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Abstract Design of electrode materials with excellent electrochemical properties for advanced

energy storage device are important to the sustainable development of energy resources. In this

manuscript, a novel hierarchical nanoporous carbon@nickel hydroxide (HNCMs@Ni(OH)2) com-

posites were prepared through simple in-situ chemical deposition of Ni(OH)2 nanocrystals on

HNCMs. By tailoring the deposition amount, core–shell structured rambutan-like HNCMs@Ni

(OH)2 microspheres with hairy nickel hydroxide nanocrystal covered on HNCMs were obtained.

Ascribed to the high specific capacitance of nickel hydroxide and the interconnected hierarchical

porous structure of HNCMs, the resultant rambutan-like HNCMs@Ni(OH)2 microspheres as elec-

trode materials display outstanding electrochemical properties including high specific capacity of

248.9 mAh/g at 1 A/g and good capacitance retention of 62.9% at 20 A/g. Furthermore, a hybrid

supercapacitor with rambutan-like HNCMs@Ni(OH)2 microspheres as cathode and HNCMs as

anode were assembled and showed a comparable energy density of 41.3 Wh/kg at the power density

of 173.3 W/kg and high capacity retention of 85.2% after 20,000 cycles at 5 A/g. As a proof of con-

cept example, the fabricated hybrid supercapacitor can be utilized as energy source to instantaneous

light up a red LED indicator. We envisioned that the as-prepared rambutan-like HNCMs@Ni
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(OH)2 microspheres have great potential in constructing of advanced energy storage devices.

� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As an electrochemical energy storage device, supercapacitors in the

past decades have obtained increasing attention because of their bril-

liant performances such as excellent cycle stability, fast charging-

discharging capability, high power density, etc (Simon et al., 2014;

Choi et al., 2020; Tang et al., 2021; Zeng et al., 2019; Lokhande

et al., 2020a; Zhang et al., 2019). However, the low energy density still

hindered their practical applications, especially in peak power assis-

tance and emergency power supply for electric vehicles (Raza et al.,

2018; Yan et al. 2014; Zhou et al., 2019; Du et al., 2020). Therefore,

significant interests have been paid on the construction of supercapac-

itors with large power (P) and energy density (E). Based on the equa-

tion of E = 0.5CV2, extending the operating potentials (V) window

and increasing the specific capacitance (C) are vital to obtain superca-

pacitors with a high value of E (Che et al., 2020; Yang et al., 2019).

Recently, fabrication of hybrid supercapacitors has been considered

an effective approach to raise the E value of supercapacitors without

compromising the power density (Muzaffar et al., 2019; Chodankar

et al., 2020). Usually, a hybrid supercapacitor is composed of a

battery-type active material as the anode to obtain a larger capacitance

and a capacitor-type material as the cathode to improve the voltage

window, therefore resulting in supercapacitors with high energy den-

sity (Afif et al., 2019; Liu et al., 2020; Jiang et al., 2020). Previous stud-

ies have shown that rational design of battery-type active material is

crucial for preparation of hybrid supercapacitor with enhanced electro-

chemical performance, such as long-life energy storage, high-rate per-

formance, high value of energy density and power density (Liang et al.,

2021).

Recently, a variety of materials (including transition metal hydrox-

ides, metal oxides, and conductive polymer) have been extensively

researched as cathodes because of their high theoretical C value

(Gonçalves et al., 2020; Nguyen et al., 2019; Hong et al., 2021; Ou

et al., 2019; Lu et al., 2021a; Yao et al., 2019). Particularly, nickel

hydroxide with a layered structure possesses high theoretical C value

of 289.2 mAh/g and is considered to be an attractive candidate

(Brisse et al., 2018). Nevertheless, bulk nickel hydroxide generally dis-

plays low C value, inferior rate performance, and poor durability due

to the low level of materials utilization ratio, poor electronic conduc-

tivity, irreversible phase transition as well as large volume variation

during the cycling process (Liu et al., 2018; Zhang et al., 2018). Pio-

neers have tried to synthesize nanosized nickel hydroxide such as nano-

spheres (Guo et al., 2021), nanotubes (Zhou et al., 2020a), nanosheets

(Li et al., 2020), and nanoflowers (Hong et al., 2021), which offer large

specific surface area and more electroactive sites to enhance the rate

capability and the specific capacity. However, because of the self-

agglomeration among nano-sized nickel hydroxide during the repeated

redox reaction in the charging/discharge process, the property of pure

Ni(OH)2 applied in electrodes is always unsatisfactory (Yang et al.,

2019; Wang et al., 2019). An alternative way is to fabricate a composite

combined nickel hydroxide with conductive carbon. To date, various

Ni(OH)2/carbon materials have been prepared by in-situ deposition

of nickel hydroxide crystals on carbon materials including carbon nan-

otubes (Abitkar et al., 2019), carbon aerogels (Wang et al., 2018), por-

ous carbon materials (Chen et al., 2020), graphene (Mohammed et al.,

2020), etc. The carbonaceous materials not only enhance the electrical

conductivity of the composite materials but also act as a scaffold to

govern the growth of nickel hydroxide and suppress the agglomeration

of the nickel hydroxide, resulting in composite materials with superior

electrochemical performance. Comparatively speaking, porous carbon

materials are more suitable as the scaffold for their high specific
surface area and interconnected porous structure (Xu et al., 2018;

