Indonesia; United State; Malaysia	Aquilaria pubescens; Decaisnella cumingiana; Gyrinopsis cumingiana; Gyrinopsis cumingiana var. pubescens; Gyrinopsis decemcostata; Gyrinopsis pubifolia	Turjaman et al., 2016
Aquilaria decemcostata Hallier f.	Phillippines	-	
Aquilaria filaria (Oken) Merr.	Indonesia; Phillipines; Papua New Guinea	Aquilaria cuminate; Aquilaria tomentosa; Gyrinopsis acuminate; Pittosporum filarium	Compton and Zich, 2002Turjaman et al., 2016
Aquilaria hirta Ridl.	Indonesia; Malaysia; Singapore; Thailand	Aquilaria moszkowski	Faridah et al., 2009Compton and Zich, 2002Turjaman et al., 2016
Aquilaria khasiana Hallier f. Aquilaria malaccensis Lam.	India Bangladesh; Bhutan; China; France; India; Indonesia; Lao People's Democratic Republic; Mauritius; Malaysia; Philippines; Viet Nam;	– Agallochum malaccense; Aloexylum agallochum; Aquilaria agallocha; Aquilaria ovate; Aquilaria moluccensis; Aquilaria secundaria; Aquilariella	Hallier, 1992 Chowdhury et al., 2003Broad, 1995Rahayu and Putridan Juliarni, 2007Turjaman et al.
Aquilaria microcarpa Baill.	Thailand; Sri Lanka Brunei Darussalam; Indonesia; Malaysia; Italy	malaccense; Aquilariella malaccensis Aquilaria borneensis; Aquilariella borneensis; Aquilariella microcarpa	2016 Santoso et al., 2011Faridah et al., 2009Compton and Zich, 2002Turjaman et al. 2016
Aquilaria parvifolia (Quisumb.) Ding Hou	Philippines	Gyrinopsis parvifolia	2010
Aquilaria rostrata Ridl. Aquilaria rugosa K.Le-Cong & Kessler	Malaysia; Thailand Thailand; Viet Nam	-	Faridah et al., 2009 Kiet et al., 2005
Aquilaria sinensis (Lour.) Spreng.	China; Thailand; Malaysia; Viet Nam	Agallochum grandiflorum; Agallochum sinense; Aquilaria chinensis; Aquilaria grandiflora; Aquilaria ophispermum; Ophispermum sinense	Liu et al., 2013Liu et al., 2022Ng et al., 1997Zhang et al., 2014
Aquilaria subintegra Ding Hou	Thailand; Malaysia	_	Hou, 1964
Aquilaria urdanetensis (Elmer) Hallier f.	Philippines	Gyrinopsis urdanetense; Gyrinopsis urdanetensis	
Aquilaria yunnanensis S.C. Huang	China	-	Sun et al., 2019Zhang et al. 2019
Gyrinops caudata (Gilg) Domke	Indonesia; Papua New Guinea	Aquilaria caudata; Brachythalamus caudatus; Gyrinops audate	Auri et al., 2021
Gyrinops decipiens Ding Hou	Indonesia	-	Turjaman et al. 2016
Gyrinops ledermannii Domke	Indonesia; Papua New Guinea	-	Compton and Zich 2002Turjaman et al. 2016

 Table 1 Basic information about agarwood-producing genera of Aquilaria and Gyrinops, including species name, distribution, basionyms and synonyms, and agarwood production report.

(continued on next page)

Table 1 (continued)

Species Name	Distribution*	Basionyms and synonyms	Agarwood production report
Gyrinops moluccana (Miq.) Baill.	Indonesia	Aquilaria moluccana; Lachnolepsis moluccana	Turjaman et al. 2016
Gyrinops podocarpa (Gilg) Domke	Indonesia; Papua New Guinea	Aquilaria podocarpus; Brachythalamus podocarpus; Gyrinops ledermannii; Gyrinops podocarpus	Turjaman et al. 2016
Gyrinops salicifolia Ridl.	Indonesia; Papua New Guinea	Gyrinopsis salicifolia	Shao et al., 2016Dong et al., 2019Turjaman et al., 2016
Gyrinops versteegii (Gilg) Domke	Indonesia; Papua New Guinea	Aquilaria versteegii; Brachythalamus versteegii	Faizal et al., 2020Faizal et al., 2022Turjaman et al., 2016Nasution et al., 2020
Gyrinops vidalii P.H.Hô	Thailand; Lao People's Democratic Republic	-	
Gyrinops walla Gaertn.	Indonesia; Papua New Guinea; India; Sri Lanka	Aquilaria walla	Subasinghe et al., 2012

The distribution data of this table were calculated out from GBIF (the Global Biodiversity Information Facility, https://www.gbif.org) database and references (Lee and Mohamed, 2016; Lee et al., 2018; Lee et al., 2022).

due to the limited plantations, slow-growing features, and difficult species-identification (Hidayat et al., 2021; Lee et al., 2018; Turjaman et al., 2016). Based on our knowledge, a total of 42 fungal families and 67 fungal genera were isolated and identified in these eight agarwood-producing taxa, and 82.8 % of fungal species belonged to Ascomycota (Table 2). Among all the above endophytic genera, *Fusarium* is the most encountered species recorded in all studied taxa, except for *A. microcarpa* and *G. caudata*.

It is worth mentioning that there is a discrepancy in the endophytic fungal diversity pattern in Aquilaria trees based on their growing regions, such as A. sinensis, an agarwoodproducing species endemic to China that is naturally distributed in three provinces, including Guangdong, Guangxi, and Hainan. It was proposed that the biodiversity of fungal endophytes in A. sinensis might be due to the various geographical locations containing different levels of the atmosphere, light, soil moisture, and nutrient contents. To date, endophytic fungal studies on A. sinensis are abundant and well-documented. It was revealed that the dominant fungal genus from the population in Hainan was Penicillium (Zhang et al., 2009a), while the endophytic fungal diversity for A. sinensis growing in Guangxi was dominated by Fusarium (Huang et al., 2017). The fungal diversity could also be regionally specific, in which two genera, Chaetomium and Pichia, were only identified in A. sinensis of Hainan, but not from those in Guangdong and Guangxi (Chen et al., 2019). Also, the fungal diversity of agarwood derived from A. sinensis showed regional specificity. Lignosphaeria is the dominant fungal genus in agarwood samples produced from Haikou and Wanning in Hainan province. Perenniporia and Pyrigemmula are the dominant fungal genera in agarwood products from Danzhou and Ledong in Hainan province. Phaeoacremonium is the dominant fungal genus in agarwood products collected from Huazhou and Dongguan in Guangdong province.

Furtherly, the variation in microbiome composition is represented by multiple plant host organs, and tissue types (Cregger et al., 2018; Jia et al., 2016). In general, most of the fungal endophytes reside in the root, stem, and leaf at the same time; yet, the leaf tissue contains more fungal species when compared to the root and stem parts. So far, a total of 16 fungal endophytes were discovered commonly present in all three vegetative parts of A. sinensis, including Botryosphaeria, Cephalosporium, Cladophialophora, Epicoccum, Fusarium, Geotrichum, Glomerularia, Gonytrichum, Guignardia, Monilia, Mortierella, Mycelia sterilia, Ovulariopsis, Penicillium, Pleospora, and Rhinocladiella (Gong and Guo, 2009; Tian et al., 2013). On the other hand, four were reported specific to the leaf tissue of A. sinensis, including Alternaria, Cylindrocladium, Phoma, and Phomopsis (Gong and Guo, 2009; Tian et al., 2013), suggesting that these fungal endophytes are only able to survive under certain habitat, which in this event, the requirement for survival was fulfilled in the leaf tissue, but not in the root and stem parts.

At the stem and branch part, fungal endophytes not only colonize the healthy part (white wood), but also can be found in the resinous part (agarwood). Additionally, the diversity of fungal endophytes in resinous wood is much higher than that in the healthy wood of Aquilaria (Chen et al., 2017a); Liu et al., 2022). Based on the studies on A. malaccensis and A. sinensis, it was deduced that the resinous wood of the trees not only contained some of the fungal endophytes which were recorded to be present in both the healthy and resinous wood of the tree, such as Alternaria sp., Hypocrea sp., Lasidiplodia sp., and Trichoderma sp., but also included some of the fungal endophytes which were enriched in the resinous wood, i.e. Cladosporium sp., Curvularia sp., Fusarium sp., Phaeoacremonium sp., and Preussia sp. (Liu et al., 2022; Mohamed et al., 2010; Tian et al., 2013). Endophytic fungi isolated from resinous parts were proven to be good candidates in developing fungal inoculum that could promote agarwood production; however, only a few were evaluated on their efficacies. To date, 18 fungal genera were reported on their capability to promote the formation of agarwood, including Acremonium sp., Aspergillus sp., Botryodyplodias sp., Botryosphaeria sp., Chaetomium sp., Cladosporium sp., Diplodia sp., Fomitopsis sp., Fusarium sp.,

Fungal taxa	Host species	Distribution percentages ^a	Agarwood-inducing methods	Inducing time	Inducing effects	References
Ascomycota						
1. Apiosporaceae						
1. Arthrinium	A. subintegra	12.5 %	—	—	—	Monggoot et al., 2017
2. Nigrospora	A. sinensis	12.5 %	—	—	—	Li et al., 2014
2. Ascomycota incertae sedis						
3. Gonytrichum	A. sinensis	12.5 %	_	_	_	Gong and Guo, 2009
3. Aspergillaceae						
4. Aspergillus *	G. walla	25.0 %	_	_	_	Vidurangi et al., 2018
	A. crassna		Solid inoculation	1 year	Tissue discoloration and resin content improved Inducing agarwood formation	(Subasinghe et al., 2019) Bose, 1938
5. Penicillium *	A. sinensis	25.0 %	Solid inoculation	30 days	Promoting sesquiterpene accumulation	Liu et al., 2022
			Infusion	10 months	Promoting the accumulation of active ingredients	Wang et al., 2016
			—	—	—	Gong and Guo, 2009
	A. malaccensis		—	—	—	(Chhipa et al., 2017)
4. Botryosphaeriaceae						
6. Endomelanconiopsis	A. sinensis	12.5 %	—	—	—	Chen et al., 2018
7. Diplodia *	Aquilaria sp.	—	—	—	Inducing agar formation	Bose, 1938
8. Lasiodiplodia *	A. sinensis	37.5 %	Inoculating the fermentation broth	2 months	Promoting the agarwood formation	Chen et al., 2017a
					—	Cui et al., 2011
			Inoculation of solid strains	6 months	Promotion of 34 sesquiterpenes and 4 aromatic compounds	Zhang et al., 2014
			Infusion	10 months	Promoting the accumulation of active ingredients	Wang et al., 2016
	A. malaccensis		—	—	—	Mohamed et al., 2010
	A. crassna		—	—	—	Chi et al., 2016
			—	—	—	Wang et al., 2019
9. Botryosphaeria *	A. sinensis	37.5 %	Formic acid and pinhole-infusion	$1 \sim 2$ years	Producing high yield and high quality artificial agarwood in a relatively short time	Tian et al., 2013
			Infusion	10 months	Promoting the accumulation of active ingredients	Wang et al., 2016
			Liquid injection	160 days	Promote the formation of the main components of agarwood and incenses	Feng, 2008
	A. crassna		_	_	Inducing agar formation	Bose, 1938
5. Chaetomiaceae	G. walla		—	—	—	Vidurangi et al., 2018
10. Chaetomium *	A. malaccensis	25.0 %	Artificial boring onto the plants	30 days	It is different between the oils obtained from naturally infected and healthy plants with regards to their quality.	Tamuli et al., 2005
	A. sinensis		_		_	Tian et al., 2013
						(continued on next page)

 Table 2
 Host species distribution of fungal genera isolated from Aquilaria and Gyrinops, and their agarwood-inducing effects.

