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Abstract A simple and efficient route for the synthesis of Unsymmetrical N,N0-diphenyl urea have

been developed in aqueous medium under base and catalyst free condition from corresponding

substituted isocyanate and amines. The remarkable key feature of the reaction includes the use

of water as an inexpensive and environmentally benign reaction medium, absence of base and

any additional catalyst, and easy isolation of the product.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Recent focus on urea stems from its wide range of application
in petrochemicals, agrochemicals, and pharmaceuticals and it

is also used as dyes for cellulose fibres, (Sartori, 2000) antiox-
idants in gasoline or as plant growth regulators, pesticides and
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herbicides. The unsymmetrical urea functional group is also

encountered in several biologically active synthetic targets. In
particular, potent urea containing HIV-1 protease inhibitors
(Cassar, 1990) and p38 kinase inhibitors have recently been

disclosed (Lam et al., 1994).
Substituted ureas are very important class of compounds

that display a wide range of interesting applications (Li et

al., 2006). They have extensively been used as agrochemicals
(Hegarty and Drennan, 1995), pharmaceuticals (Greene and
Wuts, 1985), intermediates in organic synthesis (Han et al.,

1998), for the protection of amino groups (Regan et al.,
2002) and as linkers in combinatorial chemistry (Mensal and
Gutschow, 2005). These require their preparation by a conve-
nient and safe methodology. Traditionally, their synthesis in-

volves a reaction of amines with phosgene (Smith and
March, 2001), and its derivatives (Guichard et al., 1999), car-
bonyl-imidazoles (Batey et al., 1998), or carbon monoxide

(Mccusker et al., 2000) using various kinds of metal and
non-metal catalysts.

Despite the growing number of synthetic methodologies,

urea is more commonly synthesised by the reaction of an amine
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with phosgene or carbamates. Use of phosgene or phosgene sur-

rogates is still regarded as the traditional method for the forma-
tion of urea, at least in the industry. This approach is particularly
efficient for symmetrical ureas. In the case of unsymmetrical
ureas, the synthetic efficiency is limited by the formation of

symmetrical urea side products. In the last few years, toxic and
unstable reagents, such as phosgene and isolated isocyanides
have been increasingly substituted for cleaner and inherently

safer alternatives (Chauhan et al., 2004). These include the use
of carbonates or carbonyl imidazole or taking advantage of
the reactivity of carbonates’ with amines to produce urea.

Unfortunately, production and use of phosgene open many
worrying toxicological and environmental problems, such as
the use and storage of large amounts of chlorine, production

of excess aqueous waste contaminated by chlorine and chlorine
bi-products, high environmental risk in storage and transpor-
tation of phosgene, use of phosgene characterised by high tox-
icity and volatility. Nevertheless, about 2 million tons per year

of phosgene are produced and utilised worldwide (Frezza
et al., 2006). Under the new environmental legalisation of
the developed countries, industrial and academic research

groups have performed methodologies for preparation of urea
based on the use of reagents that are less toxic and less hazard-
ous than phosgene (Mccusker et al., 2000).

Method for preparing 1,3-disubstituted urea through cata-
lytic process by reacting a cyclic carbonic acid ester with an
amine were disclosed (US Patent. 5902899, 1999). This method
is too expensive to use on a large scale. The transformation of

amines to disubstituted urea through catalytic carbonylation
provides an alternative environmental benign method and
has been investigated over many years using various kinds of

metallic catalysts (Mulla et al., 1997). However, these methods
failed due to the problems of regenerating the catalysts from
the products. Moreover, their formation using CO2 employed

harsh reaction conditions, such as long reaction times, use of
expensive strongly basic reagents, tedious work-up, and low
yields (Tai et al., 2002). Consequently, there is a continued

interest in developing new and convenient methods for the syn-
thesis of substituted urea using mild reaction conditions.
2. Experimental

2.1. Reagents and analysis

All Reagents were commercial purchased from Aldrich and
used without further purification. Commercial reagents were

used as received. Reactions were monitored by thin-layer chro-
matography (TLC) on 0.25 mm precoated Merck Silica Gel 60
F254, visualising with ultraviolet light or Ninhydrine. 1H NMR

spectra were recorded on Bruker DPX-400 with standard pulse
sequences, operating at 300 MHz Chemical shifts were in parts
per million (ppm) downfield from Tetramethylsilane (TMS),

which was used as an internal standard. HPLC-MS analyses
were performed with an Agilent Technologies 1100 series con-
sisted of quaternary pump with degasser, auto sampler, col-
umn oven and DAD detector.