Wang et al., 2020; Luo et al., 2021). For instance, Zhang et al. reported

the porous polyimide-derived carbon aerogel as a conductive scaffold

for nickel hydroxide nanosheets, and the prepared hybrids displayed a

C value of 149.2 mAh/g at 1 A/g (Zhang et al., 2018). Choi et al. fab-

ricated carbon/Ni(OH)2 with mesoporous structure and it possessed a

C value of 223 mAh/g at 5 mV/s (Choi et al., 2017). Fu et al. success-

fully prepared a hollow mesoporous carbon sphere enwrapped nickel

hydroxide nanosheets showing a C value of 213.2 mAh/g at 1 A/g

(Fu et al., 2018). However, a non-negligible problem is the growth of

nickel hydroxide nanocrystals on porous carbon inevitably led to a

serious blockage of the pores and suppressed the electrochemical per-

formance of the composite.

In this work, core–shell structured rambutan-like HNCMs@Ni

(OH)2 microspheres were elaborately designed and prepared by in-

situ deposition of nickel hydroxide crystals on HNCMs for construc-

tion of high-performance hybrid supercapacitor. The general idea of

this work was schematically shown in Scheme 1. Initially, the HNCMs

were synthesized by dynamic dual template strategy as reported in our

recent works (Xu et al., 2020; Xie et al., 2020), which possessed large

specific surface area and interconnected multimodal porous structure

(micropores-mesopores-interstitial pores). A series of HNCMs@Ni

(OH)2 composite materials were controllably synthesized by tailoring

the deposition amount of nickel hydroxide nanocrystals. Moreover,

the relationship between the structure and electrochemical perfor-

mance of HNCMs@Ni(OH)2 was revealed. Core-shell structured

rambutan-like HNCMs@Ni(OH)2 microspheres with optimized elec-

trochemical properties including a high value of C and superior rate

performance can be prepared in consideration for the balance between

adequate nickel hydroxide nanocrystals and the maintenance of the

hierarchical nanoporous structure of HNCMs. In addition, a hybrid

supercapacitor was assembled employing the optimized rambutan-

like HNCMs@Ni(OH)2 microspheres as cathode and HNCMs as

anode and its electrochemical performances were evaluated.

2. Experimental

2.1. Materials

All chemical reagents were of analytical grade and used with-
out further treatment. Hexadecylpyridinium chloride (CPC),

ammonia (NH3�H2O, 25%-28%), hydrofluoric acid (HF,
�40%), nickel sulfate hexahydrate (NiSO4�6H2O), and potas-
sium persulfate (K2S2O8) were purchased from Aladdin Indus-
trial Cooperation. Poly (acrylic acid) (PAA) (25 wt% solutions

in water) was received from Acros organics. Tetraethylsiloxane
(TEOS) and sucrose were obtained from Alfa Aesar.

2.2. Synthesis of hierarchically nanoporous carbon materials
(HNCMs)

In a typical synthesis, 0.54 g CPC and 4.0 g PAA were firstly

dissolved in 30 mL deionized water under rapid stirring to
obtain a homogeneous solution. Then, 2.0 g ammonia was
slowly added to the above solution, and a milky white suspen-

sion was obtained after vigorous stirring for 30 min. Later on,
TEOS (2.1 g, 10 mmol) and sucrose (5.0 g, 150 mmol) were
added to the above suspension, the mixture was stirred for
30 min and transferred into Teflon-lined stainless steel auto-

http://creativecommons.org/licenses/by-nc-nd/4.0/


Scheme 1 Schematic illustrating the fabrication of HNCMs@Ni(OH)2 composites and assembly of HNCMs@Ni(OH)2//HNCMs

hybrid supercapacitor.
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clave maintained at 80 ℃ for 48 h. After cooling the room tem-
perature, the solid product was washed several times with
deionized water and ethanol by centrifugation and dried at

50 ℃ overnight. The silica/carbon composite was obtained
after annealing at 800 ℃ for 3 h in Ar flow at a heating rate
of 5 ℃/min. Finally, the silica was etched by hydrofluoric acid

(HF, 10 wt%), washed with deionized water to neutrality, and
freeze-dried to obtain hierarchical nanoporous carbon materi-
als (HNCMs).