Fungal taxa	Host species	Distribution percentages ^a	Agarwood-inducing methods	Inducing time	Inducing effects	References
6. Chaetothyriales						
incertae sedis						
11. Sarcinomyces	G. walla	12.5 %	_	_	_	Vidurangi et al., 2018
7. Cladosporiaceae						
12. Cladosporium *	A. sinensis	37.5 %	—	—	_	Cui et al., 2011
			—	—	—	Gong and Guo, 2009
			Solid inoculation	30 days	<i>C. cladosporioides</i> promotes the accumulation of agarwood sesquiterpenes and chromones, while <i>C. parahalotolerans</i> could not promote agarwood formation.	Liu et al., 2022
	A. malaccensis		—	—	—	Premalatha and Kalra,
						2013
	A. subintegra		—	—	—	Monggoot et al., 2017
<u>8. Coniothyriaceae</u>		12 5 9/				0 1 1 2011
13. Contothyrium	A. sinensis	12.5 %	_		—	Cui et al., 2011
<u>9. Diaporthaceae</u>	1	50.0.0/				Chan et al. 2019
14. Diaportne	A. sinensis	50.0 %	—	_	—	Chen et al, 2018 (Vidurangi et al. 2018)
	A. microcarpa					(Viduraligi et al., 2018)
	A. subiniegra		—	_		Monggoot et al.,2017
10 01 11	G. verstegtt		—	_	—	Mega et al., 2016
<u>10. Didymellaceae</u>	4	25.0.0/				Dhatta shamma at al
15. Epicoccum	A. malaccensis	25.0 %		—		Bhattacharyya et al,
	A sinensis			_	_	Gong and Guo 2009Cu
	71. <i>Sulctists</i>					et al 2011
16. Leptosphaerulina	A. sinensis	12.5 %	_	_	_	Cui et al., 2011
11 Didymosphaeriaceae	111 500001010	1210 70				our of any 2011
17 Paraconiothyrium	A sinensis	12.5 %	_	_		Cui et al 2011
18 Montagnulaceae	A sinensis	12.5 %	_	_		Wang et al. 2016
12 Dipodascaceae		, .				
19 Geotrichum	A crassna	25.0 %	_	_		Chi et al 2016
	A. sinensis	2010 70		_	_	Gong and Guo. 2009
20. Galactomyces	A. crassna	12.5 %	_	_	_	Chi et al., 2016
13. Dissoconiaceae						
21. Ramichloridium	A. sinensis	12.5 %	_	_	_	Tian et al., 2013
14 Erysinhaceae						
22. Ovulariopsis	A. sinensis	12.5 %	_	_	_	Gong and Guo, 2009
15 Glomerellaceae						<i></i> ,,
23. Colletotrichum	A. crassna	50.0 %		_	_	Chi et al. 2016
	A. sinensis	, .	_		_	Tian et al. 2013
	A. subintegra		_		_	Monggoot et al., 2017
	G II					1/1 1 2010

T. Li et al.

16. Herpotrichiellaceae 24. Rhinocladiella 25. Cladophialophora A. 17. Hypocreaceae 26. Trichoderma * A. G. G. G. G. G. Strichoderma * A. G. G. G. G. G. Sedis 28. Acremonium * A. G. G. <th> sinensis sinensis sinensis sinensis malaccensis versteegii walla malaccensis sinensis </th> <th>12.5 % 12.5 % 50.0 %</th> <th> Infusion </th> <th> 10 months</th> <th></th> <th>Gong and Guo, 2009 Gong and Guo, 2009 Li et al., 2012</th>	 sinensis sinensis sinensis sinensis malaccensis versteegii walla malaccensis sinensis 	12.5 % 12.5 % 50.0 %	 Infusion 	 10 months		Gong and Guo, 2009 Gong and Guo, 2009 Li et al., 2012
24. Rhinocladiella A. 25. Cladophialophora A. 17. Hypocreaceae A. 26. Trichoderma * A. G. G. 27. Hypocrea * A. 18. Hypocreales incertae Sedis 28. Acremonium * A. G. G. G. G. A. G. Sedis S. 28. Acremonium * A. G. G. G. G. G. G. Sedis G. S. G. G. G. Settermonium * S.	 sinensis sinensis sinensis sinensis malaccensis versteegii walla malaccensis sinensis 	12.5 % 12.5 % 50.0 %	 Infusion 	 10 months		Gong and Guo, 2009 Gong and Guo, 2009 Li et al., 2012
 25. Cladophialophora A. <u>17. Hypocreaceae</u> 26. Trichoderma * A. 27. Hypocrea * A. 27. Hypocrea * A. 18. Hypocreales incertae <u>sedis</u> 28. Acremonium * A. G. G. C. d. d. d. a. i. 	4. sinensis 4. sinensis 4. malaccensis 5. versteegii 5. walla 4. malaccensis 4. sinensis	12.5 % 50.0 % 25.0 %	 Infusion 	 10 months		Gong and Guo, 2009 Li et al., 2012
17. Hypocreaceae 26. Trichoderma * A. G. Sedis 28. Acremonium * G.	4. sinensis 4. malaccensis 5. versteegii 5. walla 4. malaccensis 4. sinensis	50.0 % 25.0 %	 Infusion 	 10 months		Li et al., 2012
26. Trichoderma * A. 26. Trichoderma * A. G. G. G. G. 27. Hypocrea * A. 18. Hypocreales incertae Sedis 28. Acremonium * A. G. G. G. G. G. G. Sedis S. S. Acremonium * A.	4. sinensis 4. malaccensis 5. versteegii 5. walla 4. malaccensis 4. sinensis	50.0 % 25.0 %	 Infusion 	 10 months		Li et al., 2012
20. Inchodermal A. A. G. G. G. 27. Hypocreal* A. 18. Hypocreales incertae Seedis 28. Acremonium * A. G. G. G. G. G. G. Seedis Seedis Seedis	4. malaccensis G. versteegii G. walla 4. malaccensis 4. sinensis	25.0 %	Infusion — —	10 months		Li et al., 2012
A. G. G. 27. Hypocrea * A. A. 18. Hypocreales incertae <u>sedis</u> 28. Acremonium * A. G. G.	4. malaccensis G. versteegii G. walla 4. malaccensis 4. sinensis	25.0 %			Promoting the acclimition of active ingredients	Wang et al. 2016
A. G. G. 27. Hypocrea * A. 18. Hypocreales incertae sedis 28. Acremonium * A. G. G.	G. versteegii G. valla 4. malaccensis 4. sinensis	25.0 %			Tomoting the accumulation of active ingredients	Mohamad at al. 2010
27. Hypocrea * A. A. 18. Hypocreales incertae sedis 28. Acremonium * A. G. G.	<i>G. wella</i> <i>G. walla</i> <i>4. malaccensis</i> <i>4. sinensis</i>	25.0 %			Contributing to the formation of agarwood sapwood	Mora et al. 2020
27. Hypocrea * A. A. 18. Hypocreales incertae sedis 28. Acremonium * A. G. G.	4. malaccensis 4. sinensis	25.0 %		_	Contributing to the formation of agarwood sapwood	Vidurongi et al. 2018
21. Hypocreal A. 18. Hypocreales incertae sedis 28. Acremonium * G. G. G. G. G. G. G. G. Set of the lemma is set	4. malaccensis 4. sinensis	23.0 70		_	—	Mahamad at al. 2010
18. <u>Hypocreales incertae</u> <u>sedis</u> 28. Acremonium * <i>G. G.</i>	4. sinensis				—	$C_{\rm min} = t_{\rm min} = 1$
18. Hypocreales incertae sedis 28. Acremonium * G. G. G. G. G. G. Set of the lemma is the lemma i			Timit initiation	 1(0 dama	— Descriptions the transformation of a service day day and in a service the	Cui et al., 2011
18. Hypocreales incertae sedis 28. Acremonium * G. G. <td></td> <td></td> <td>Liquid injection</td> <td>160 days</td> <td>process of making incense</td> <td>Feng, 2008</td>			Liquid injection	160 days	process of making incense	Feng, 2008
28. Acremonium * A. G. G.						
G. G. J.	1 mianoganna	27 5 0/			The wood color and terranoid compounds were changed	Pahava and Dutridan
G. G.	4. microcurpa	37.5 /0	_	_	The wood color and terpenoid compounds were changed.	Kallayu aliu Futhuali Juliarni 2007
G.	~					$\mathbf{M}_{\text{aga at al}} = 2016$
0. <i>C L L</i>	3. versiegii		— Eungel industion	2 6 months		Mega et al., 2010
20 C I I	s. cauaata		with pruning	5–6 months	Snowing a considerable effect in wood internal ussue and fragrance.	Auri et al., 2021
29. Cephalosporium A.	4. sinensis	12.5 %	—	—	—	Gong and Guo, 2009
30. Verticillium A.	4. sinensis	12.5 %	—	—	—	Wang et al., 2016
19. Hypocreaceae						
31. Diplocladium G.	G. walla	12.5 %	_	_	_	Subasinghe et al., 201
20 Lasiosphaeriaceae						C /
32 Fimetariella 4	1 sinonsis	12 5 %	_			Tao et al 2011aTao
52. Timeturietta A.	1. Suicisis	12.5 70				et al = 2011b
						ct al., 20110
21. <u>Mycosphaerellaceae</u>	,	25.0.0/				TT: 1 2012
33. Mycosphaerella A.	4. sinensis	25.0 %	—	—	—	11an et al., 2013
(Synonym: Davidiella) A.	4. malaccensis			—	—	Premalatha and Kalra
						2013
34. Botryodyplodis * Aq (Synonym: Physalospora)	4 <i>quilaria</i> sp.	_	_	_	Inducing agar formation	Bose, 1938
22. Nectriaceae						
35. Cylindrocladium A.	4. sinensis	12.5 %			<u> </u>	Tian et al., 2013
36. Fusarium * A.	4. crassna	75.0 %	_	_	_	Chi et al., 2016
			_	$0.5 \sim 1.5$ years	Inducing the formation of agarwood	Nobuchi and
				, in second		Siripatanadilok 1991
4	4 sinensis		Formic acid and	$1 \sim 2$ years	Producing high yield and high quality artificial agarwood in a	Tian et al 2013
А.	1. 500000		ninhole-infusion	1 - 2 yours	relatively short time	1 un et un, 2015
			Printole infusion			
						Cui et al 2011

Biodiversity and application prospects of fungal endophytes

Fungal taxa	Host species	Distribution percentages ^a	Agarwood-inducing methods	Inducing time	Inducing effects	References
			Infusion Inoculating the	10 months 2 months	Promoting the accumulation of active ingredients Promoting the agarwood formation at the initial stage	Wang et al., 2016 Chen et al., 2017a
			fermentation broth			
	A. malaccensis		—	—	—	Mohamed et al., 2010
	A. subintegra		—	—	—	Monggoot et al., 2017
	G. walla			_		Vidurangi et al., 2018
			Solid inoculation method	l year	Promoting the tissue discoloration and resin content	Subasinghe et al., 201
	G. versteegii		—	—	Contributing to the formation of agarwood sapwood	Mega et al., 2020
			Fungal inoculant formulation	16 months	Producing the agarwood with good quality.	Mega et al., 2016
37. Nectria	A. sinensis	12.5 %	—	_	—	Wang et al., 2016
23. Phyllostictaceae						
38. Guignardia	A. sinensis	12.5 %	—	_	—	Gong and Guo, 2009
24. Pichiaceae						
39. Pichia	A. malaccensis	25.0 %	—	—	—	Premalatha and Kalra
	A. sinensis		—	_	_	Cui et al., 2011
25. Pleosporaceae						
40. Curvularia	A. crassna	37.5 %	—	—	—	Chi et al., 2016
	A. malaccensis				—	Mohamed et al., 2010
41 414	G. verstegii	25.0.0/	_	_	—	Mega et al., 2016
41. Alternaria	A. malaccensis	25.0 %		_	—	2013
	A. sinensis		—	—	—	Tian et al., 2013
42. Pleospora	A. sinensis	12.5 %			—	Gong and Guo, 2009
43. Cochliobolus	A. malaccensis	12.5 %	—	—	—	Mohamed et al., 2010
44. Phoma	A. sinensis	12.5 %	—	—	—	Cui et al., 2011Tian et al. 2013
26. Saccharomycetaceae						et all, 2010
45. Lodderomycetes	A. malaccensis	12.5 %	—	—	_	Premalatha and Kalra 2013
27. Sclerotiniaceae	1 sinonsis	12 5 %				Gong and Guo 2000
28 Sporocadaceae	A. SINCHSIS	12.3 /0				Going and Guo, 2009
47. Pestalotiopsis *	A. sinensis	25.0 %	Infusion method	6 months	Promoting the agarwood production	Chen et al., 2014Tian
	A subintegra					Monggoot et al. 2017
48. Preussia	A. malaccensis	12.5 %	—	_	_	Premalatha and Kalra 2013

Table 2 (continued)						
Fungal taxa	Host species	Distribution percentages ^a	Agarwood-inducing methods	Inducing time	Inducing effects	References
29. Togniniaceae						
49. Phaeoacremonium *	A. malaccensis	25.0 %	—	—	—	Premalatha and Kalra, 2013
	A. sinensis				_	Cui et al., 2011
			Solid inoculation	30 days	Promoting the agarwood sesquiterpene accumulation	Liu et al., 2022
30. Trichocomaceae						
50. Sagenomella 31. Valsaceae	A. sinensis	12.5 %		—	—	Tian et al., 2013
51. Phomopsis32. Xylariaceae	A. sinensis	12.5 %	—	—	—	Tian et al., 2013
52. Xylaria *	A. sinensis	12.5 %	_	_	_	Cui et al., 2011
			—	—	_	Tian et al., 2013
			Solid inoculation	$2 \sim 8$ months	Promoting agilawood accumulation	Cui et al., 2013
53. Nemania	A. sinensis	12.5 %	_	—	—	Tibpromma et al, 2021
54. Nodulisporium	A. sinensis	12.5 %	_	—	—	Tian et al., 2013Wu et al., 2010
33. Massarinaceae						
55. Massarina	A. malaccensis	12.5 %		—	—	Premalatha and Kalra, 2013
Mucoromycota						
56 Cunninghamella	1 malacconsis	12 5 %		_		Mohamed et al. 2010
35. Lichtheimiaceae	A. malaccensis	12.5 70				Wonanieu et al., 2010
57. Rhizomucor	A. sinensis	12.5 %	_	_	_	Cui et al., 2011
36. Mortierellaceae						
58. Mortierella	A. sinensis	12.5 %	_	—	_	Gong and Guo, 2009
37. Mucoraceae						
59. Mucor	G. walla	12.5 %	—	—	—	Subasinghe et al., 2019
60. Rhizopus *	G. versteegii	12.5 %	— Mixture of fungal liquid with Fusarium solani	_	Promoting the formation of agarwood sapwood Promoting the production of agarwood with best quality	Mega et al., 2020 Mega et al., 2016
<u>Basidiomycota</u> 38. Exobasidiaceae						
61. Glomerularia	A. sinensis	12.5 %	_	_	_	Gong and Guo, 2009
39. Fomitopsidaceae						
62. Fomitopsis * 40. Meripilaceae	A. sinensis	12.5 %	Infusion method	6 months	Promoting the agarwood production	Chen et al., 2017b
63. Rigidoporus *	A. sinensis	12.5 %	Trunk surface agarwood-inducing technique	2 months	Promoting the agarwood formation	Chen et al., 2018

9

(continued on next page)

Fungal taxa	Host species	Distribution percentages ^a	Agarwood-inducing methods	Inducing time	Inducing effects	Keterences
41. Psathyrellaceae 64. Coprinopsis	A. sinensis	12.5 %				Chen et al., 2018
42. Kussulaceae 65. Russula	A. subintegra	12.5 %				Monggoot et al., 2017
Unclassined 66. Mycelia sterilia 67. Pleosporales	A. sinensis A. sinensis	12.5 % 12.5 %				Gong and Guo, 2009 Chen et al., 2018

Hypocrea sp., Lasiodiplodia sp., Penicillium sp., Pestalotiopsis sp., Phaeoacremonium sp., Rhizopus sp., Rigidoporus sp., Trichoderma sp., and Xylaria sp. (Table 2).