2.2. General procedure

General procedure: Amine (10 mmol) was dissolved in water
and the mixture cooled to 5 �C. After 5 min isocyanate
(10 mmol) was slowly added in the above reaction mixture in

such way that the temperature of reaction mixture doesn’t in-
crease above 5 �C. As the reaction proceeds solid falls out. RM
was stirred for 30 min at 5 �C & reaction was monitor by TLC.
After completion of the reaction the solid was filtered out &

the residue was washed with water. The solid was collected
to report yield & analysis of the respective urea. The product
was confirmed by melting points and spectral analysis, such

as MS, NMR.
Spectral data: (Table 1, entry 1) 1H NMR (300 MHz,

DMSO-d6): d 8.60 (s, 1H), d 8.45 (s, 1H), d 7.45 (dd,

J= 9.1, 4.9 Hz, 2H), d 7.35 (d, J = 9.1 Hz, 2H), d 7.10 (t,
J= 8.9 Hz, 2H), d 6.87 (d, J = 8.7 Hz, 2H), d 3.71 (s, 3H);
ESI (m/z) Calc. for C14H13FN2O2: 260.26, Found: 261.11

[M+H]. (Table 1, entry 2) 1H NMR (300 MHz, DMSO-d6):
d 8.21 (s, 1H), d 7.38–7.46 (m, 4H), d 7.30–7.35 (m, 2H), d
7.21–7.28 (m, 1H), d 7.02–7.10 (m, 2H), d 3.26 (s, 3H); ESI
(m/z) Calc. for C14H13FN2O: 224.12, Found: 225.21 [M+H].

(Table 1, entry 3) 1H NMR (300 MHz, DMSO-d6): d 8.61 (s,
1H), d 7.45–7.55 (m, 2H), d 7.19 (s, 4H), d 7.08 (t, 2H), d
4.63 (s, 2H), d 3.69 (t, J = 5.9 Hz, 2H), d 2.85 (t,

J= 6.0 Hz, 2H); ESI (m/z) Calc. for C16H15FN2O: 270.12,
Found: 271.11 [M+H]. (Table 1, entry 4) 1H NMR
(300 MHz, DMSO-d6): d 8.54 (s, 1H), d 7.37 (dd, J= 9.3,

5.1 Hz, 2H), d 7.05 (t, J = 9.1 Hz, 2H), d 6.16 (t,
J= 5.5 Hz, 1H), d 3.32–3.40 (m, 5H), d 3.21–3.25 (m, 2H);
ESI (m/z) Calc. for C10H13FN2O2: 212.22, Found: 213.23
[M+H]. (Table 1, entry 5) 1H NMR (300 MHz, DMSO-d6):

d 10.57 (s, 1H), d 7.48–7.56 (m, 4H), d 7.44–7.48 (m, 3H), d
7.12–7.19 (m, 2H); ESI (m/z) Calc. for C13H10FNOS: 247.29,
Found: 248.29 [M+H]. (Table 1, entry 6) 1H NMR

(300 MHz, DMSO-d6): d 10.29 (br s, 1H), d 7.51 (dd,
J= 9.1, 4.9 Hz, 2H), d 7.24–7.29 (m, 4H), d 7.18 (t,
J= 8.9 Hz, 2H); ESI (m/z) Calc. for C13H9F2NO2: 249.21,

Found: 250.01 [M+H]. (Table 1, entry 7) 1H NMR
(300 MHz, DMSO-d6): d 10.20 (br s, 1H), d 7.51 (dd,
J= 9.1, 4.9 Hz, 2H), d 7.09–7.22 (m, 4H), d 6.95 (d,

J= 9.1 Hz, 2H), d 3.76 (s, 3H); ESI (m/z) Calc. for
C14H12FNO3 261.25, Found: 262.15 [M+H]. (Table 1, entry
8) 1H NMR (300 MHz, DMSO-d6): d 10.27 (br s, 1H), d
7.52 (dd, J = 9.1, 4.9 Hz, 2H), d 7.39–7.47 (m, 2H), d 7.13–