2.3. Synthesis of hierarchical nanoporous carbon
materials@nickel hydroxide nanosheets (HNCMs@Ni(OH)2)

core–shell composites

Typically, a certain amount (0.21 g � 2.5 g) of NiSO4�6H2O
(the concentration of Ni2+ in the solution at 0.02 � 0.24 M)
and K2S2O8 (6.80 mg � 81.0 mg with concentration ranging

from 0.62 to 7.5 mM) were dissolved in 40 mL deionized water
with vigorous stirring to obtain a uniform solution. The molar
ratio of NiSO4�6H2O: K2S2O8 was kept at 32: 1. Then 100 mg
HNCMs was uniformly dispersed into the mixed solution by

ultrasound. After stirring for 2 h, 0.3 mL ammonia was slowly
added dropwise to the mixed solution and stirred for 30 min.
The HNCMs@Ni(OH)2 composite was obtained by centrifu-

gation, washed by deionized water and ethanol, and finally
vacuum dried. A series of HNCMs@Ni(OH)2 composites were
prepared with the concentration of Ni2+ in the solution at

0.02, 0.04, 0.08, 0.12, 0.20, and 0.24 M, while other experimen-
tal conditions were unchanged. For comparison, pure Ni(OH)2
sample was prepared with the concentration of Ni2+ in the

solution at 0.12 M without adding of HNCMs. All the exper-
imental parameters were summarized in Table S1.

2.4. Material characterizations

The morphology and structure of the as-made samples were
examined by Field-emission scanning electron microscopy
(FE-SEM), transmission electron microscopy (TEM), high-
resolution TEM (HR-TEM) images, and EDX mapping were
collected on Thermal scientific Apreo S LoVac instrument

and JEOL JEM 2100F microscope at an acceleration voltage
of 200 kV. X-ray powder diffraction (XRD) patterns were per-
formed on a Rigaku Model D/max-2500 diffractometer, with

Cu Ka (k = 0.15406 nm) radiation and the scanning angles
(2h) ranging from 5� to 90�. The N2 adsorption measurement
was performed on the Micromeritics TriStar II 3020 sorption
analyzer. Fourier transform infrared (FT-IR) spectra were

obtained using a Bruker VECTOR 22 spectrometer. X-ray
photoelectron spectra (XPS) was measured on Thermo Kalpha
with radiation of Mono Al Kɑ.

2.5. Electrochemical characterization

The electrochemical properties of the individual electrode were

evaluated using a CHI 760E electrochemical workstation
(Shanghai Chenhua Instrument Co., China) in a three-
electrode system with a 2 M KOH aqueous electrolyte, in
which Hg/HgO electrode and Pt foil were used as the reference

electrode and counter electrode, respectively. The working
electrode was prepared by mixing the active materials, acety-
lene black and polytetrafluoroethylene (PTFE, 60 wt%) with

ethanol in a mass ratio of 7:2:1. The slurry was filled into
the nickel foam substrate using a spatula and dried at 80℃
overnight, then pressed at 10 MPa for 3 s to ensure good elec-

trical contact between the foamed nickel substrate and the
active material. The mass loading of the active materials was
about 1.0 mg/cm2. The cyclic voltammetry (CV) and galvano-

static charge–discharge (GCD) measurements were tested
within 0 V � 0.6 V and 0 � 0.5 V at different scan rates, respec-
tively. The electrochemical impedance spectroscopy (EIS) was
performed at the range from 0.01 � 100 kHz under the open

circuit potential at an amplitude of 5 mV.
The specific capacity of a single electrode is calculated by

the following Eq. (1) (Chavan et al., 2021):
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C ¼ IDt
3:6m

ð1Þ

Where C (mAh/g) is the specific capacity of electrode, I (A)

is discharge current, Dt (s) is the discharge time, m is the mass
of the active material (g) and DV (V) is the working potential
window.

2.6. Fabrication of HNCMs@Ni(OH)2//HNCMs hybrid

supercapacitor device

The hybrid supercapacitor device was fabricated with
HNCMs@Ni(OH)2 as the cathode electrode, HNCMs as the
anode electrode, polypropylene membrane as separator, and
2 M KOH as the electrolyte. The negative electrode was pre-

pared by mixing HNCMs, acetylene black, and polytetrafluo-
roethylene (PTFE) in a mass ratio of 8:1:1. To better balance
the charge of the positive and negative electrodes in the hybrid

capacitor device, the mass ratio of the two electrodes is calcu-
lated by the following Eq. (2):

mþ
m�

¼ C�DV�
CþDVþ

ð2Þ

where m+ (g) and m- (g) are the masses of the positive elec-

trode and negative electrode, C+ (mAh/g) and C- (mAh/g) are
specific capacity of positive and negative, respectively. DV+

(V) and DV- (V) are potential ranges of positive electrode
and negative electrode, respectively. The optimized charge bal-

ance mass ratio between HNCMs@Ni(OH)2 (1.0 mg) and
HNCMs (3.3 mg) electrodes was found to be 0.3.

