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Abstract The present work deals with the removal of Cr(VI) from aqueous media by modified

Amberlite XAD-4 (MAX-4) resin through the solid phase extraction method. Different parameters

such as pH, dosage and temperature were optimized during the batch experiment. The experimental

data were analyzed by Freundlich, Langmuir, Dubinin-Radushkevich (D-R) and Temkin equilib-

rium isotherms. Each characteristic parameter of isotherms was determined. The kinetic sorption

experiments show that the sorption process follows pseudo second order kinetics. The sorption

mechanism was investigated by Reichenberg (R-B) and Morris–Weber equations. From the ther-

modynamic parameters, it could be concluded that the sorption process is endothermic and spon-

taneous in nature. The interference and desorption studies were also performed. The results show

that MAX-4 resin has the capability to remove Cr(VI) significantly from aqueous media even in the

presence of interfering ions.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Many industries such as leather tanning, dye and electroplat-
ing extensively use chromium as alloy or trivalent or hexava-
lent salt. As a result, these industries release a large quantity

of chromium without treatment to our environment, which
causes great hazard to humans and aquatic life (Goyal et al.,
2003; Yusof and Malek, 2009; Raji and Anirudhan, 1998).
In aqueous systems, chromium mainly exists in two forms,

i.e. Cr(III) and Cr(VI) subsequently; toxicity and reactivity
mainly depend on the chemical form or oxidation state of
the chromium. In trace amounts, Cr(III) is an essential nutri-

ent for humans and to mammals for their maintenance of nor-
mal glucose tolerance factor, lipid and protein metabolism
(Kocaoba and Akcin, 2002). Cr(VI) is a well known carcino-

gen and due to its high solubility in water, high oxidation po-
tential and relatively small size enable it to penetrate through
biological cell membrane and being mutagenic and genotoxic

causes different types of DNA damages (Ertul et al., 2010).
Cr(VI), i.e. CrO2�

4 and Cr2O
2�
7 mainly exist as divalent anions

with oxide functionalities at the periphery, which are potential
sites for hydrogen bonding (Yilmaz et al., 2007). As it has been

mentioned that Cr(VI) is highly soluble in water as compared
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to Cr(III) and the maximum permissible level for Cr(VI) in po-
table and industrial wastewater is 0.05 and 0.25 mg/L, respec-
tively (Sayin et al., 2010; Deligöz et al., 2008). Therefore, there

is an essential need of treatment of wastewater containing
Cr(VI) as compared to Cr(III).

Solid phase extraction (SPE) has been favored by many

researchers and preferred over liquid–liquid extraction (Qure-
shi et al., 2009; Ozcan et al., 2009). In SPEs, chelating resins
have often been used because they provide good thermal sta-

bility and high sorption capacity toward ions with better flex-
ibility in working conditions however; insignificance in
selectivity and regenerability makes them unsuitable. Among
them 5-palmitoyl oxine-functionalized XAD-2 resin (Filik

et al., 2003), Amberlite XAD-16 (Elci et al., 2000), Amberlite
XAD-2000 (Narin et al., 2001), Amberlite IRC-718, 4-vinyl
pyridine-divinylbenzene/acrylonitrile-divinylbenzene copoly-

mer, Amberlite IRA-400, silica based C-18 Dowex A-26 have
been employed for sorption of Cr(VI) (Mondal, 2003). Besides
these resins, Amberlite XAD-4 has been known as non-ionic

polymeric sorbent material with superior physical properties,
economical, easily available, thermally stable and can be easily
modified (Uzun et al., 2001; Soylak et al., 2001). Previously, we

have modified Amberlite XAD-4 by introducing amino groups
into the aromatic ring for the removal of fluoride ion from
aqueous environment (Solangi et al., 2010). Therefore, keeping
in view the above observations and results, in this study we

have used the same resin, i.e. modified Amberlite XAD-4 for
the removal of Cr(VI) ion from aqueous media using the solid
phase extraction method by optimizing various parameters.

2. Experimental

pH meter (781-pH/Ion meter, Metrohm, Herisau Switzerland)

with glass electrode and internal reference electrode was used
for pH measurements. The pH of the solution was adjusted
by mixing an appropriate amount of 0.1 M (HCl/KOH). Janke

and Kunikel automatic shaker model KS 501 D Singapore was
used at ambient temperature (25 ± 2 �C). All chemicals used
were of analytical or equivalent grade. Stock standard solution

(1000 mg/L) was prepared using K2Cr2O7 purchased from Sig-
ma (St. Loius, MO, USA). Calibration standards were pre-
pared by diluting stock solution. Amberlite XAD-4�
(surface area of 825 m2/g, pore diameter 14.4 nm and bead size

20.50 mesh) was procured from Fluka, Germany. The surface
area, pore diameter and mesh size were quoted by the supplier.
HNO3/H2SO4

n

m

1 2

Scheme 1 Modification of
All glassware were thoroughly washed and soaked overnight in
5 M HNO3, and rinsed with de-ionized water before use. All
aqueous solutions were prepared with deionized water that

had been passed through a Millipore milli-Q Plus water purifi-
cation system (ELGA Model CLASSIC UVF, UK).