Given that the diversity of endophytic fungi in Aquilaria trees could be varied in different regions, little was reported for other agarwood-producing species, especially those from *Gyrinops*. While the diversity of endophytic fungi in different Aquilaria host parts might be related to the environmental filtering or biotic interaction at the species level which was similar to *Populus* trees (Cregger et al., 2018). The fungal endophytes that can be identified in the while wood and resinous wood of Aquilaria and Gyrinops could be varied largely. Therefore, it is suggested that studies on endophytic fungi in other agarwood-producing species need to be hastened to uncover the uncertainties.

4. Effects on the host trees of *Aquilaria* and *Gyrinops* by endophytes

4.1. Use of fungal endophytes in the promotion of agarwood

In nature, endophytes could maintain endosymbiotic relationship within plants without any harm. However, after the trees of Aquilaria and Gyrinops were wounded, the micro-ecosystem balance was broken, and some of the fungal endophytes might grow fast and could trigger the self-defense reaction of the tree and thus, stimulate the formation of secondary metabolites that protect the host trees against invasions and diseases (Cui et al., 2013; Faizal et al., 2020; Liu et al., 2022; Xu et al., 2013). Similarly, the inoculating the isolated endophytes with agarwood promoting ability to the holed trees could quickly induce the phosphorylation of the plant immune reaction and promote agarwood accumulation (Liu et al., 2022; Xu et al., 2013). Therefore, the agarwood produced in the tree is recognized as the product of the tree's defense response (Xu et al., 2013). Since the work to investigate the relationship between fungi and agarwood-producing trees in the process of agarwood formation started off in the early nineteenth century, for the past two decades, a considerable number of studies provided evidence on the crucial roles of fungi in enhancing agarwood formation (Huang et al., 2013; Mega et al., 2016; Zhang et al., 2014). It is believed that endophytes secrete signals that will initiate the defense mechanism of the tree; thus, endophytes promote the formation of agarwood (Chen et al., 2017; Sen et al., 2017). Chemometric analysis revealed that aroma (e.g. dodecane, 4-methyl-, tetracosane) in Fusarium sp. played a direct role in the activation of A. malaccensis tree's defense and secondary metabolism (Sen et al., 2017). Fungal infection often leads immediately to the increased formation of free fatty acids that trigger oxidative burst and fatty acid oxidation cascades leading to the production of oxylipins such as jasmonates (Sen et al., 2017). And the endophytic strains of Lasiodiplodia theobromae were found to produce jasmonic acid (JA) (Chen et al., 2017). JA is known to be one of the crucial signal transducers that is responsible to induce sesquiterpene and chromone derivative formation in A. sinensis and A. malaccensis (Faizal et al., 2021; Xu et al., 2016). Furthermore, agarwood sesquiterpene accumulation can also be achieved by having Phaeoacremonium rubrigenum to induce phosphorylation of the transcription factors (TFs)-mevalonate (MVA) network in A. sinensis (Liu et al., 2022). Despite studies on the

molecular interaction between agarwood-producing trees and fungal endophytes have been constantly reported, the findings are still limited and in-depth research ought to be fostered.

To date, six fungal taxa, i.e. Fusarium sp., Trichoderma sp., Acremonium sp., Curvularia sp., Cunninghamella sp., and Phaeoacremonium sp., were commonly known to be potential agents in promoting agarwood formation in Aquilaria and Gyrinops trees (Blanchette 2003; Hidayat et al., 2021; Liu et al., 2022; Mohamed et al., 2010). For the endophytes, Fusarium was most reported when compared to other fungal taxa; while for the host plant, studies on A. sinensis were most abundant (Table 2). In A. sinensis, it is believed that agarwood formed with the aid of Cladorrhinum bulbillosum, Fusarium solani, Gongronella butleri, Humicola grisea, Lasiodiplodia theobromae, Phaeoacremonium rubrigenum, Rigidoporus vinctus, Saitozyma podzolica, and Tetracladium marchalianum was able to produce high-quality raw material for essential oil production (Chen et al., 2017; Chen et al., 2018; Liu et al., 2022; Ma et al., 2021; Zhang et al., 2014). So far, a total of 12 fungal taxa were identified to induce agarwood formation in A. sinensis, including Botrvosphaeria, Cladosporium, Fusarium, Fomitopsis, Hvpocrea, Lasiodiplodia, Phaeoacremonium, Pestalotiopsis, Penicillium, Rigidoporus, Trichoderma, and Xvlaria (Table 2). Three fungal taxa, Aspergillus sp., Botryosphaeria sp., and Fusarium sp. were also reported useful in promoting agarwood formation in A. crassna (Chi et al., 2016), while a mixture of fungi Phialophora sp. and Fusarium sp. applied to A. crassna could result in higher sesquiterpene content compared to the chemical and mechanical treatments (Thanh et al., 2015). Similar to Aquilaria, endophytes in Gyrinops also play an active role in the agarwood development of trees. In Gyrinops walla, the endemic species of Sri Lanka, Aspergillus niger and Fusarium solani have been described to be contributing to agarwood formation; Aspergillus niger is more effective than Fusarium solani in the tree host tissue discoloration and resin content (Subasinghe et al., 2019). On the other hand, three fungal taxa, including Fusarium sp., Rhizopus sp., and Trichoderma sp., were proven effective in the promotion of agarwood in *Gyrinops versteegii*, a plantation species that is mass cultivated in the western region of Indonesia (Mega et al., 2020; (Faizal et al., 2020)).

4.2. Endophytes improve the ecological adaptability of Aquilaria and Gyrinops

Another function of fungal endophytes of Aquilaria and Gyrinops is improving the ecological adaptability of hosts. Different types of fungi strains could induce the different compounds of Aquilaria and Gyrinops (Monggoot et al., 2017; Mega et al., 2020), which could explain the diversity of agarwood components to increase the resistance to environmental stresses. Similarly, either Aquilaria or Gyrinops grows in certain places with different geographic and climate conditions with certain kinds of fungi, which could promote the ecological adaptability of the host. Consistent with the roles of fungi in the plant defense system, they may be a contributory role in increasing antimicrobial activity, because the resinous site of agarwood tree has a less fungal abundance. When A. malaccensis was infected by Lasiodiplodia theobromae, Cunninghamella bainieri, and Fusarium solani, the abundance of fungi decreased after wounding and the number of target DNA molecules also declined, especially at 6-12 months of post-injury (Mohamed et al., 2014). The lower level of fungal species may be due to the high level of terpenes which are the major components of agarwood and can prevent or control pathogen attacks (Tamuli et al., 2005; Naef, 2011; Zulak and Bohlmann, 2010). Similarly, the agarwood derived from the infected A. sinensis and decayed Gyrinops spp. could show antifungal activity against Candida albicans, Fusarium oxysporum, Fusarium solani, and Lasiodiplodia theobromae (Hidayat et al., 2021; Zhang et al. 2014). So it is believed that the fungi can trigger the plant defense system to protect plants from invasions. And the metabolites produced by fungi also can provide protection for the host, which gives plants the ability to be resistant to abiotic and biotic stresses (Chowdhary et al., 2012; Jong 2012; Kharwar et al., 2011; Kumar and Kaushik, 2013; Suryannaryanan et al., 2009). And agarwood endophytes can also produce chemical compositions such as 2-phenylethyl-1 H-indol-3-yl-acetate, (2R)-(3-indolyl)-propionic acid, and 9,11-dehyroergosterol peroxide, which displayed phytotoxic activity, cytotoxic activity, and anti-fungi and anti-bacterial activities, resulting in the enhancement of plant ecological adaptability. However, there are also a plenty of compounds. such as benzylacetone, benzaldehyde, palustrol, anisylacetone and chromone derivatives, the ecological functions of which have not been explored. It is possible that the fungal endophyte is one of the factors to resist the invasion of exogenous pathogens and to keep the plant growing well. Thus, we summarized the effects of fungal endophytes on the host trees of Aquilaria and Gyrinops on two sides: inducing the plant defense system and improving their ecological adaptability (Fig. 1).

Fig. 1 Effects of endophytes on their agarwood host trees, *Aquilaria* and *Gyrinops*.

Fig. 2 The categories of 92 compounds produced by the endophytes of *Aquilaria* and *Gyrinops*.

No.	Compounds	Molecular Formula	Pharmacological Values	Fungal Endophytes	Host Plant	References
Mon	oterpenes					
1	γ-Terpinene	$C_{10}H_{16}$	Trypanocidal effect Acaricidal activity	Acremonium sp.	A. sinensis	Tibpromma et al., 2021Zhang et al., 2009b
2	Terpinen-4-ol	$C_{10}H_{18}O$		Arthrinium sp. Collectotrichum sp.	A. subintegra	Monggoot et al., 2017
3 4	1,8-Cineole Bicyclo[3.1.1]hept-3-ene-2- acetaldehyde, 4,6,6- trimethyl,	$\begin{array}{c} C_{10}H_{18}O\\ C_{12}H_{18}O\end{array}$	Antibacterial activity —	Acremonium sp. Nemania aquilariae	A. sinensis A. sinensis	Wang et al., 2007Zhang et al., 2009b Tibpromma et al., 2021
Sesq 5	uiterpenes β-Agarofuran	C ₁₅ H ₂₄ O	—	<i>Collectotrichum</i> sp. <i>Diaporthe</i> sp	A. subintegra	Monggoot et al., 2017
6	Alloaromadendrene	$C_{15}H_{24}$	Anti-oxidant activity Cytotoxic activity Anti-feedant activity Anti-proliferative activity	Nemania aquilariae	A. sinensis	Baldissera et al.,2016Jesionek et al, 2018Sawant et al., 2007Yu et al.,2014
7	1,2,3,4,4 α ,5,6,7-Octahydro- 4 α ,8-dimethyl-2-(1- methylethenyl)-naphthalene	$C_{15}H_{24}$		Nemania aquilariae	A. sinensis	Baldissera et al., 2016
8	Z-Eudesma-6,11-diene	$C_{15}H_{24}$	—	Arthrinium sp. Diaporthe sp.	A. subintegra	Capello et al., 2015Monggoot et al., 2017
9	α-Selinene	$C_{15}H_{24}$	Anti-cancer activity Repellent activity	Nemania aquilariae	A. sinensis	Alakanse et al., 2019Baldissera et al., 2016Mauti et al.,2019
10	α-Agarofuran	C ₁₅ H ₂₄ O	Antianxiety activity	Arthrinium sp. Collectotrichum sp. Diaporthe sp.	A. subintegra	Monggoot et al., 2017Peeraphong et al., 2021Zhang et al., 2004
11	Oxo-agarospirol	$C_{15}H_{24}O_2$	Antioxidant activity	Arthrinium sp. Collectotrichum sp. Diaporthe sp.	A. subintegra	Capello et al., 2015Monggoot et al., 2017
12	Ar-Curcumene	$C_{15}H_{22}$	Mosquito larvicides Anti-inflammatory activity Anti-ulcer activity	Acremonium sp.	A. sinensis	Duarte et al., 2007Podlogar et al., 2012Yamahara et al.,1992Zhang et al., 2009b
13	Zingiberene	C ₁₅ H ₂₄	Anti-inflammatory activity Anti-apoptotic effect Anti-oxidant activity Anti-cancer activity Cytotoxicity, Genotoxicity	Acremonium sp.	A. sinensis	Duarte et al., 2007Li et al., 2021Togar et al., 2015Türkez et al., 2014Zhang et al., 2009b
14	10-epi-γ-Eudesmol	$C_{15}H_{26}O$	Prevention of mosquito- related disease	<i>Collectotrichum</i> sp. <i>Diaporthe</i> sp.	A. subintegra	Capello et al., 2015(Kracht et al., 2019)
15 16	<i>cis</i> -Dihydroagarofuran β-Dihydroagarofuran	$\begin{array}{c} C_{15}H_{26}O\\ C_{15}H_{26}O\end{array}$	Antimicrobial activity —	Diaporthe sp. Arthrinium sp. Collectotrichum sp. Diaporthe sp.	A. subintegra A. subintegra	Capello et al., 2015Sadgrove et al., 2015 Capello et al., 2015Monggoot et al., 2017
17	Valencen	$C_{15}H_{24}$	_	Nemania aquilariae	A. sinensis	Baldissera et al., 2016