The specific capacitance of the device was calculated by the

following equation:

CH ¼ IDt
MDV

ð3Þ

where CH (F/g) is the specific capacitance of the hybrid

supercapacitor, I (A) is the discharge current, Dt (s) is the dis-
charge time, M (g) is the total mass of effective active materials
of positive and negative electrodes (M = m+ + m-). DV (V) is

the potential range.
The energy density (E, Wh/kg) and power density (P,

W/kg) of the hybrid supercapacitor were calculated based on

the total mass of the effective active material by the following
equation, respectively:

E ¼ CHDV
2

2� 3:6
ð4Þ

P ¼ E� 3600

Dt
ð5Þ
3. Results and discussion

3.1. Controlled fabrication of HNCMs@Ni(OH)2

Firstly, the HNCMs@Ni(OH)2–6 sample was prepared by in-

situ growth of Ni(OH)2 crystals on HNCMs with the concen-
tration of Ni2+ at 0.12 M. The chemical component, crystal
structure, and morphology of the synthesized HNCMs@Ni
(OH)2–6, as well as HNCMs and Ni(OH)2, were comparatively

studied by FTIR, XRD, FE-SEM, and TEM, respectively.
Fig. 1a shows the FTIR spectra of the three samples. As for
the HNCMs, two typical peaks at approximately 3444 and
1631 cm�1 belonged to the –OH tensile vibration from inserted
water and the bending vibration of water molecules, respec-

tively, were observed (Lokhande et al., 2019). Another two
weak absorption peaks located at 1719 and 1087 cm�1 were
assigned to the stretching vibration of C = O (carbonyl) and

antisymmetric stretching vibration of the C-O bond, respec-
tively (Xu et al., 2020; Zhou et al., 2020b). With regard to
nickel hydroxide, except for the obvious peaks of adsorbed

water, the characteristic peak at 678 cm�1 and was 463 cm�1

were originated from the bending vibration of the Ni-O-H
bond, and the stretching vibration of the Ni-O bond (Shakir
et al., 2020). Moreover, two peaks at 1120 and 932 cm�1 were

related to the SO4
2- anion, which was derived from the reduc-

tion of S2O8
2- (Zhang et al., 2020). The FTIR spectrum of

HNCMs@Ni(OH)2–6 was similar to that of pure Ni(OH)2,

but the peak intensity decreased somewhat, potentially sug-
gesting the presence of Ni(OH)2 in HNCMs. Fig. 1b demon-
strated the XRD patterns of three samples. For the XRD

pattern of HNCMs (red curve), two characteristic peaks
located at 24.2� and 43.4� were attributed to the facet (002)
and facet (100) of graphite, respectively, which indicated the

existence of a certain graphite layer in HNCMs (Ping et al.,
2019a; Han et al., 2019). The XRD pattern of pure Ni(OH)2
(blue curve) was well-matched with standard card (JCPDS:
22–0444) of a-Ni(OH)2, where the several feature peaks at

11.5, 23.7, 33.5, and 59.5 were corresponding to the crystal
planes of (001), (002), (110), and (300), respectively (Fu
et al.,2018; Zhang et al., 2020). Both the typical diffraction

peaks belong to the a-Ni(OH)2 and graphited HNCMs could
be found in the XRD pattern of HNCMs@Ni(OH)2–6. More-
over, the intensity of all peaks significantly decreases due to the

formation of small size nickel hydroxide crystals on
HNCMs@Ni(OH)2.

To get an intuitive observation about the formation of

HNCMs@Ni(OH)2, the FE-SEM was applied to track the
morphology change before and after deposition of Ni(OH)2
on HNCMs. In Fig. S1(a, b), the fabricated HNCMs is
walnut-like microspheres with diameter ranging from 400 to

900 nm. Differently, the prepared Ni(OH)2 particles exhibit a
micro-flowers structure assembled by the agglomeration of
nickel hydroxide nanosheets (Fig. S1(c, d)). Interestingly,

HNCMs@Ni(OH)2–6 inherited the spherical morphology of
HNCMs (Fig. 1c), and presented a larger size, suggesting the
presence of Ni(OH)2 nanocrystals on HNCMs. The resultant

HNCMs@Ni(OH)2–6 was more likely as hairy microspheres
(Fig. 1d). We called this structure as ‘‘rambutan-like” micro-
spheres. No obvious Ni(OH)2 crystal aggregates were observed
implying that the deposition of Ni(OH)2 nanocrystals strictly

occurred on HNCMs scaffold. The reason could be explained
as follows. During this growing process, the Ni2+ in the solu-
tion was adsorbed on the HNCMs negative charge surface of

HNCMs via electrostatic interaction. Meanwhile, the presence
of potassium persulfate promoted the ionization of ammonia
water ensuring sufficient OH– to react with Ni2+ to produce

Ni(OH)2, which could be acted as a seed and anchored on
the surface of HNCMs, then gradually grew into ‘‘hairy” Ni
(OH)2 nanocrystals.