2.1. Synthesis

Amberlite XAD-4� has been modified (Scheme 1) by using
previously developed method (Solangi et al., 2010). The mod-

ification of the resin was confirmed by FT-IR spectroscopy.

2.2. Sorption procedure

Batch experiment was carried out for the sorption process of
Cr(VI) on MAX-4 resin at ambient temperature. A 10 ml sam-
ple solution containing Cr(VI) (5 mg/L) was taken in a 25 mL
Erlenmeyer flask and MAX-4 resin (0.1 g) was added. The

mixture was equilibrated for a fixed period of time (1 h). The
mixture was filtered and the concentration of Cr(VI) was ana-
lyzed by UV–Visible spectrophotometer. The percent sorption

of Cr(VI) ion was calculated as follows:

%Sorption ¼ Ci � Cf

Ci

� 100

where Ci and Cf (mol/L) are the initial and final concentrations
of solution before and after the sorption of the Cr(VI),
respectively.

3. Results and discussion

3.1. Effect of sorbent dosage

Sorbent dosage is an important parameter because this con-
cludes the ability of a sorbent for given initial concentration

of the sorbate at the operating conditions (Solangi et al.,
2009). The effect of sorbent dosage on the sorption of Cr(VI)
is represented in Fig. 1. It was observed that as the amount of

MAX-4 resin increases, the sorption of Cr(VI) increases due to
more surface area available for sorption. Maximum sorption
(98.7 %) was achieved at 0.1 g of the MAX-4 resin and sorp-

tion remained almost constant up to 0.2 g. There is no signif-
icant change in removal efficiency of sorbent after 0.1 g due to
the availability of large number of sorption sites. Keeping in
NO2 H3NCl

SnCl2.2H2O

EtOH/HCl

n

m

n

m

+ -
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Amberlite XAD-4 resin.
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Figure 1 Effect of sorbent dosage on the percent sorption (10 ml

of Cr(VI) with concentration 1 · 10�4 mol/L, 60 min contact

time).
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view the above results further study was processed at 0.1 g of
sorbent.

3.2. pH effect on sorption of Cr(VI)

Effect of pH on sorption of Cr(VI) on MAX-4 resin was also
checked because in the sorption experiment pH plays a vital

role (Memon et al., 2008). Surface binding sites of sorbent
and aqueous chemistry are widely affected with change in
pH. At a fixed concentration of Cr(VI), sorption behavior

was observed at various pH values as shown in Fig. 2 and it
has been found that the maximum sorption (qmax = 1.08 m-
mol/g) was achieved at pH 6.9.

3.3. Sorption isotherms

Optimizing the design of a sorption system to evaluate the

most appropriate correlations for equilibrium curves is impor-
tant. The sorption isotherms may be applied to predict the sor-
bate behavior that has not been experimentally investigated.
Langmuir, Freundlich, D-R and Temkin isotherm models

were applied to experimental data (Langmuir, 1918; Clayton,
1926; Kamboh et al., 2011). These nonlinear isotherm models
can be recast as linear equations (Ruthven, 1984; McKay et al.,

1982; Abdelwahab, 2007).
The Langmuir isotherm (Eq. (1)) is based on the assump-

tion of monolayer surface coverage, equivalent sorption sites,

and independent sorption sites.
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Figure 2 Effect of pH on sorption of Cr(VI) on MAX-4 resin

(10 ml of Cr(VI) with concentration 1 · 10�4 mol/L, 60 min

contact time).
Ce

Cads

¼ 1

Qb
þ Ce

Q
ð1Þ

The linear plot of Ce/Cads versus Ce indicates the experimental

data follow the Langmuir sorption isotherm very well (Fig. 3).
The separation factor RL, a dimensionless constant, which de-
scribes the type of isotherm, is an essential characteristic of

Langmuir isotherm and can be expressed by RL = 1 + (1/
bCi), where Ci is the initial concentration of Cr(VI) ion. The
values of RL calculated were between 0.522 and 0.108, the
RL values indicate favorability (0 < RL < 1) of isotherm

(Eagleton et al., 1966).
The Freundlich isotherm (Eq. (2)) is useful to identify sorp-

tion phenomena with the heterogeneous sorbent media. This

isotherm is derived from the assumption that the sorption sites
are distributed exponentially with respect to the heat of sorp-
tion (Helfferich, 1995).

lnCads ¼ lnAþ 1

n
lnCe ð2Þ

where A and 1/n are the Freundlich constants, obtained from
the slope and intercept of plot of lnCads versus lnCe, indicating

the sorption capacity and sorption intensity, respectively
(Fig. 4). The value of 1/n< 1 (Table 1), indicates that Cr(VI)
is favorably adsorbed by resin at low concentration. Greater

value of A also suggests that there is a greater Cr(VI) uptake
by the resin.