Table 3Metabolites pro	oduced by endophytes	s of <i>Aquilaria</i> and	l Gyrinops and their	pharmacological values.
------------------------	----------------------	---------------------------	----------------------	-------------------------

Tab	le 3 (continued)					
No.	Compounds	Molecular Formula	Pharmacological Values	Fungal Endophytes	Host Plant	References
18	Z-Caryophyllene	C ₁₅ H ₂₄	_	Arthrinium sp. Collectotrichum sp. Diaporthe sp.	A. subintegra	Capello et al., 2015Monggoot et al., 2017
19	β -Elemene	C15H24	High cytotoxic activity	Diaporthe sp.	A. subintegra	Capello et al., 2015Monggoot et al., 2017
20	δ-Elemene	$C_{15}H_{24}$	—	<i>Collectotrichum</i> sp. <i>Diaporthe</i> sp.	A. subintegra	Capello et al., 2015Monggoot et al., 2017
21	Agarospirol	$C_{15}H_{26}O$	Anti-nociceptive activitiy Anti-oxidant activity	<i>Collectotrichum</i> sp. <i>Diaporthe</i> sp.	A. subintegra	Capello et al., 2015Monggoot et al., 2017Okugawa et al., 1996
22	rel-(1 <i>S</i> ,4 <i>S</i> ,5 <i>R</i> ,7 <i>R</i> ,10 <i>R</i>)-10- Desmethyl-1-methyl-11- eudesmene	C ₁₅ H ₂₆ O	Cytotoxic activity	Nodulisporium sp.	A. sinensis	Li et al., 2011
23	Capitulatin B	C15H26O2		Nigrospora orvzae	A. sinensis	Zhang et al., 2004
24	6α-Hydroxycyclonerolidol	$C_{15}H_{26}O_2$	Cytotoxic activity	Nodulisporium sp.	A. sinensis	Li et al., 2011
25	Frabenol	$C_{15}H_{26}O_2$	_	Fimetariella rabenhorstii	A. sinensis	Tao et al., 2011a
26	6-Methyl-2-(5-methyl-5- vinyltetrahydrofuran-2-yl) hept-5-en-2-ol	$C_{15}H_{26}O_2$	_	Nodulisporium sp.	A. sinensis	Li et al., 2011
27	11-Hydroxycapitulation B	$C_{15}H_{26}O_{3}$		Nigrospora oryzae	A. sinensis	Zhang et al., 2004
28	δ -Eudesmol	$C_{15}H_{28}O$	Prevention of mosquito- related disease	Arthrinium sp. Diaporthe sp.	A. subintegra	Capello et al., 2015(Kracht et al., 2019)
29	(3 <i>R</i> ,6 <i>E</i> ,10 <i>S</i>)-2,6,10- Trimethyl-3-hydroxydodeca- 6,11-diene-	$C_{15}H_{28}O_3$	—	Colletotrichum gloeosporioides	A. sinensis	Liu et al., 2018
Chro	omones					
30	2,3-Dihydro-5-hydroxy-2- methylchromen-4-one	$C_{10}H_{10}O_3$	Cytotoxic activity	Nodulisporium sp.	A. sinensis	Wu et al., 2010
31	Mellein	$C_{10}H_{10}O_3$	Antibacterial activity	Aspergillus sp.	A. sinensis	Peng et al., 2011
Anth	raquinones					
32	1,7-Dihydroxy-3- methoxyanthraquinone	$C_{15}H_{10}O_5$	Anti-bacterial activity	Unknown fungal strain AL-2	A. malaccensis	Blakeney et al., 2019Shoeb et al., 2010
Ster	oids	C U O		NT 1 1: ·	<i>,</i>	
33 34	Ergosterol peroxide	C ₂₈ H ₄₄ O C ₂₈ H ₄₄ O ₃	Anti-inflammatory activity Induced apoptosis of cells Anti-inflammatory activity Cytotoxic activity Anti-oxidant activities Anti-complementary activity Trypanocidal activity Antibacterial activity Anti-proliferative activity	Nodulisporium sp. Nodulisporium sp.	A. sinensis A. sinensis	Kobori et al., 2007Li et al., 2011 Li et al., 2011Takei et al.,2005Kobori et al., 2007Nam et al., 2001Kim et al., 1999Kim et al., 1997Ramos-Ligonio et al., 2012Duarte et al., 2007Nowak et al., 2016
35	$5\alpha, 8\alpha$ -Epidioxy- $(22E, 24R)$ - ergosta- $6, 22$ -dien- 3β -ol	$C_{28}H_{44}O_3$	Anti-tumor activity	Fimetariella rabenhorstii	A. sinensis	Li, 2016Plotnikov et al., 2021Tanapichatsakul et al., 2020Nam et al., 2001Kim et al., 1999
36	3β , 5α , 9α -Trihydroxy- (22 <i>E</i> ,24 <i>R</i>)-ergosta-7,22-dien- 6-one	$C_{28}H_{44}O_3$	Anti-tumor activity	Fimetariella rabenhorstii	A. sinensis	Li, 2016Plotnikov et al., 2021Takei et al., 2005

Table 3 ((continued)	
	0011011000000	

No.	Compounds	Molecular Formula	Pharmacological Values	Fungal Endophytes	Host Plant	References
37	Cerevisterol	$C_{28}H_{46}O_3$	Anti-microbial activity Resistance modifying activity	Nodulisporium sp.	A. sinensis	Li et al., 2011Appiah et al., 2020
38	$(3\beta,5\alpha,6\beta,22E)$ -Ergosta-7,22- diene-3.5.6-triol	$C_{28}H_{46}O_3$	_	Phaeoacremonium rubrigenum	A. sinensis	Ribeiro et al., 2007
39	$3\beta, 6\beta, 7\alpha$ -Trihydroxy-(24 <i>R</i>)- ergosta-8(14).22-diene	$C_{28}H_{46}O_3$	_	Fimetariella rabenhorstii	A. sinensis	Li, 2016Plotnikov et al., 2021
40	3β , 5α , 6β -Trihydroxy- (22 <i>E</i> , 24 <i>R</i>)-ergosta-7, 22-diene	$C_{28}H_{46}O_3$	Anti-tumor activity	Fimetariella rabenhorstii	A. sinensis	Li, 2016Plotnikov et al., 2021Kobori et al., 2007Kim et al., 1997
Aron	natics					
41	Methylphenol	C ₇ H ₈ O	Antibacterial activity	Fimetariella rabenhorstii Phaeoacremonium rubrigenum	A. sinensis	Li, 2016Wei et al., 2011
42	<i>p</i> -Hydroxybenzaldehyde	$C_7H_6O_2$	Anti-oxidative activity Blood-brain barrier Toxicity	Phaeoacremonium rubrigenum	A. sinensis	Ribeiro et al., 2007Kinjo et al., 2020Borneman et al., 1986Wei et al., 2011
43	Phenylethyl alcohol	C ₈ H ₁₀ O	Antibacterial Sedative effects Antifungal activity	Acremonium sp.	A. sinensis	Duarte et al.,2007Lilley and Brewer, 1953Oshima and Ito, 2021Boukaew and Prasertsan, 2018Zhang et al., 2009b
44	4-Hydroxyphenyl ethyl alcohol (Tyrosol; 4-Hydroxy- benzeneethanol)	$C_8H_{10}O_2$	Nematicide Antioxidant activity Anti-inflammatory activity	Fimetariella rabenhorstii Acremonium sp. Nodulisporium sp.	A. sinensis	Tao et al., 2011bDuarte et al.,2007Li et al.,2018Zhang et al., 2009bLi et al., 2011Wei and Liu, 2007Tao et al., 2011b
45	6-Methoxy-7- <i>O</i> -(<i>p</i> - methoxyphenyl)-coumarin	$C_{17}H_{14}O_5$	_	Unkonw fungal strain AL-2	A. malaccensis	Blakeney et al., 2019
46	3,4-Dihydroxybenzoic acid	$C_7H_6O_4$	Antibacterial activity	Phaeoacremonium rubrigenum	A. sinensis	Ribeiro et al., 2007
47	Phthalic acid diisobutyl ester	$C_{16}H_{22}O_4$	Phytotoxicity Testicular atrophy	Colletotrichum gloeosporioides	A. sinensis	Appiah et al., 2020Huang et al.,2021Oishi et al.,1980
48	Decyl butyl phthalate	$C_{22}H_{34}O_4$		Acremonium sp.	A. sinensis	Duarte et al., 2007
49	1-(2,6-Dihydroxyphenyl) ethanone	$C_8H_8O_3$	Cytotoxic activity	Nodulisporium sp.	A. sinensis	Wu et al., 2010
50 51	8-Methoxynaphthalen-1-ol <i>p</i> -Hydroxyphenethyl alcohol	$\begin{array}{c} C_{11}H_{10}O_2\\ C_8H_{10}O_2 \end{array}$	Antifungal activity Antibacterial activity	Nodulisporium sp. Phaeoacremonium rubrigenum	A. sinensis A. sinensis	Li et al, 2011;Takei et al., 2005 Wei et al., 2011
52	Ethyl benzoate	$C_9H_{10}O_2$	-	Arthrinium sp. Collectotrichum sp. Diaporthe sp.	A. subintegra	Monggoot et al., 2017
53	Phenyl butanone	$C_{10}H_{12}O$	_	<i>Collectotrichum</i> sp. <i>Diaporthe</i> sp.	A. subintegra	Monggoot et al., 2017
54	1-(2,6-Dihydroxyphenyl) butan-1-one	$C_{10}H_{12}O_3$	Cytotoxic activity	Nodulisporium sp.	A. sinensis	Wu et al., 2010
55	1-(2,6-Dihydroxyphenyl)-3- hydroxybutan-1-one	$C_{10}H_{12}O_4$	Cytotoxic activity	Nodulisporium sp.	A. sinensis	Wu et al., 2010
56 57	Benzeneacetic acid (2 <i>R</i> *,4 <i>R</i> *)-3,4-Dihvdro-4-	C8H8O2 C11H14O3	— Cytotoxic activity	Acremonium sp. Nodulisporium sp.	A. sinensis A. sinensis	Duarte et al., 2007 Wu et al., 2010
57	(2 <i>R</i> *,4 <i>R</i> *)-3,4-Dihydro-4-	$\mathrm{C}_{11}\mathrm{H}_{14}\mathrm{O}_3$	Cytotoxic activity	Nodulisporium sp.	A. sinensis	Wu et al., 2010