The nitrogen adsorption–desorption curves of the three
samples were shown in Fig. 1e. As shown, all of them exhibit
a typical Ⅳ type isotherm along with a distinct hysteresis loop,
implying the mesoporous structure of the samples. The calcu-



Fig. 1 Characterization of HNCMs, Ni(OH)2, and HNCMs@Ni(OH)2. (a) FTIR spectra, (b) XRD patterns, (c, d) FE-SEM images of

HNCMs@Ni(OH)2–6, (e) adsorption/desorption isotherms of nitrogen, and (f) the pore size distribution curves.
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lated specific surface area of HNCMs@Ni(OH)2–6 was
286.6 m2/g, which was smaller than HNCMs (735.3 m2/g).
The reduction of the specific surface area may be due to that

the deposition of Ni(OH)2 inevitably blocked the mesopore
of the HNCMs to some extent. Compared with nickel hydrox-
ide micro-flower (59.8 m2/g), HNCMs@Ni(OH)2–6 owned a

larger specific surface area of 286.6 m2/g, potentially suggest-
ing that the HNCMs@Ni(OH)2–6 retained the porous struc-
ture of HNCMs. Moreover, the pore size distribution curve

of HNCMs@Ni(OH)2–6 (Fig. 1f) presented a sharp mesopore
peak centered at 3.9 nm and a wide nanopores peak at a range
of 13.4 nm to 28.0 nm, similar to that of the HNCMs. The
results further demonstrated that the HNCMs@Ni(OH)2–6

still had a hierarchical nanoporous structure in the inner core.
Furthermore, the interior structure of the as-prepared
HNCMs and HNCMs@Ni(OH)2–6 were compared by TEM
observation. As shown in Fig. 2a, the hierarchically nanopor-

ous internal structure of HNCMs could be observed, where
mesoporous and secondary interstitial nanoporous were visi-
ble. Fig. 2b and c revealed that the HNCMs@Ni(OH)2–6 still

maintained the hierarchically nanoporous structure. Besides,
hairy nickel hydroxides were wrapped on the surface of
HNCMs to form the core–shell structured rambutan-like

HNCMs@Ni(OH)2–6 microspheres. Undoubtedly, the hierar-
chically nanoporous internal structure of HNCMs@Ni(OH)2–
6 was beneficial for the transportation of ions in materials. The
high-resolution TEM (HRTEM) image and selected area elec-

tron diffraction (SAED) pattern of the HNCMs@Ni(OH)2–6



Fig. 2 (a) TEM images of HNCMs, (b, c) TEM images of HNCMs@Ni(OH)2–6, (d) HRTEM image of hairy crystal (inset is the

corresponding SAED pattern), (e, f) EDS mapping images of HNCMs@Ni(OH)2–6.
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were displayed in Fig. 2d and the corresponding inset. The
interlayer d-spacing values of the hairy crystals were about
0.25 and 0.22 nm matched with the facets (110) and (103)

of a-Ni(OH)2 respectively. The SAED pattern showed multiple
sharp diffraction rings, demonstrating the polycrystalline char-
acteristics of the hairy nickel hydroxide in HNCMs@Ni

(OH)2–6. In Fig. 2e and Fig. 2f, EDS mapping images showed
that the elements including carbon, oxygen, and nickel ele-
ments were homogeneously dispersed in the rambutan-like
HNCMs@Ni(OH)2–6 microspheres, indicating the uniform
distribution of nickel hydroxide in HNCMs.

The elemental valence states of HNCMs@Ni(OH)2–6 were

also characterized using XPS. Elements of Ni, O, and C were
detected in the survey XPS spectrum (Fig. 3a). As shown in
Ni 2p spectrum (Fig. 3b), the two major peaks at 856.4 and

874.0 eV corresponded to the Ni 2p3/2 and Ni 2p1/2 spin–orbit
peaks, respectively (Jing et al., 2021). Besides, a couple of satel-
lite peaks centered at 862.1 and 880.3 eV with the energy



Fig. 3 XPS spectrum of HNCMs@Ni(OH)2–6, (a) survey XPS spectrum, (b) Ni 2p, (c) C 1 s, and (d) O 1 s.
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difference of 18.2 eV were also observed, indicative of the biva-
lent nickel (Ji et al., 2021; Feng et al., 2020). In the C 1 s spec-
trum (Fig. 3c), the major peak at 284.4 eV demonstrated the

existence of graphitic or graphite-like sp2 C-C bonds, while
two weak peaks located at 286.2 and 288.7 eV were attributed
to C-O and C = O bonds (Liu et al., 2019; Du et al., 2021).
The C element was mainly originated from HNCMs. The exis-

tence of oxygen-containing groups in HNCMs not only facili-
tated the deposition of nickel hydroxide but also increase the
wettability of the electrode–electrolyte interface. In addition,

the O 1 s spectra (Fig. 3d) revealed that there were three peaks
with binding energy at 531.0, 531.6, and 532.9 eV, which
belonged to C = O, Ni-O, and C-O bonds, respectively, fur-

ther confirming the presence of nickel hydroxide in the synthe-
sized HNCMs@Ni(OH)2–6 (Mohammed et al., 2020; Han
et al., 2020).