The Dubinin-Radushkevich, (D-R) isotherm (Eq. (3)) mod-

el is more general than the Langmuir isotherm as its deviations
are not based on ideal assumptions such as equipotential of
sorption sites, absence of steric hindrances between adsorbed
and incoming particles and surface homogeneity on micro-

scopic level (Itodo and Itodo, 2010).

lnCads ¼ lnXm � be2 ð3Þ

where e = RT ln(1 + 1/Ce), Cads is the amount of sorbate ad-

sorbed per unit mass of the sorbent and Ce is the amount of
Cr(VI) ion in the liquid phase at equilibrium (Fig. 5). Xm

and b are D–R isotherm constants. The constant gives an idea

about the mean free energy E (kJ/mol) of sorption per mole-
cule of the sorbate when it is transferred to the surface of
the solid from infinity in the solution and can be calculated
using the relationship:

E ¼ 1ffiffiffiffiffiffiffiffiffi
�2b
p ð4Þ

This parameter gives information about sorption mechanism
as chemical ion exchange or physical sorption depending on
R
2
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Figure 3 Langmuir isotherm (Conc. 1.0 · 10�4–1.0 · 10�3 mol/

L, 0.1 g sorbent per 10 mL of sorbate with 60 min shaking time at

25 �C).
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Figure 4 Freundlich isotherm (Conc. 1.0 · 10�4–1.0 · 10�3 mol/

L, 0.1 g sorbent per 10 mL of sorbate with 60 min shaking time at

25 �C).
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Figure 6 Temkin isotherm (Conc. 1.0 · 10�4–1.0 · 10�3 mol/L,

0.1 g sorbent per 10 mL of sorbate with 60 min shaking time at

25 �C).
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Figure 7 Reichenberg (R-B) plot at different temperatures for

the sorption of Cr(VI) on MAX-4 resin.

Table 1 Isotherm parameters for sorption of Cr(VI) on MAX-4 resin.

Parameters Langmuir Freundlich D-R Temkin

Q mmol/g 1.581 ± 0.054 – – –

A mmol/g – 0.526 ± 0.094 – –

Xm mmol/g – – 13.72 ± 0.034 –

A mol/g – – – 1.08 ± 0.000034

b · 102 L/mol 91.32 – – –

1/n – 0.746 – –

E kJ/mol – – 9.449 –

b J/mol – – – 680.1

RL 0.522–0.108 – – –

n – 1.338 – –

R2 0.994 0.991 0.990 0.980

R
2
 = 0.9936
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Figure 5 D-R isotherm (Conc. 1.0 · 10�4–1.0 · 10�3 mol/L,

0.1 g sorbent per 10 mL of sorbate with 60 min shaking time at

25 �C).
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the value of E, i.e. 0–8 or 8–16 corresponding to physical or
chemical sorption, respectively. Herein, the magnitude of E
is between 8 and 16 kJ/mol that reveals the sorption process
follows chemical ion exchange (Andal and Sakthia, 2010).

Temkin isotherm, assumes that the heat of sorption de-
creases linearly with the coverage due to sorbent-sorbate
interaction.
Table 2 Kinetic parameters for sorption of Cr(VI) on MAX-4 resi

Temperature Pseudo-first order kinetic model

K1 min�1 qe mol/g R2

303 0.1602 2.300 0.951

308 0.1183 1.568 0.963

313 0.1325 2.244 0.987
qe ¼ B lnAþ B lnCe ð5Þ

b ¼ RT

B
ð6Þ
n.

Pseudo-second order kinetic model

K2 g mol/min qe mol/g R2

162.08 0.00772 0.999

43.971 0.00946 0.996

47.529 0.00911 0.997



0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 1 2 3 4 5 6

√t (√min)

qt
 (

m
m

ol
g

-1
)

298 K 308 K 318 K

Figure 8 Morris–Weber plot at different temperatures for the

sorption of Cr(VI) on MAX-4 resin.

0.00

0.04

0.08

0.12

0.16

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

t (min)

q e
 m

m
ol

g-1

298 K 308 K 318 K

Figure 9 Sorption of Cr(VI) onto MAX-4 resin as a function of

time at different temperatures.

-2.2

-2.15

-2.1

-2.05

-2

-1.95

-1.9

-1.85

-1.8

3.18 3.2 3.22 3.24 3.26 3.28 3.3 3.32

T (K-1)×10
-3

ln
k

1

Figure 10 Arrhenius plot of the sorption of Cr(VI) on MAX-4

resin.