Tab	Table 3 (continued)						
No.	Compounds	Molecular Formula	Pharmacological Values	Fungal Endophytes	Host Plant	References	
	methoxy-2-methyl-2 <i>H</i> -1- benzopyran-5-ol						
58	Phenethyl 2- hydroxypropanoate	$C_{11}H_{14}O_3$	_	Colletotrichum gloeosporioides	A. sinensis	Liu et al., 2018	
59	Benzyl benzoate	$C_{14}H_{12}O_2$	Treatment of scabies	Arthrinium sp. Diaporthe sp.	A. subintegra	Monggoot et al., 2017;Li et al., 2011	
60	1,8-Dimethoxynaphthalene	C ₁₂ H ₁₂ O ₂		Nodulisporium sp.	A. sinensis	Li et al., 2011	
61	(7 <i>R</i> *,8 <i>S</i> *)-3,6,7,8- Tetrahydro-4,7,8- trihydroxynaphtho [2,3-	$C_{12}H_{12}O_5$	Cytotoxic activity	Nodulisporium sp.	A. sinensis	Wu et al, 2010	
62	Propyl <i>p</i> -methoxy phenyl ether	$C_{10}H_{14}O_2$	—	Unkonw fungal strain AL-2	A. malaccensis	Shoeb et al., 2010	
63	<i>p</i> -Hydroxyphenylacetic acid	$C_8H_8O_3$	—	Phaeoacremonium rubrigenum	A. sinensis	Ribeiro et al., 2007	
64 Alka	4-Pentylbenzoic acid	$C_{12}H_{16}O_2$	—	Acremonium sp.	A. sinensis	Duarte et al., 2007	
65	Nicotinic acid	C ₆ H ₅ NO ₂	Prevention of atherosclerosis and reduce the risk of cardiovascular events	Fimetariella rabenhorstii	A. sinensis	Okugawa et al., 1996(Gille et al., 2008)	
66	Thymidine	$C_{10}H_{14}N_2O_5$	Anti-cancer activity Anti-metabolites activity	Phaeoacremonium rubrigenum	A. sinensis	Ribeiro et al., 2007Stokes and Lacey, 1978Martin et al., 1980O'Dwyer et al, 1987	
67	N-Phenylacetamide	C ₈ H ₉ NO	Cytotoxic activity	Fimetariella rabenhorstii	A. sinensis	Okugawa et al.,1996	
68	<i>N</i> -(6-Hydroxyhexyl)- acetamide	$\mathrm{C_8H_{17}O_2N}$	Antibacterial activity	Phaeoacremonium rubrigenum	A. sinensis	Ribeiro et al., 2007	
69	2-Anilino-1,4- naphthoquinone	C ₁₆ H ₁₁ NO ₂	Anti-fungal activity	Fimetariella rabenhorstii	A. sinensis	Okugawa et al.,1996(Leyva et al., 2017)	
Thia	zoles						
70	Colletotricole A	$C_9H_{13}NO_3S$	—	Colletotrichum gloeosporioides	A. sinensis	Appiah et al., 2020	
71	2-(4-Methylthiazol-5-yl)ethyl 2-hydroxypropanoate	C ₉ H ₁₃ O ₃ NS	—	Colletotrichum gloeosporioides	A. sinensis	Appiah et al., 2020	
Othe	ers						
72	Colletotricone A	$C_{14}H_{20}O_4$	Anti-tumour activity Cytotoxic activity	Colletotrichum gloeosporioides	A. sinensis	Appiah et al., 2020Kim et al., 2019Liu et al., 2018	
73	Colletotricone B	$C_{14}H_{20}O_4$	—	Colletotrichum gloeosporioides	A. sinensis	Liu et al., 2018	
74	Nigrosporanene A	$C_{14}H_{20}O_4$	Cytotoxicity Radical scavenging activity	Colletotrichum gloeosporioides	A. sinensis	Appiah et al., 2020Liu et al., 2018Ma and Qi, 2019	
75	Nigrosporanene B	$C_{14}H_{22}O_4$	Radical scavenging activity	Colletotrichum gloeosporioides	A. sinensis	Appiah et al., 2020Liu et al., 2018Ma and Qi, 2019	
76	D-Galacitol	$C_6H_{14}O_6$	_	Fimetariella rabenhorstii	A. sinensis	Tao et al., 2011b	
77	2,3-Dihydroxybutane	$C_4H_8O_3$	—	Acremonium sp.	A. sinensis	Zhang et al., 2009b	
78	5-Hydroxymethylfurfural	$C_6H_6O_3$	Antibacterial activity	Phaeoacremonium rubrigenum	A. sinensis	Wei et al., 2011	

(continued on next page)

No.	Compounds	Molecular Formula	Pharmacological Values	Fungal Endophytes	Host Plant	References
79	Cyclohexanone	C ₆ H ₁₀ O	_	Acremonium sp.	A. sinensis	Zhang et al., 2009b
80	4-Hydroxy-4-methyl-2- phentanone	$C_6H_{12}O_2$	—	Acremonium sp.	A. sinensis	Zhang et al., 2009b
81	3,5-Dimethyl cyclopentenolone	$C_7H_{11}O_2$	—	Acremonium sp.	A. sinensis	Zhang et al., 2009b
82	5-Methyl-2- vinyltetrahydrofuran-3-ol	$C_7H_{12}O_2$	—	Nodulisporium sp.	A. sinensis	Li et al., 2011
83	Octanoic acid	$C_8H_{16}O_2$	Toxicity Reducing the magnitude of tremor Anti-tumor activity	Acremonium sp.	A. sinensis	Duarte et al., 2007Viegas et al., 1995Lowell et al., 2019Altinoz et al., 2020
84	(Z)-9.17-Octadecadienal	C10H22O		Acremonium sp.	A. sinensis	Duarte et al., 2007
85	Sorbic acid	$C_6H_8O_2$	Anti-fungal activity Anti-microbial activity	Acremonium sp.	A. sinensis	Duarte et al., 2007Razavi-Rohani and Griffiths, 1999Eklund et al., 1983
86	Linoleic acid	C ₁₈ H ₃₂ O ₂	Pro-inflammatory activity Anti-cancer activity Cholesterol and blood pressure lowering effects Epidermal permeability barrier Anaerobic degradability Inhibitory effects	Acremonium sp.	A. sinensis	Duarte et al., 2007Young et al., 1998Burns et al., 2018Lalman et al., 2000Elias et al., 1980
87	Acetic acid	$C_2H_4O_2$		Acremonium sp.	A. sinensis	Duarte et al., 2007
88	Oleic acid	$C_{18}H_{34}O_2$	Anti-tumor Anti-inflammatory Anti-bactericidal Vasculoprotective effects Pro-inflammatory	Acremonium sp.	A. sinensis	Duarte et al., 2007(Carrillo Pérez et al., 2012) Sales-Campos et al., 2013Speert et al., 1979Massaro et al., 2002Young et al., 1998
89	Isovaleric acid	$C_5H_{10}O_2$	Reduces Na ⁺ , K ⁺ -ATPase activity Causes colonic smooth muscle relaxation	Acremonium sp.	A. sinensis	Duarte et al., 2007Ribeiro et al., 2007Blakeney et al., 2019
90	Methyl jasmonate	C ₁₂ H ₁₈ O ₃	Against pathogens Salt stress Drought stress Low temperature Heavy metal stress and toxicities of other elements	Lasiodiplodia theobromae	A. sinensis	Han et al., 2014Yu et al., 2018
91	Octadecanoic acid	$C_{18}H_{36}O_2$	_	Acremonium sp.	A. sinensis	Duarte et al., 2007
92	Butanoic acid	$C_{10}H_{22}O_{2}Si$		Acremonium sp.	A. sinensis	Duarte et al., 2007

Bioactivity: the effects of the fungal endophytes; Pharmacological values: the functions of the compounds produced by the fungi.

5. Pharmacological effects of metabolites produced by fungal endophytes derived from *Aquilaria* and *Gyrinops*

Endophytic fungi can be one of the best-known sources of natural products, while the endophytic fungi present in *Aquilaria* and *Gyrinops* tree, in the process of agarwood formation, were also recognized as the new sources of secondary metabolites, which hold pharmaceutical and ecological significance. A total of 92 compounds were recorded from the endophytes of *Aquilaria* and *Gyrinops* trees, including terpenoids (40.22 %: containing monoterpenes, sesquiterpenes, and steroids), aromatics (26.09 %), alkaloids (5.44 %), chromones (2.17 %), and others (Fig. 2, Table 3). Interestingly, some endophytes of *Aquilaria* and *Gyrinops* could produce sesquiterpenes which were the important compounds of agarwood (Fig. 3, Table 3). *Acremonium* sp., *Arthrinium* sp., *Collectotrichum* sp., *Diaporthe* sp., *Fimetariella rabenhorstii, Nemania* sp., *Nigrospora oryzae*, and *Nodulisporium* sp. are responsible for the production of sesquiterpenes (Li et al., 2014; Monggoot et al., 2017; Tao et al., 2011a; Tibpromma et al., 2021; Wu et al., 2010; Zhang et al., 2009b). Thus, those fungal stains were considered to

Fig. 3 The structures of 92 compounds produced by the endophytes of Aquilaria and Gyrinops.

be the potential materials for fermenting agarwood compounds.

Endophytic fungi in agarwood-producing trees can also be a rich source of medicinal agents with various pharmacological properties (Chhipa et al., 2017). The majority of endophytes derived from Aquilaria showed both antimicrobial and antitumor activities simultaneously, including Cladosporium tenuissimum, Coniothyrium nitidae, Epicoccum nigrum, Fusarium equiseti, Fusarium oxysporum, Fusarium solani, Hypocrea lixii, Lasiodiplodia theobromae, Leptosphaerulina chartarum, Paraconiothyrium variabile, Phaeoacremonium rubrigenum, Rhizomucor variabilis, and Xylaria mali (Cui et al., 2011). However, few of them were reported to display only antimicrobial activities, i.e. Phoma herbarum, Geotrichum candium, and Fusarium verticillioides (Chi et al., 2016; Cui et al., 2011). The endophytic fungi, Diaporthe sp. and Colletotrichum sp., which were believed to be responsible for the production of sesquiterpene compounds in Aquilaria trees, were claimed to have antioxidant properties; while the latter taxa also came with anti-inflammatory activities (Monggoot et al., 2017; Wang et al., 2016). Although a total of 92 compounds produced by fungal endophytes in Aquilaria were identified so far (Fig. 3), only 52 of them were proven to come with their related biological properties; in general, most of the identified compounds contained anti-inflammatory, anti-bacterial, and anti-cancer properties (Table 3). Compounds produced by all the isolated endophytes from Aquilaria and Gyrinops and their pharmacological values have been shown in Table 3.

6. Conclusion

Endophytes could maintain endosymbiotic relationship within plants at least in one stage of their life cycle (Turjaman et al., 2016). Compared with physical and chemical methods, the use of endophytic fungi has been recognized as a safe method to promote agarwood production for the environment and human health (Tan et al., 2019). Additionally, the endophyte inducing method could be seemed as a prioritized approach to enhance agarwood formation due to its ability to produce the signals associated with continuous agarwood formation and compounds with bioactivity. And the advantages of induced agarwood by endophytes are more pharmaceutical values, higher environmental adaptability, and faster speed of agarwood formation.

To our knowledge, 14 species of Aquilaria and eight of Gyrinops were known to produce agarwood, and different fungal species and abundances were detected because of different planting regions and various species. Fusarium sp. accounted for the largest proportion of Aquilaria and Gyrinops, followed by Collectotrichum sp., Diaporthe sp., and Trichoderma sp. The endophytic fungi spread over various host species with high biodiversity, however, the biodiversity of fungal endophytes distributed in various planting areas is seldom reported, which needs more detailed research. Furtherly, the variation in microbiome composition is represented by multiple A. sinensis tree host organs, and tissue types. The high diversity of fungal endophytes in resinous wood could give some good candidates for developing fungal inoculum that could promote agarwood production.

Various endophytic fungi have been reported to produce metabolites containing sesquiterpenoids and aromatic groups, which are a rich source of medicinal agents to improve the quality and quantity of agarwood. Most of the endophytes from *Aquilaria* and *Gyrinops* showed antimicrobial and antitumor activities, and a few fungi that have special abilities, such as the antioxidant activity of *Diaporthe* sp., and antiinflammatory activities of *Colletotrichum* sp. Besides that, some of the secondary metabolites are formed when the fungal endophytes trigger the self-defense reaction of *Aquilaria* and *Gyrinops*. In this way, the agarwood fungal endophytes not only protect host trees from microbe invasions and diseases but also activate the accumulation of agarwood. And these compounds produced by the fungal strains are various due to the different species or strains, which might enhance the resistance abilities to various environmental stresses. Conversely, both *Aquilaria* and *Gyrinops* trees grow in different places with various geographic and climate conditions and need different sorts of fungi, which could promote the host's ecological adaptability. In summary, the fungal endophytes on the host trees of *Aquilaria* and *Gyrinops* are responsible for activating the plant defense system, strengthening the hosts' ecological adaptability, and enhancing agarwood production, which may be the reasons why agarwood artificial induction by endophytes has become popular. The mechanism of aroma accumulation and the crucial role of endophytes in the agarwood host trees need to be furtherly explored in the future.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Public Welfare Research Institutes (grant no. ZZ13-YQ-093-C1, ZZXT202112), and the CACMS Innovation Fund (Grant No. CI2021A04101).

References

- Alakanse, O.S., Sulaiman, A., Arannilewa, A.J., Anjorin, F.F., Malachi, O.I., Ayo, I.E., Oladejo, A.A., Oluwole, O.A., Olanrewaju, O.O., Okeme, U., George, A.O., Amarachi, A.M., Taofeek, O.O., Araoyinbo, O.S., Bakare, A.A., Bolarinwa, T.O., 2019. α -Selinene from *Syzygium aqueum* against aromatase P450 in breast carcinoma of postmenopausal women: in silico study. J. Biomed. Pharm. Sci. 2, 1–7.
- Altinoz, M.A., Ozpinar, A., Seyfried, T.N., 2020. Caprylic (Octanoic) acid as a potential fatty acid chemotherapeutic for glioblastoma. Prostaglandins Leukot. Essent. Fat. Acids 159, 102142.
- Appiah, T., Agyare, C., Luo, Y., Boamah, V.E., Boakye, Y.D., 2020. Antimicrobial and resistance modifying activities of cerevisterol isolated from *Trametes* species. Curre. Bioact. Compd. 16, 115– 123.
- Auri, A., Faridah, E., Sumardi, S., Hardiwinoto, S., 2021. The effect of crown pruning and induction of *Acremonium* sp. on agarwood formation in *Gyrinops caudata* in West Papua, Indonesia. Biodivers. J. Biol. Divers. 22, 2604–2611.
- Baldissera, M.D., Grando, T.H., Souza, C.F., Gressler, L.T., Stefani, L.M., da Silva, A.S., Monteiro, S.G., 2016. In vitro and in vivo action of terpinen-4-ol, γ-terpinene, and α-terpinene against *Try*panosoma evansi. Exp. Parasitol. 162, 43–48.
- Bhattacharyya, B., Datta, A., Baruah, H.K., 1952. On the formation and development of agaru in *Aquilaria agallocha*. Sci. Cult. 18, 240–243.
- Blakeney, B.A., Crowe, M.S., Mahavadi, S., Murthy, K.S., Grider, J. R., 2019. Branched short-chain fatty acid isovaleric acid causes colonic smooth muscle relaxation via cAMP/PKA pathway. Dig. Dis. Sci. 64, 1171–1181.
- Blanchette, R.A., 2003. Agarwood formation in *Aquilaria* trees: resin production in nature and how it can be induced in plantation grown trees. In: Notes from presentation at first international agarwood conference, Ho Chi Minh City, Vietnam, 10–15.
- Borneman, W.S., Akin, D.E., VanEseltine, W.P., 1986. Effect of phenolic monomers on ruminal bacteria. Appl. Environ. Microbiol. 52, 1331–1339.