It is well known that the concentration of Ni2+ in the solu-
tion has great impacts on the deposition of Ni(OH)2 on
HNCMs and therefore influences the structure of the resultant
HNCMs@Ni(OH)2. Given this, a series of HNCMs@Ni

(OH)2 composites were prepared with the concentration of
Ni2+ in the solution at 0.02, 0.04, 0.08, 0.12, 0.20 and
0.24 M. The as-synthesized products were marked as

HNCMs@Ni(OH)2-X (X = 1, 2, 4, 6, 10 and 12), respectively.
The morphology of the HNCMs@Ni(OH)2-X was systemati-
cally observed by FE-SEM and TEM. Fig. 4a1-d1 demon-
strated that the resultant HNCMs@Ni(OH)2 composites

presented as uniform core–shell structured rambutan-like
HNCMs@Ni(OH)2 microspheres as Ni2+ in the system was
kept below 0.12 M of concentration. Generally, the amount
of nickel hydroxide on HNCMs increased and the porosity

decreased with the increase of the Ni2+ concentration (Fig. 4-
a2-d2 and a3-d3). When the concentration of Ni2+ in the sys-
tem at 0.2 and 0.24 M, besides the HNCMs@Ni(OH)2
microspheres, obvious nickel hydroxide aggregates were found
on HNCMs@Ni(OH)2, as shown in Fig. 4e1-f1. This might be
due to the solution phase nucleation of the excessive Ni2+.

Moreover, the resultant HNCMs@Ni(OH)2 microspheres
exhibited flower-like microspheres with nickel hydroxide
nanosheet on the surface (Fig. 4e2-f2) and had no obvious por-

ous inner structure as shown in the TEM images (Fig. 4e3-f3).
The porosity of the HNCMs@Ni(OH)2 composite micro-
spheres were further characterized by N2 adsorption measure-
ment. The N2 adsorption/desorption isothermal curves were

shown in Fig. S2 and the pore structural parameters were sum-
marized in Table S2. As manifested in Fig. S2 and Table S2,
the HNCMs@Ni(OH)2–6 exhibited the highest specific surface

area (286.6 m2/g) and the largest pore volume (0.28 cm3/g).



Fig. 4 TEM and FE-SEM images of (a1-a3) HNCMs@Ni(OH)2–1, (b1-b3) HNCMs@Ni(OH)2–2, (c1-c3) HNCMs@Ni(OH)2–4, (d1-d3)

HNCMs@Ni(OH)2–6, (e1-e3) HNCMs@Ni(OH)2–10, and (f1-f3) HNCMs@Ni(OH)2–12.

8 N. Li et al.
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3.2. Comparative study on the electrochemical properties of the
HNCMs@Ni(OH)2 composites electrodes

Generally, adequate nickel hydroxide and the maintenance of
hierarchical nanoporous of HNCMs has been considered to be

important for HNCMs@Ni(OH)2 composites having excellent
electrochemical properties. Subsequently, the electrochemical
behaviors of various HNCMs@Ni(OH)2 composites were
compared. Fig. 5a compares the cyclic voltammetry (CV)

curves of various HNCMs@Ni(OH)2 electrodes scanned at
5 mV/s in the potential window of 0 to 0.6 V. A couple of far-
adaic redox peaks were presented for each electrode, which
Fig. 5 The electrochemical performance of HNCMs@Ni(OH)2-X inc

at 1 A/g, and (c) EIS files. The electrochemical properties of HNCMs@

current density, and (f) cycle performance.
originated from the reversible redox reaction between Ni2+

and Ni3+, implying a typical characteristic of battery behavior
(Zhang et al., 2018; Lokhande et al., 2020b). Moreover, the CV

curve of the HNCMs@Ni(OH)2–6 electrode exhibited the lar-
gest peak current and integral area, suggesting the highest
value of C (Upadhyay et al., 2019). In addition, all galvanos-

tatic charge–discharge (GCD) curves (Fig. 5b) presented
apparent potential platforms corresponding to the faraday
redox reaction (Fu et al., 2018; Lokhande et al., 2018). Accord-

ing to Eq. (1), the C value of nickel hydroxide and
HNCMs@Ni(OH)2-X (X = 1, 2, 4, 6, 10, and 12) were calcu-
lated to be 125.7, 146.2, 156.7, 219.5, 248.9, 190.9, and 168.9
luding (a) CV curves scanned at 5 mV/s, (b) GCD curves obtained