7.30 (m, 5H); ESI (m/z) Calc. for C13H10FNO2: 231.22, Found:
232.54 [M+H]. (Table 1, entry 9) 1H NMR (300 MHz,
DMSO-d6): d 8.34 (s, 1H), d 7.15 (d, J = 2.3 Hz, 1H), d
6.76–6.83 (m, 2H), d 6.05–6.11 (m, 1H), d 3.70 (s, 4H), d
3.68 (s, 3H), d 3.36 (s, 2H), d 3.27 (s, 3H), d 3.19–3.26 (m,
2H); ESI (m/z) Calc. for C12H18N2O4: 254.17, Found: 255.15

[M+H]. (Table 1, entry 10) 1H NMR (300 MHz, DMSO-
d6): d 8.40 (s, 1H), d 7.18 (s, 5H), d 7.00 (d, J= 8.7 Hz, 1H),
d 6.83 (d, J = 8.7 Hz, 1H), d 4.62 (s, 2H), d 3.70 (d,

J= 4.2 Hz, 8H), d 2.84 (t, J = 5.9 Hz, 2H); ESI (m/z) Calc.
for C18H20N2O3: 312.26, Found: 313.32 [M+H]. (Table 1, en-
try 12) 1H NMR (300 MHz, DMSO-d6): d 8.30 (s, 1H), d 7.27
(d, J = 9.1 Hz, 2H), d 6.80 (d, J= 9.1 Hz, 2H), d 6.07 (t, J =

5.5 Hz, 1H), d 3.69 (s,3H), d 3.35–3.41 (m, 4H), d 3.27 (s, 3H);
ESI (m/z) Calc. for C11H16N2O3: 224.12, Found: 225.21
[M+H]. Table 1, entry 13) 1H NMR (DMSO-d6, 300 MHz):

d 8.53 (s, 1H), d 8.48 (s, 1H), d 8.17 (d, J = 2.3 Hz, 1H), d
7.82 (d, J = 8.9, 2.8 Hz, 1H), d 7.18 (s, 1H), d 6.86 (s, 2H), d
6.77 (d,J= 8.7 Hz, 1H), d 3.81 (s, 3H), d 3.73 (s, 3H), d 3.70

(s, 3H); ESI (m/z) Calc. for C15H17N3O4: 303.12, Found:
304.26 [M+H]. (Table 1, entry 14) 1H NMR (300 MHz,



Table 1 Synthesis of N,N0-biphenyl urea.

Sr.No. Product Time (h) Yielda (%) Mp (�C)

1 0.5 85 233–237

2 1 80 120–125

3 0.5 91 145–150

4 2 82 135–140

5 3 73 –

6 2 77 155–157

7 2 80 157–160

8 2 75 125–127

9 1.5 80 77–80

10 0.5 87 132–134

11 1 75 140–142

12 1.5 80 130–132

13 0.5 94 196–198

14 3 72 120

a Isolated yields.
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DMSO-d6): d 10.35 (s, 1H), d 7.50–7.55 (m, 2H), d 7.42–7.47

(m, 3H), d 7.21 (d, J = 2.1 Hz, 1H), d 6.95–7.01 (m, 1H), d
6.86–6.91 (m, 1H), d 3.71 (d,J = 3.0 Hz, 6H) ESI (m/z) Calc.
for C15H15NO3S: 289.35, Found: 290.21 [M+H].

3. Results and discussion

Most of the synthetic approaches to produce urea utilise phos-

gene or its tamed analogues. Commercially available reagents,
such as benzyl isocyanate & phenyl isocyanate also effectively
convert into the corresponding disubstituted urea under dry

reaction condition. Reaction of phenyl isocyanate in 1,4-diox-
ane/water or pyridine/water was unable to gives the desired
1,3-diphenylurea in required yield (Liu et al., 2001). Reaction

was very slow and takes about 12–16 h to complete. Reagents
like isocyanate might not withstand in aqueous condition or
react efficiently with complex starting materials. According

to our knowledge there was no method for synthesis of urea
in water from isocyanate and amine. We have, therefore,
sought to develop a methodology which should be Simple,
scalable & eco friendly to produced disubstituted urea, Use

of the reagent that is electrophonic enough and effectively re-
act with amines of various structures, yet reasonably stable in
aqueous environments.