Bose, S.R., 1938. The nature of 'Agaru' formation. Sci. Cult. 4, 89-91.

- Boukaew, S., Prasertsan, P., 2018. Inhibitory effects of acetophenone or phenylethyl alcohol as fumigant to protect soybean seeds against two aflatoxin-producing fungi. J. Food Sci. Technol. 55, 5123– 5132.
- Broad, S., 1995. Agarwood harvesting in Vietnam. TRAFFIC Bull. 15, 96.
- Burns, J.L., Nakamura, M.T., Ma, D.W., 2018. Differentiating the biological effects of linoleic acid from arachidonic acid in health and disease. Prostaglandins Leukot. Essent. Fat. Acids 135, 1–4.
- Capello, T.M., Martins, E.G., de Farias, C.F., Figueiredo, C.R., Matsuo, A.L., Passero, L.F.D., Oliveira-Silva, D., Sartorelli, P., Lago, J.H.G., 2015. Chemical composition and in vitro cytotoxic and antileishmanial activities of extract and essential oil from leaves of *Piper cernuum*. Nat. Prod. Commun. 10, 285–288.
- Carrillo Pérez, C., Cavia Camarero, M.D.M., Alonso de la Torre, S., 2012. Antitumor effect of oleic acid; mechanisms of action. a review. Nutr. Hosp. 27, 1860–1865.
- Chen, X.Y., Liu, Y., Yang, Y., Feng, J., Liu, P., Sui, C., 2018. Trunk surface agarwood-inducing technique with *Rigidoporus vinctus*: an efficient novel method for agarwood production. PLoS One 13, 0198111.
- Chen, X., Yang, Y., Liu, Y., Wei, J., Zhang, Z., Gan, B., 2014. Isolation and identification of endophytic fungi which promote agarwood formation in *Aquilaria sinensis*. Chin. Pharm. J. 49 (13), 1118–1120.
- Chen, X., Sui, C., Liu, Y., Yang, Y., Liu, P., Zhang, Z., Wei, J., 2017a. Agarwood formation induced by fermentation liquid of *Lasiodiplodia theobromae*, the dominating fungus in wounded wood of *Aquilaria sinensis*. Curr. Microbiol. 74, 460–468.
- Chen, X., Yang, Y., Liu, Y.Y., Feng, J., Liu, P.W., Wei, J.H., 2017b. Effect of *Fomitopsis* sp. on promoting agarwood formation and its biological characteristics. Mod. Chin. Med. 19 (8), 1097–1101.
- Chen, X., Yang, Y., Liu, X., Liu, Y., Feng, J., Xiao, M., Wei, J., 2019. Analysis of fungi diversity in agarwood wood from Hainan province and Guangdong province. Chin. Pharm. J. 54, 1933–1938.
- Chhipa, H., Chowdhary, K., Kaushik, N., 2017. Artificial production of agarwood oil in *Aquilaria* sp. by fungi: a review. Phytochem. Rev. 16, 835–860.
- Chi, H.K., Cuong, L.H., Nhu Hang, T.T., Luyen, N.D., Hong Ha, T. T., Huong, L.M., 2016. Biological characterization of fungi endophytes isolated from agarwood tree *Aquilaria crassna* Pierre ex Lecomte. Tạp chí Công ngh Sinh học 14, 149–156.
- Chowdhary, K., Kaushik, N., Coloma, A.G., Raimundo, C.M., 2012. Endophytic fungi and their metabolites isolated from Indian medicinal plant. Phytochem. Rev. 11, 467–485.
- Chowdhury, M.Q., Rashid, A.Z.M.M., Afrad, M.M., 2003. The Status of agar (*Aquilaria agallocha* Roxb.) based small-scale cottage industries in Sylhet region of Bangladesh. Bangladesh J. Resour., 1–22
- Compton, J.G.S., Zich, F.A., 2002. *Gyrinops ledermannii* (Thymelaeaceae), being an agarwood-producing species prompts call for further examination of taxonomic implications in the generic delimitation between *Aquilaria* and *Gyrinops*. Flora Males. Bull. 13, 61–65.
- Cregger, M.A., Veach, A.M., Yang, Z.K., Crouch, M.J., Vilgalys, R., Tuskan, G.A., Schadt, C.W., 2018. The *Populus* holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome, 6–31.
- Cui, J.L., Guo, S.X., Xiao, P.G., 2011. Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of *Aquilaria sinensis*. Zhejiang Univ. Sci. B 12 (5), 385–392.
- Cui, J.L., Guo, S., Fu, S., Xiao, P., Wang, M., 2013. Effects of inoculating fungi on agarwood formation in *Aquilaria sinensis*. Chin. Sci. Bull. 58, 3280–3287.
- Deng, X., Jiang, Z.X., Jiang, Q.B., Guo, W., Li, Y.G., Zhang, X.Z., 2020. Characterization of the complete chloroplast genome of

- Dong, W.H., Wang, H., Guo, F.J., Mei, W.L., Chen, H.Q., Kong, F., Li, W., Zhou, K.B., Dai, H.F., 2019. Three new 2-(2-phenylethyl) chromone derivatives of agarwood originated from *Gyrinops salicifolia*. Molecules 24 (3), 576.
- Duarte, N., Ferreira, M.J.U., Martins, M., Viveiros, M., Amaral, L., 2007. Antibacterial activity of ergosterol peroxide against *Mycobacterium tuberculosis*: dependence upon system and medium employed. Phytother. Res.: Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Derivatives 21, 601–604.
- Eklund, T., 1983. The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J. Appl. Bacteriol. 54, 383–389.
- Elias, P.M., Brown, B.E., Ziboh, V.A., 1980. The permeability barrier in essential fatty acid deficiency: evidence for a direct role for linoleic acid in barrier function. J. Invest. Dermatol. 74, 230–233.
- Faizal, A., Prihartini Azar, A.W., Turjaman, M., Esyanti, R.R., 2020. *Fusarium solani* induces the formation of agarwood in *Gyrinops* versteegii (Gilg.) Domke branches. Symbiosis 81, 15–23.
- Faizal, A., Esyanti, R.R., Adn'ain, N., Rahmani, S., Azar, A.W.P., Iriawati, Turjaman, M., 2021. Methyl jasmonate and crude extracts of *Fusarium solani* elicit agarwood compounds in shoot culture of *Aquilaria malaccensis* Lamk. Heliyon, e06725
- Faizal, A., Hermawaty, D., Junita, E., Rahmawati, A., Azar, A.W.P., Makajanma, M.M., Turjaman, M., 2022. Evaluation of biotic and abiotic stressors to artificially induce agarwood production in *Gyrinops versteegii* (Gilg.) Domke seedlings. Symbiosis 86, 229– 239.
- Faridah, I.H., Mustapa, M.Z., Lepun, P., 2009. Notes on the distribution and ecology of *Aquilaria* lam. (Thymelaeaceae) in Malaysia. Malaysian Fores. 72 (2), 247–259.
- Feng, N.X., 2008. Preliminary study on endophytic fungi of *Aquilaria* sinensis. Jiangxi University, Nanchang.
- Gille, A., Bodor, E.T., Ahmed, K., Offermanns, S., 2008. Nicotinic acid: pharmacological effects and mechanisms of action. Annu. Rev. Pharmacol. Toxicol. 48, 79–106.
- Gong, L., Guo, S., 2009. Endophytic fungi from *Dracaena cambodiana* and *Aquilaria sinensis* and their antimicrobial activity. Biotechnol. 8 (5), 731–736.
- Hallier, H., 1992. Beiträge zur Kenntnis der Thymelaeacean under ihrer natürlichen Umgrenzung. Meded. Rijks-Herb 44, 1–31.
- Han, X., Liang, L., Zhang, Z., Li, X.J., Yang, Y., Meng, H., Gao, Z., Xu, Y., 2014. Study of production of sesquiterpenes of *Aquilaria* sinensis stimulated by *Lasiodiplodia theobromae*. Chin. J. Chin. Mater. Med. 39, 192–196.
- Hidayat, A., Turjaman, M., Qamyari, R., Imanuddin, R., Tohir, D., Rahmanto, R.G.H., Susilowati, A., 2021. Bioactive composition, antifungal, antioxidant, and anticancer potential of agarwood essential oil from decaying logs (*Gyrinops* spp.) of Papua Island (Indonesia). Journal of Applied Pharmaceutical. Science 11 (10), 070–078.
- Hou, D., 1964. Notes on some Asiatic species of *Aquilaria* (Thymelaceae). Blumea 12 (2), 285–288.
- Huang, Q.W., Wang, L.P., Huang, X.Y., 2017. Isolation and screening of endophytic fungi from the resin part of *Aquilaria* sinensis. Jiangsu Agric. Sci. 45 (20), 285–289.
- Huang, J.Q., Wei, J.H., Zhang, Z., Yang, Y., Liu, Y.Y., Meng, H., Zhang, J.L., 2013. Historical records and modern studies on agarwood production method and overall agarwood production method. China J. Chin. Mater. Med. 38 (3), 302–306.
- Huang, L., Zhu, X.Z., Zhou, S.X., Cheng, Z.R., Shi, K., Zhang, C., Shao, H., 2021. Phthalic acid esters: Natural sources and biological activities. Toxins 13 (7), 495.
- IUCN. 2022. The IUCN Red List of Threatened Species. Version 2021-3.
- Jesionek, A., Poblocka-Olech, L., Zabiegala, B., Bucinski, A., Krauze-Baranowska, M., Luczkiewicz, M., 2018. Validated

HPTLC method for determination of ledol and alloaromadendrene in the essential oil fractions of Rhododendron tomentosum plants and in vitro cultures and bioautography for their activity screening. J. Chromatogr. B 1086, 63–72.