Ni(OH)2–6 including (d) CV curves vs scan rate, (e) GCD curves vs
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mAh/g, respectively. Compared with nickel hydroxide, all the
HNCMs@Ni(OH)2-X showed a higher C value due to the
enhanced conductivity of HNCMs. Besides, the value of C

from HNCMs@Ni(OH)2–1 to HNCMs@Ni(OH)2–6 gradu-
ally increased in turn because of the increased amount of nickel
hydroxide in the composites. However, HNCMs@Ni(OH)2–

10 and HNCMs@Ni(OH)2–12 with a larger amount of nickel
hydroxide owned a reduced C value. It might be due to the
agglomeration of nickel hydroxide crystals on HNCMs and

seriously blocked the pore channels and hindered the ion trans-
portation in the composite materials. Overall, the
HNCMs@Ni(OH)2–6 electrode possessed the highest C value
among these samples in account for the balance between ade-

quate nickel hydroxide nanocrystals and reserved hierarchical
nanoporous structure of HNCMs. Fig. 5c is the electrochemi-
cal impedance spectra (EIS) of the samples. Additionally, the

equivalent circuit was used for quantitative analysis, and the
detailed parameters were summarized in Table S3. Compared
with other electrodes, the HNCMs@Ni(OH)2–6 electrode
Fig. 6 (a) CV curves of the HNCMs electrode and HNCMs@Ni(

HNCMs in various potential windows. (c) CV curves of the HNCMs@

HNCMs@Ni(OH)2–6//HNCMs at various current densities. (e) EIS

HNCMs@Ni(OH)2–6//HNCMs. (g) Cycle property of HNCMs@Ni

connected hybrid supercapacitors (nominal voltage is 3 V).
exhibited the smallest charge transfer resistance (Rct) and inter-
nal resistance (Rs), revealing its superior electrochemical con-
ductivity and faster charge transfer process. (Yun et al.,

2019; Wu et al., 2021). Furthermore, the slope in the low-
frequency corresponds to the Warburg impedance (Ping
et al., 2019b). Compared with the original Ni(OH)2 electrode,

the HNCMs@Ni(OH)2 electrode showed a larger slope line,
indicating that the introduction of HNCMs effectively
improved the electrochemical conductivity and the diffusion

rate of electrolyte ions.
Fig. 5d shows the CV curves of HNCMs@Ni(OH)2–6 elec-

trodes at various scan rates ranging from 5 to 100 mV/s. Obvi-
ously, the shape of the CV curves under different current

densities do not significantly deform, whereas the current
response increased with the increasing of scan rate, suggesting
the good rate capability of the HNCMs@Ni(OH)2–6 electrode

(Feng et al., 2020; Lu et al., 2021b). Besides, all GCD curves
obtained at various current densities also were similar with
apparent potential plateaus (Fig. 5e). To make a comparison,
OH)2–6 electrode. (b) CV curves of the HNCMs@Ni(OH)2–6//

Ni(OH)2–6//HNCMs at different scan rates. (d) GCD curves of

curves of HNCMs@Ni(OH)2–6//HNCMs. (f) Ragone plots of

(OH)2–6//HNCMs. (h) Photographs of lighted red LED by two
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the electrochemical properties of pure HNCMs and nickel
hydroxide were also evaluated as shown in Fig. S3a and b.
The C value of three electrodes including nickel hydroxide,

HNCMs, and HNCMs@Ni(OH)2–6 independence of current
density were calculated and summarized in Fig. S4. Compared
with nickel hydroxide electrode, HNCMs@Ni(OH)2–6 elec-

trode displayed higher value of C (248.9 mAh/g vs 125.7
mAh/g) and better rate performance (62.9% vs 51.9%).
Besides, the HNCMs@Ni(OH)2–6 electrode retained 81.1%

of its initial capacity after 3000 cycles, while the nickel hydrox-
ide electrode only had 50.0% capacity retention, indicating a
great improvement in cycling performance. The
HNCMs@Ni(OH)2–6 electrode also showed competitive per-

formance in comparison with the recently reported results of
nickel hydroxide-based electrodes (Table S4). The synthesized
HNCMs@Ni(OH)2–6 in the application of capacitor exhibited

superior cycling stability, enhanced specific capacity, and high
rate performance attributed to the following aspects. Firstly,
the introduction of HNCMs significantly improved the con-

ductivity of Ni(OH)2. Secondly, the interconnected hierarchi-
cally nanoporous structure of HNCMs in HNCMs@Ni
(OH)2–6 composite benefits the ion transportation inside the

materials. Lastly, the unique structure of HNCMs@Ni
(OH)2–6 effectively avoided collapse and volume expansion
of nickel hydroxide during the consecutive charging and dis-
charging process.