Reaction of 1-fluoro-4-isocyanatobenzene with anisole in
aq. Medium gives desired urea in very low yield (10%) and
it takes 10–15 h to complete the reaction. This could be due

to instability of isocyanate in water. When we repeated same
reaction in water at 4–5 �C, excellent yield of the desired urea
was observed in 30 min. From the above observation we con-
clude that reagent like isocyanate may be stable in aq medium

at lower temperatures. Although this was our observation in
this particular case, however, we do not have any proof for
the stability of such reagent in water at lower temperatures.

To test the feasibility and practical applicability, a reaction
on large scale was conducted in water at 4–5 �C; 85% of con-
version was observed after 30 min. The mixture was just fil-

tered out to get pure biphenyl urea. As the yields of the
products obtained in ordinary tap water and distilled water
were comparable, all reactions were carried out in tap water

so that the consumption of energy and efforts needed to pre-
pare distilled water can be avoided (see ).

Anisole was dissolved in water (complete or partial) and the
mixture was cooled to 5 �C. After 5 min 1 mol equiv of 1-flu-

oro-4-isocyanatobenzene was slowly added in the above reac-
tion mixture in such way that the temperature of reaction
mixture doesn’t rise above 10 �C. As the reaction proceeds

the solid falls out. RM was stirred for 30 min at 5 �C & the
reaction was monitored by TLC. The solid was filtered out
& the residue washed with water. the obtained product does

not require further purification. The solid was collected to re-
port yield and analysis.

Under optimised reaction condition, the scope of reaction

was explored with structurally and electronically diverse
NCO

F

O

H2N

H2O, 4-5 0C
30 min

H
N

H
N

F O
O

Scheme 1
amine, thiols, alcohol and isocyanate to get respective urea,

thiourea & carbamate.
Monosubstituted aryl amine such as n methyl phenyl amine

treated with 1-fluoro-4-isocyanatobenzene under similar con-
dition gives 80% yield. Also good yield was obtained in case

of amine which was partially soluble in aq. medium at lower
temperatures. Reaction of p-nitro aniline with 1-fluoro-4-iso-
cyanatobenzene failed to give the desired product under simi-

lar reaction condition. This may be because of a decrease in
nucleophilicity of amine due to the p-nitro group. Then we
decided to generalise our methodology for the synthesis of

Thiourea & carbamate.
Thiol when treated with 1-fluoro-4-isocyanatobenzene

gives the corresponding thiourea. Similarly when phenol was

treated with 1-fluoro-4-isocyanatobenzene it gives the corre-
sponding carbamate. We found slightly lower yields of thio-
urea & carbamate as compared to urea. We also observed
low yields when n-methyl phenyl amine was treated with 1-flu-

oro-4-isocyanatobenzene. From the above observation we con-
clude that low yield was due to a decrease in nucleophilicity of
phenol, thiols & monosubstituted aryl amine in aq. medium.

Advantage of the above method was that the obtained product
doesn’t require further purification such as column chromatog-
raphy or recrystallisation. The above Method is simple, eco-

nomical, efficient, and high yielding one-pot synthesis of
unsymmetrical disubstituted urea.

The product was confirmed by melting points and spectral
analysis such as MS, NMR.

4. Conclusion

In this communication, we report a simple, economical, effi-
cient, high yielding one-pot synthesis of unsymmetrical disub-
stituted urea, from the corresponding isocyanates under

aqueous medium. The remarkable key feature of the reaction
includes the use of water as an inexpensive and environmen-
tally benign reaction medium, absence of base and any addi-

tional catalyst, and easy isolation of the product. We
believed that this synthesis protocol offer a more general meth-
od for the formation of C–N, C–O & C–S bonds essential to

numerous organic syntheses. Various unsymmetrical disubsti-
tuted ureas, thiourea derivatives (Table 1) were prepared in
high yields and their spectroscopic confirmation was achieved.
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