- Jia, M., Chen, L., Xin, H.L., Zheng, C.J., Rahman, K., Han, T., Qin, L.P., 2016. A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front. Microbiol. 7, 906.
- Jong, P.L., 2012. Effects of mechanical wounding and infection patterns of *Fusarium solani* on gaharu formation in *Aquilaria malaccensis* Lam. Master Dissertation, Faculty of Forestry, Universiti Putra Malaysia.Kalra, R., Kaushik, N., 2017. A review of chemistry, quality and analysis of infected agarwood tree (*Aquilaria* sp.). Phytochem. Rev. 16, 1045–1079
- Kharwar, R.N., Mishra, A., Gond, S.K., Stierle, A., Stierle, D., 2011. Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat. Prod. Rep. 28 (7), 1208–1228.
- Kiet, L.C., Kessler Paul, J.A., Marcel, E., 2005. A New Species of *Aquilaria* (Thymelaeaceae) from Vietnam. Blumea-Biodivers. Evol. Biogeogr. Plants 50 (1), 135–141.
- Kim, D.S., Baek, N.I., Oh, S.R., Jung, K.Y., Lee, I.S., Kim, J.H., Lee, H.K., 1997. Anticomplementary activity of ergosterol peroxide from *Naematoloma fasciculare* and reassignment of NMR data. Arch. Pharm. Res. 20, 201–205.
- Kim, S.W., Park, S.S., Min, T.J., Yu, K.H., 1999. Antioxidant activity of ergosterol peroxide (5,8-epidioxy-5α,8α-ergosta-6,22*E*dien-3β-ol) in *Armillariella mellea*. Bull. Kor. Chem. Soc. 20, 819– 823.
- Kim, J.W., Shim, S.H., 2019. The fungus *Colletotrichum* as a source for bioactive secondary metabolites. Arch. Pharm. Res. 42, 735– 753.
- Kinjo, Y., Wada, K., Oe, M., Hou, D.X., Takahashi, M., 2020. Effects of *p*-hydroxybenzaldehyde and *p*-hydroxyacetophenone from non-centrifuged canesugar, kokuto, on serum corticosterone, and liver conditions in chronically stressed mice fed with a high-fat diet. Food Sci. Technol. Res. 26, 501–507.
- Kobori, M., Yoshida, M., Ohnishi-Kameyama, M., Shinmoto, H., 2007. Ergosterol peroxide from an edible mushroom suppresses inflammatory responses in RAW264. 7 macrophages and growth of HT29 colon adenocarcinoma cells. Br. J. Pharmacol. 150, 209–219.
- Kracht, O.N., Cordeiro, R.S.C., Håkansson, M., Stockmann, J., Sander, D., Bandow, J., Senges, C.H.R., Logan, D.T., Kourist, R., 2019. Discovery of three novel sesquiterpene synthases from Streptomyces chartreusis NRRL 3882 and crystal structure of an α -eudesmol synthase. Journal of biotechnology 297, 71–77.
- Kracht, O.N., Cordeiro, R.S.C., Håkansson, M., Stockmann, J., Sander, D., Bandow, J., Senges, C.H.R., Logan, D.T., Kourist, R., 2019. Discovery of three novel sesquiterpene synthases from Streptomyces chartreusis NRRL 3882 and crystal structure of an α-eudesmol synthase. Journal of biotechnology 297, 71–77.
- Kumar, S., Kaushik, N., 2013. Endophytic fungi isolated from oilseed crop *Jatropha curcas* produces oil and exhibit antifungal activity. PLoS One 8 (2), e56202.
- Lalman, J.A., Bagley, D.M., 2000. Anaerobic degradation and inhibitory effects of linoleic acid. Water Res. 34, 4220–4228.
- Lee, S.Y., Mohamed, R., 2016. The origin and domestication of *Aquilaria*, an important agarwood-producing genus. In: Book: Agarwood. Tropical Forestry, Springer Singapore, pp. 1–20.
- Lee, S.Y., Turjaman, M., Mohamed, R., 2018. Phylogenetic relatedness of several agarwood-producing taxa (Thymelaeaceae) from Indonesia. Trop. Life Sci. Res. 29 (2), 13–28.
- Lee, S.Y., Turjaman, M., Chaveerach, A., Subasinghe, S.M.C.U.P., Fan, Q., Liao, W., 2022. Phylogenetic relationships of *Aquilaria* and *Gyrinops* (Thymelaeaceae) revisited: evidence from complete plastid genomes. Biol. J. Linn. Soc. Lond., boac014
- Leyva, E., López, L.I., de la Cruz, Espinosa-González, C.G., 2017. Synthesis and studies of the antifungal activity of 2-anilino-/2, 3dianilino-/2-phenoxy-and 2, 3-diphenoxy-1, 4-naphthoquinones. Research on Chemical Intermediates 43 (3), 1813–1827.

- Li, W.S., 2016. Study on secondary metabolites of endophytic fungus strain *Fusarium solani* A2 and *Fimetariella rabenhorstii* A20 from *Aquilariae* Lignum Resinatum. Guangdong Pharmaceutical University, pp. 41–45. MS thesis.
- Li, D.L., Chen, Y.C., Tao, M.H., Li, H.H., Zhang, W.M., 2012. Two new octahydro naphthalene derivatives from *Trichoderma spirale*, an endophytic fungus derived from *Aquilaria sinensis*. Helv. Chim. Acta 95 (5), 805–809.
- Li, J.W., Thangaiyan, R., Govindasamy, K., Wei, J.X., 2021. Antiinflammatory and anti-apoptotic effect of zingiberene on isoproterenol-induced myocardial infarction in experimental animals. Hum. Exp. Toxicol. 40, 915–927.
- Li, T., Wang, H.Y., Xia, X.B., Cao, S.J., Yao, J.G., Zhang, L.L., 2018. Inhibitory effects of components from root exudates of Welsh onion against root knot nematodes. PLoS One 13 (7), e0201471.
- Li, D., Wu, Z., Chen, Y., Tao, M., Zhang, W., 2011. Chemical constituents of endophytic fungus *Nodulisporium* sp. A4 from *Aquilaria sinensis*. Chin. J. Chin. Mat. Med. 36, 3276–3280.
- Li, D., Chen, Y., Pan, Q., Tao, M., Zhang, W., 2014. A new eudesmane sesquiterpene from *Nigrospora oryzae*, an endophytic fungus of *Aquilaria sinensis*. Rec. Nat. Prod. 8, 330–333.
- Lilley, B.D., Brewer, J.H., 1953. The selective antibacterial action of phenylethyl alcohol. J. Am. Pharm. Assoc. 42 (1), 6–8.
- Liu, Y., Chen, H., Yang, Y., Zhang, Z., 2013. Whole-tree agarwoodinducing technique: An efficient novel technique for producing high-quality agarwood in cultivated *Aquilaria sinensis* trees. Molecules 18, 3086–3106.
- Liu, J., Li, T., Chen, T., Gao, J., Zhang, X., Jiang, C., Yang, J., Zhou, J., Wang, T., Chi, X., Cheng, M., Huang, L., 2022. Integrating multiple omics identifies *Phaeoacremonium rubrigenum* acting as *Aquilaria sinensis* marker fungus to promote agarwood sesquiterpene accumulation by inducing plant host phosphorylation. Microbiol, Spectr, p. e0272221.
- Liu, H.X., Tan, H.B., Chen, Y.C., Li, S.N., Li, H.H., Zhang, W.M., 2018. Secondary metabolites from the *Colletotrichum gloeospori*oides A12, an endophytic fungus derived from *Aquilaria sinensis*. Nat. Prod. Res. 32, 2360–2365.
- Lowell, S.Y., Kelley, R.T., Monahan, M., Hosbach-Cannon, C.J., Colton, R.H., Mihaila, D., 2019. The effect of octanoic acid on essential voice tremor: a double-blind, placebo-controlled study. Laryngoscope 129 (8), 1882–1890.
- Ma, S., Fu, Y., Li, Y., Wei, P., Liu, Z., 2021. The formation and quality evaluation of agarwood induced by the fungi in *Aquilaria sinensis*. Ind. Crop. Prod. 173, 114129.
- Ma, X., Qi, S.H., 2019. Marine natural products from marine coralderived microorganisms. In: Symbiotic Microbiomes of Coral Reefs Sponges and Corals. Springer, Dordrecht., pp. 311–328.
- Martin, D.S., Stolfi, R.L., Sawyer, R.C., Nayak, R., Spiegelman, S., Young, C.W., Woodcock, T., 1980. An overview of thymidine. Cancer 45, 1117–1128.
- Massaro, M., De Caterina, R., 2002. Vasculoprotective effects of oleic acid: epidemiological background and direct vascular antiatherogenic properties. Nutr. Metab. Cardiovasc. Dis. 12, 42–51.
- Mauti, G.O., Kasigwa, P.F., Munissi, J.J., Onguso, J.M., 2019. Evaluation of the repellent effect of *Dioscorea sansibarensis* Pax (Dioscoreaceae) leaf essential oil against *Bruchus chinensis* Linnaeus, 1758 (Coleoptera: Bruchidae). Pol. J. Entomol. 88, 119–128.
- Mega, I.M., Rail, I.N., Adnyana, I.M., Sudana, I.M., Kartini, N.L., 2020. Identification of three isolate fungal to produce agarwood sapwood on *Gyrinops versteegii* (Gilg.) Domke'. In: Plant By Molecular Analysis international Journal of Research in Engineering and Science (IJRES) ISSN (Online), pp. 2320–9364.
- Mega, I., Suanda, D., Kasniari, D., Susrama, I., 2016. Agarwood producing fungal inoculant formulation in ketimunan tree (*Gyr-inops versteegi* DOMKE). Int. J. Biosci. Biotechnol., 1–7
- Mohamed, R., Jong, P.L., Zali, M.S., 2010. Fungal diversity in wounded stems of *Aquilaria malaccensis*. Fungal Divers. 43 (1), 67–74.

Mohamed, R., Jong, P.L., Kamziah, A.K., 2014. Fungal inoculation induces agarwood in young *Aquilaria malaccensis* trees in the nursery. For. Res. 25 (1), 201–204.

- Monggoot, S., Popluechai, S., Gentekaki, E., Pripdeevech, P., 2017. Fungal endophytes: an alternative source for production of volatile compounds from agarwood oil of *Aquilaria subintegra*. Microb. Ecol. 74 (1), 54–61.
- Naef, R., 2011. The volatile and semi-volatile constituents of agarwood, the infected heartwood of *Aquilaria* species: a review. Flavour. Fragr. 26 (2), 73–87.
- Nam, K.S., Jo, Y.S., Kim, Y.H., Hyun, J.W., Kim, H.W., 2001. Cytotoxic activities of acetoxyscirpenediol and ergosterol peroxide from *Paecilomyces tenuipes*. Life Sci. 69 (2), 229–237.
- Nasution, A.A., Siregar, U.J., Miftahudin, Turjaman, M., 2020. Identification of chemical compounds in agarwood-producing species *Aquilaria malaccensis* and *Gyrinops versteegii*. J. For. Res. 31, 1371-1380
- Ng, L.T., Chang, Y.S., Kadir, A.A., 1997. A review on agar (gaharu) producing *Aquilaria* species. Trop. Forest. Prod. 2 (2), 272–285.
- Nobuchi, T., Siripatanadilok, S., 1991. Preliminary observation of Aquilaria crassna wood associated with the formation of aloeswood. Bull. Kyoto Univ. For. 63, 226–235.
- Nowak, R., Drozd, M., Mendyk, E., Lemieszek, M., Krakowiak, O., Kisiel, W., Rzeski, W., Szewczyk, K., 2016. A new method for the isolation of ergosterol and peroxyergosterol as active compounds of *Hygrophoropsis aurantiaca* and in vitro antiproliferative activity of isolated ergosterol peroxide. Molecules 21, 946.
- O'Dwyer, P.J., King, S.A., Hoth, D.F., Leyland-Jones, B., 1987. Role of thymidine in biochemical modulation: a review. Cancer Res. 47, 3911–3919.
- Oishi, S., Hiraga, K., 1980. Testicular atrophy induced by phthalic acid esters: effect on testosterone and zinc concentrations. Toxicol. Appl. Pharmacol. 53, 35–41.
- Okugawa, H., Ueda, R., Matsumoto, K., Kawanishi, K., Kato, A., 1996. Effect of jinkoh-eremol and agarospirol from agarwood on the central nervous system in mice. Planta Med. 62, 2–6.
- Oshima, T., Ito, M., 2021. Sedative effects of l-menthol, *d*-camphor, phenylethyl alcohol, and geraniol. J. Nat. Med. 75, 319–325.
- Peeraphong, L., 2021. Medicinal uses of agarwood. Chinese Med. Cult. 4, 260–265.
- Peng, K., Mei, W.L., Wu, J., Dai, H.F., 2011. Volatile constituents and their antimicrobial activities of endophytic fungus *Aspergillus* sp. A14 from *Aquilaria sinensis*. Nat. Prod. Res. Dev. 23, 85–88.
- Persoon, G.A., Beek, H.H., 2008. Growing 'the wood of the gods': agarwood production in southeast Asia. Smallholder Tree Growing Rural Develop. Environ. Services, 245–262.
- Plotnikov, M.B., Plotnikova, T.M., 2021. Tyrosol as a neuroprotector: strong effects of a "weak" antioxidant. Curr. Neuropharmacol. 19, 434–448.
- Podlogar, J.A., Verspohl, E.J., 2012. Antiinflammatory effects of ginger and some of its components in human bronchial epithelial (BEAS-2B) cells. Phytother. Res. 26, 333–336.
- Premalatha, K., Kalra, A., 2013. Molecular phylogenetic identification of endophytic fungi isolated from resinous and healthy wood of *Aquilaria malaccensis*, a red listed and highly exploited medicinal tree. Fungal Ecol. 6 (3), 205–211.
- Rahayu, G., Putridan Juliarni, A.L., 2007. Acremonium and methyljasmonate induce terpenoid formation in agarwood tree (*Aquilaria* crassna)[']. In: Makalahdi presenta sikandalam 3rd Asian conference on crop protection, Jogyakarta, 22-24.
- Ramos-Ligonio, A., López-Monteon, A., Trigos, Á., 2012. Trypanocidal activity of ergosterol peroxide from *Pleurotus ostreatus*. Phytother. Res. 26, 938–943.
- Rasool, S., Mohamed, R., 2016. Understanding agarwood formation and its challenges. Agarwood. Springer, Singapore, pp. 39–56.
- Razavi-Rohani, S.M., Griffiths, M.W., 1999. Antifungal effects of sorbic acid and propionic acid at different pH and NaCl conditions. J. Food Saf. 19, 109–120.