3.3. Fabrication and electrochemical properties of HNCMs@Ni

(OH)2–6//HNCMs hybrid supercapacitor

A hybrid supercapacitor was assembled employing
HNCMs@Ni(OH)2–6 as cathode and HNCMs as anode,
and the mass ratio of HNCMs@Ni(OH)2–6 to HNCMs in

the two electrodes was set to be 0.3:1 according to Eq. (2).
Based on curves scanned at 5 mV/s in Fig. 6a, the potential
window of �1–0 V for HNCMs and the potential window of

0–0.6 V of HNCMs@Ni(OH)2–6 suggested that the operating
potential window of the hybrid supercapacitor was in the
range of 0–1.6 V. Subsequently, a series of CV curves of the
hybrid supercapacitor was recorded with the operating voltage

changing from 1.1 V to 1.6 V at 5 mV/s (Fig. 6b). Obviously,
the CV curve obtained at 1.6 V was significantly deformed due
to the polarization phenomenon. Thus, the optimal potential

window in the range of 0–1.5 V was eventually applied.
Fig. 6c displayed the CV curves of the hybrid supercapacitor
scanned from 5 to 100 mV/s. As shown, the curves were well

retained in shape without obvious deformation even at
100 mV/s of high scan rate. Moreover, all GCD curves
scanned from 1 to 20 A/g (Fig. 6d) were nearly symmetrical,
indicative of the excellent electrochemical reversibility and

high coulomb efficiency of the hybrid supercapacitor (Gao
et al., 2020). According to discharge time and Eq. (3), the cal-
culated specific capacitances (CH) were 132.1, 114.4, 85.6, 65.8,

52.4, 43.3, 36.6, and 30.8F/g at 1, 2, 5, 8, 10, 12, 15, and
20 A/g, respectively. The electrochemical impedance spectrum
in Fig. 6e showed the Rs and the Rct of hybrid supercapacitor

were 1.26 X and 0.37 X, respectively, revealing the good elec-
trochemical conductivity (Yang et al., 2021; Li et al., 2019).
In general, the value of E and P have been considered to be

two critical indicators for evaluating the commercial applica-
tion value of hybrid supercapacitors. Fig. 6f showed that the
hybrid supercapacitor delivered a maximum E value of 41.3
Wh/kg at a P value of 173.3 W/kg, and still maintained a

decent E value of 9.6 Wh/kg even at a high P value of
3.4 kW/kg. These properties were comparable or even higher
than reported Ni(OH)2-based hybrid supercapacitors

(Table S5). Finally, the cycling property of the assembled
hybrid supercapacitor was estimated at 5 A/g (Fig. 6g). The
results showed that the value of C increased in the first 3000

cycles, which might be owing to the gradual activation of the
electrode, leading to a larger electroactive surface area and
more channels for the transportation of electrons and ions
(Zhang et al., 2020; Wu et al., 2019, Lokhande et al., 2020c).

After 20,000 cycles, 85.2% capacity retention was maintained.
Besides, the inset in Fig. 6g showed the similar shape of the
first/last ten cycles, suggesting superior electrochemical

reversibility and cycling stability. As a proof of concept exam-
ple, two connected charged hybrid supercapacitors can suc-
cessfully illuminate a red LED (nominal voltage is 3 V)

(Fig. 6h), demonstrating the potential application value of
the hybrid supercapacitor.
4. Conclusions

In conclusion, well-defined core–shell structured rambutan-like

HNCMs@Ni(OH)2 microspheres were prepared by facile in-situ chem-

ical deposition of nickel hydroxide nanocrystals on HNCMs. It is

found that the Ni2+ concentration in the system could effectively reg-

ulate the surface structure and electrochemical properties of the resul-

tant HNCMs@Ni(OH)2 electrodes. By keeping the concentration of

Ni2+ in solution at 0.12 M, HNCMs@Ni(OH)2–6 rambutan-like

microspheres with suitable deposition amount of nickel hydroxide

nanocrystals and well-retained hierarchical nanoporous structure can

be prepared. Ascribed to the high C value of nickel hydroxide and

the interconnected hierarchical porous structure of HNCMs, the resul-

tant rambutan-like HNCMs@Ni(OH)2 microspheres display out-

standing electrochemical properties including a high C value (248.9

mAh/g at 1 A/g) and splendid rate performance (the capacitance reten-

tion of 62.9% at 20 A/g) as electrode materials. Furthermore, a hybrid

supercapacitor with rambutan-like HNCMs@Ni(OH)2 microspheres

as cathode and HNCMs as anode were assembled, which showed a

comparable E value of 41.3 Wh/kg at a P value of 173.3 W/kg and

good cycling stability with 85.2% initial capacity retention through

20,000 cycles at 5 A/g. It is anticipated that as-prepared

HNCMs@Ni(OH)2 microspheres will have great application prospects

in the fabrication of advanced energy storage devices.
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