- Ribeiro, C.A., Balestro, F., Grando, V., Wajner, M., 2007. Isovaleric acid reduces Na⁺, K⁺-ATPase activity in synaptic membranes from cerebral cortex of young rats. Cell. Mol. Neurobiol. 27, 529– 540.
- Sadgrove, N., Greatrex, B., Jones, G., 2015. α-Cyclodextrin encapsulation enhances antimicrobial activity of cineole-rich essential oils from Australian species of *Prostanthera* (Lamiaceae). Nat. Volatiles Essent. Oils 2, 30–38.
- Sales-Campos, H., Reis de Souza, P., Crema Peghini, B., Santana da Silva, J., Ribeiro Cardoso, C., 2013. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 13, 201–210.
- Santoso, E., Irianto, R.S.B., Turjaman, M., Sitepu, I.R., 2011. Gaharu producing tree induction technology. Develop. Gaharu Prod. Technol. 31.
- Sawant, S.S., Youssef, D.T., Sylvester, P.W., Wali, V., Sayed, K.A. E., 2007. Antiproliferative sesquiterpenes from the red sea soft coral *Sarcophyton glaucum*. Nat. Prod. Commun. 2, 117.
- Sen, S., Dehingia, M., Talukdar, N.C., Khan, M., 2017. Chemometric analysis reveals links in the formation of fragrant bio-molecules during agarwood (*Aquilaria malaccensis*) and fungal interactions. Sci. Rep. 7, 44406.
- Shao, H., Mei, W.L., Kong, F.D., Dong, W.H., Gai, C.J., Li, W., Zhu, G.P., Dai, H.F., 2016. Sesquiterpenes of agarwood from *Gyrinops salicifolia*. Fitoterapia 113, 182–187.
- Shoeb, M., Begum, S., Nahar, N., 2010. Study of an endophytic fungus from *Aquilaria malaccensis* Lamk. Bangladesh J. Pharmacol. 5, 21–24.
- Soehartono, T., Newton, A.C., 2000. Conservation and sustainable use of tropical trees in the genus *Aquilaria* I. Status and distribution in Indonesia. Biol. Conserv. 96, 83–94.
- Speert, D.P., Wannamaker, L.W., Gray, E.D., Clawson, C.C., 1979. Bactericidal effect of oleic acid on group A streptococci: mechanism of action. Infect. Immun. 26, 1202–1210.
- Stokes, A.N.N.E., Lacey, R.W., 1978. Effect of thymidine on activity of trimethoprim and sulphamethoxazole. J. Clin. Pathol. 31, 165– 171.
- Subasinghe, S.M.C.U.P., Hettiarachchi, D.S., Rathnamalala, E., 2012. Agarwood-type resin from *Gyrinops walla* Gaertn: a new discovery. J. Trop. For. Environ. 2, 43–48.
- Subasinghe, S.M.C.U.P., Hitihamu, H.I.D., Fernando, K.M.E.P., 2019. Use of two fungal species to induce agarwood resin formation in *Gyrinops walla*. For. Res. 30, 721–726.
- Sun, H., Zhang, Y.F., Huo, H.X., Guan, P.W., Wang, C.C., Yao, H. N., Zhao, Y.F., Tu, P.F., Li, J., 2019. Benzophenone glycosides from the pericarps of *Aquilaria yunnanensis* S. C. Huang. Natural Product Research, 1-8
- Sun, Y., Zhang, H.M., Li, Z.X., Yu, W.H., Zhao, Z.J., Wang, K., Zhang, M.L., Wang, J.T., 2020. Determination and comparison of agarwood from different origins by comprehensive two-dimensional gas chromatography-quadrupole time-of-flight mass spectrometry. J. Sep. Sci. 43, 1284–1296.
- Suryanarayanan, T.S., Thirunavukkarasu, N., Govindarajulu, M.B., Sasse, F., Jansen, R., Murali, T.S., 2009. Fungal endophytes and bioprospecting. Fungal Biol. Rev. 23, 9–19.
- Takei, T., Yoshida, M., Ohnishi-Kameyama, M., Kobori, M., 2005. Ergosterol peroxide, an apoptosis-inducing component isolated from *Sarcodon aspratus* (Berk.) S. Ito. Biosci. Biotech. Bioch. 69, 212–215.
- Tamuli, P., Boruah, P., Nath, S.C., Leclercq, P., 2005. Essential oil of eaglewood tree: a product of pathogenesis. Essent. Oil Res. 17, 601–604.
- Tan, C.S., Isa, N.M., Ismail, I., Zainal, Z., 2019. Agarwood induction: current developments and future perspectives. Front. Plant Sci. 10, 122.
- Tanapichatsakul, C., Pansanit, A., Monggoot, S., Brooks, S., Prachya, S., Kittakoop, P., Panuwet, P., Pripdeevech, P., 2020. Antifungal activity of 8-methoxynaphthalen-1-ol isolated from the

endophytic fungus *Diatrype palmicola* MFLUCC 17–0313 against the plant pathogenic fungus *Athelia rolfsii* on tomatoes. PeerJ 8, e9103.

- Tao, M.H., Yan, J., Wei, X.Y., Li, D.L., Zhang, W.M., Tan, J.W., 2011a. A novel sesquiterpene alcohol from *Fimetariella rabenhorstii*, an endophytic fungus of *Aquilaria sinensis*. Nat. Prod. Commun. 6, 763–766.
- Tao, M., Yan, J., Wei, X., Li, D., Zhang, W., Tan, J., 2011b. Steroidal metabolites of *Fimetariella rabenhorstii* endophytic fungus from *Aquilaria sinensis*. J. Trop. Subtrop. Bot. 19, 75–78.
- Thanh, L.V., Do, T.V., Son, N.H., Sato, T., Kozan, O., 2015. Impacts of biological, chemical and mechanical treatments on sesquiterpene content in stems of planted *Aquilaria crassna* trees. Agrofor. Syst. 89, 973–981.
- Tian, J.J., Gao, X.X., Zhang, W.M., Wang, L., Qu, L.H., 2013. Molecular identification of endophytic fungi from *Aquilaria sinensis* and artificial agarwood induced by pinholes-infusion technique. Biotechnol. 12 (21), 3115–3131.
- Tibpromma, S., Zhang, L., Karunarathna, S.C., Du, T.Y., Phukhamsakda, C., Rachakunta, M., Suwannarach, N., Xu, J., Mortimer, P. E., Wang, Y.H., 2021. Volatile constituents of endophytic fungi isolated from *Aquilaria sinensis* with descriptions of two new species of *Nemania*. Life (Basel) 11, 363.
- Togar, B., Turkez, H., Tatar, A., Hacimuftuoglu, A., Geyikoglu, F., 2015. Cytotoxicity and genotoxicity of zingiberene on different neuron cell lines in vitro. Cytotechnology 67, 939–946.
- Turjaman, M., Hidayat, A., Santoso, E., 2016. Development of agarwood induction technology using endophytic fungi. In: Mohamed, R. (Ed.), Agarwood: Science Behind the Fragrance. Springer, Singapore, pp. 57–71.
- Türkez, H., Toğar, B., Çelik, K., 2014. In vitro study of human lymphocytes cytological and biochemical effects by zingiberene. J. Essent. Oil Res. 26, 367–371.
- UNEP-WCMC., 2022. The Checklist of CITES Species Website. CITES Secretariat, Geneva, Switzerland. Compiled by UNEP-WCMC, Cambridge, UK. Available at: http://checklist.cites.org
- Vidurangi, A.N.G.C.K., Subasinghe, S.M.C.U.P., Fernando, K.M.E. P., 2018. Isolation of associated fungal species in *Aquilaria* and *Gyrinops* species of family Thymelaeaceae. Proceedings of International Forestry and Environment Symposium, 22.
- Viegas, C.A., Sá-Correia, I., 1995. Toxicity of octanoic acid in Saccharomyces cerevisiae at temperatures between 8.5 and 30 C. Enzyme Microb. Technol. 17, 826–831.
- Wang, W., Gu, L., Wu, Z., 2007. Research progress on 1,8-cineole. Food and Drug 9, 56–59.
- Wang, Y., Lin, S., Zhao, L., Sun, X., He, W., Zhang, Y., Dai, Y.C., 2019. *Lasiodiplodia* spp. associated with *Aquilaria crassna* in Laos. Mycol. Prog. 18, 683–701.
- Wang, S., Yu, Z.X., Wang, C.H., Wu, C.M., Guo, P., Wei, J.H., 2018. Chemical constituents and pharmacological activity of agarwood and *Aquilaria* plants. Molecules 23, 342.
- Wang, D.G., Zhang, N.N., Yang, Z.J., Liu, X.J., Hong, Z., Xu, D.P., 2016. Effects of 20 fungal species on compositions of essential oils from *Aquilaria sinensis* trees. J. South China Agric. Univ. 37, 77– 83.
- Wei, J., Dai, H.F., Yu, L., Wang, H., Mei, W.L., 2011. Antibacterial metabolites from the endophytic fungus R7 of *Aquilaria sinensis*. Chin. J. Antibiot. 36, 576–580.
- Wei, J., Liu, W., 2007. β -sitosterol, one of functional component in phytosterols. J. Putian Univ. 2, 38–40.
- Wu, Z.C., Li, D.L., Chen, Y.C., Zhang, W.M., 2010. A new isofuranonaphthalenone and benzopyrans from the endophytic

fungus Nodulisporium sp. A4 from Aquilaria sinensis. Helv. Chim. Acta 93, 920–924.

- Xie, Y.Q., Li, L.N., Chen, Y.L., Yang, Y.G., Xu, H., Wang, Z.T., Yang, L., 2020. Rapid authentication of agarwood by using liquid extraction surface analysis mass spectrometry (LESA-MS). Phytochem. Anal. 31, 801–808.
- Xu, Y.H., Liao, Y.C., Zhang, Z., Liu, J., Sun, P.W., Gao, Z.H., Sui, C., Wei, J.H., 2016. Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in *Aquilaria sinensis*. Sci. Rep. 6, 21843.
- Xu, Y., Zhang, Z., Wang, M., Wei, J., Chen, H., Gao, Z., Sui, C., Luo, H., Zhang, X., Yang, Y., Meng, H., Li, W., 2013. Identification of genes related to agarwood formation: transcriptome analysis of healthy and wounded tissues of *Aquilaria sinensis*. BMC Genomics 14, 227–242.
- Yamahara, J., Hatakeyama, S., Taniguchi, K., Kawamura, M., Yoshikawa, M., 1992. Stomachic principles in ginger. II. Pungent and anti-ulcer effects of low polar constituents isolated from ginger, the dried rhizoma of *Zingiber officinale* Roscoe cultivated in Taiwan. the absolute stereostructure of a new diarylheptanoid. Yakugaku Zasshi: J. Pharma. Soc. Japan 112, 645–655.
- Yin, Y., Jiao, L., Dong, M., Jiang, X., Zhang, S., 2016. Wood resources, identification, and utilization of agarwood in China. In: Mohamed, R. (Ed.), Agarwood: Science Behind the Fragrance. Springer, Singapore, pp. 21–38.
- Yoswathana, N., 2013. Extraction of agarwood (*Aquilaria crassna*) oil by using supercritical carbon dioxide extraction and enzyme pretreatment on hydrodistillation. Food Agric. Environ. 11, 1055–1059.
- Young, V.M., Toborek, M., Yang, F., McClain, C.J., Hennig, B., 1998. Effect of linoleic acid on endothelial cell inflammatory mediators. Metabolism 47, 566–572.
- Yu, C.W., Li, W.H., Hsu, F.L., Yen, P.L., Chang, S.T., Liao, V.H.C., 2014. Essential oil alloaromadendrene from mixed-type *Cinnamomum osmophloeum* leaves prolongs the lifespan in *Caenorhabditis elegans*. J. Agricul. Food Chem. 62, 6159–6165.
- Yu, X.X., Zhang, W.J., Zhang, Y., Zhang, X.J., Lang, D.Y., Zhang, X.H., 2018. The roles of methyl jasmonate to stress in plants. Func. Plant Biol. 46, 197–212.
- Zhang, Z., Han, X.M., Wei, J.H., Xue, J., Yang, Y., Liang, L., Li, X. J., Guo, Q.M., Xu, Y.H., Gao, Z.H., 2014. Compositions and antifungal activities of essential oils from agarwood of *Aquilaria* sinensis (Lour.) Gilg induced by *Lasiodiplodia theobromae* (Pat.) Griffon & Maubl. J. Braz. Chem. Soc. 25, 20–26.
- Zhang, Y.H., Huang, Y., Li, Z.M., Zhang, S.D., 2019. Characterization of the complete chloroplast genome of the vulnerable agarwood tree, *Aquilaria yunnanensis* (Thymelaeaceae). Conserv. Genet. Resour. 11, 161–164.
- Zhang, X.H., Mei, W.L., Chen, P., Deng, Y.Y., Dai, H.F., 2009a. Isolation, identification and antimicrobial activity of endophytic fungi in *Aquilaria sinensis* (Lour.) Gilg. J. Microbiol. 29, 6–10.
- Zhang, X., Mei, W., Dai, H., 2009b. Volatile oil constituents of two Acremonium endophyte isolates from Aquilaria sinensis. Microbiol. 36, 37–40.
- Zhang, Y., Wang, W., Zhang, J., 2004. Effects of novel anxiolytic 4butyl-alpha-agarofuran on levels of monoamine neurotransmitters in rats. Europ. J. Pharmacol. 504, 39–44.
- Zulak, K.G., Bohlmann, J., 2010. Terpenoid biosynthesis and specialized vascular cells of conifer defense. Integr. Plant Biol. 52, 86–97.