Table 3 Thermodynamic parameters for sorption of Cr(VI)

on MAX-4 resin.

DH
(kJ/mol)

DS
(kJ/mol/K)

DG
(kJ mol)

298 K 308 K 318 K

43.655 0.161731 �4.608
ln Kc = 1.861

�6.006
ln Kc = 2.346

�7.851
ln Kc = 2.971
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where A (lmol/g) is Temkin isotherm constant, b (J/mol) is a

constant related to heat of sorption, R is the gas constant
(8.314 Jmol/K) and T the absolute temperature (K). A plot
of qe versus ln Ce enables the determination of the isotherm

constants A, b from the slope and intercept (Fig. 6). The data
are listed in Table 1. The value of b is quite higher that reveals
the strong ionic interaction of sorbate and sorbent.

3.4. Sorption kinetics

The batch experiment plays a key role in designing and evolu-
tion for the presentation of sorption kinetics. According to the

literature (Dabrowski, 2001) sorption kinetics can be deter-
mined by the following main steps:

Internal diffusion: Diffusion of molecules inside the pores.
External diffusion: Diffusion of molecules from the bulk
phase toward the interface space.
Surface diffusion: Diffusion of molecules in the surface

phase.
Adsorption/desorption elementary processes.

In this regard numbers of kinetic models have been used to
evaluate the sorption efficiency of sorbents. In this study, the
experimental data are subjected to different kinetic equations

such as Lagergren (Lagergren, 1898), pseudo-second order rate
expression (Aksu and _Is�oğlu, 2005), Morris–Weber (Weber
and Morris, 1963) and Reichenberg (Reichenberg, 1953).

Lagergren/pseudo first order and pseudo second order ki-
netic equation are as follows:

lnðqe � qtÞ ¼ ln qe � k1t ð7Þ

t

qt
¼ t

k2q2e

� �
þ 1

qe

� �
ð8Þ

where qt (mol/g) is the amount of sorbent adsorbed at time t, qe
(mol/g) is the amount of sorbent adsorbed at equilibrium and
k1 (min�1) and k2 (g/mol/min) are the sorption rate constants.
The qe and K1 and K2 were obtained from the slope and inter-

cept of linear plots between ln (qe � qt) versus t and (t/qe) ver-
sus t. Table 2 shows the values calculated from these plots.
From the values of regression coefficient (R2), it has been ob-

served that experimental data follow pseudo second order
kinetics comparatively better than pseudo first order kinetics.

Reichenberg equation (Eq. (9)) was used to test the sorption

process, whether sorption is film diffusion or intra-particle.

Q ¼ 1� 6e�Bt

p2
ð9Þ

Rearranging the above equation in linear form we get

Bt ¼ �0:4977� lnð1�QÞ

where Q = qt/qm, Bt = p2Di/r
2 and qt and qm are adsorbed

concentration at time t and the maximum sorption capacity

and Di is the effective diffusion coefficient of the sorbate spe-
cies inside the sorbate particle.

It is clear from the linear plot of Bt versus time t (Fig. 7)
that intra-particle diffusion is a rate controlling step with a

small friction of sorption that occurs through film diffusion be-
cause the plot does not pass through the origin.

Morris–Weber equation was also used to explore the kinetic

sorption process.
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qt ¼ Rd

ffiffi
t
p

ð10Þ

where qt is the adsorbed concentration at time t, and Rd is in-
tra-particle diffusion rate constant. The linear plot (Fig. 8) of
qt versus

ffiffi
t
p

shows that intra-particle diffusion occurs and line
Table 4 Comparison of Cr(VI) sorption capacity of MAX-4 resin

Resin pH

Azophenolcarboxylic acid resin 2.0

6-Mercapto Purinylazo Resin 1.0.

Amberlite XAD-7 impregnated with Aliquat 336 6.0

Amberlite XAD-16 1.0

Lignocellulosic substrate 2.1

Modified Amberlite XAD-4 (MAX-4) 6.9
does not pass through the origin, which means the intra-parti-

cle diffusion is not the only rate limiting parameter controlling
the process. The value of Rd from the slope was calculated as
0:9 lmol=g=

ffiffi
t
p

(298 K), 0:2 lmol=g=
ffiffi
t
p

(308 K) and

1:1 lmol=g=
ffiffi
t
p

(318 K) with R2 values 0.987, 0.991 and
0.987, respectively.

3.5. Thermodynamics of sorption

Sorption of Cr(VI) onto MAX-4 Resin was analyzed at differ-
ent temperatures. It has been observed that as temperature in-
creases the sorption capacity value increases (Fig. 9). The

obtained values from the plot are 0.085 (298 K), 0.1017
(308 K) and 0.1188 mmol/g (318 K), respectively.

The temperature effect was analyzed by using Arrhenius

equation (Solangi et al., 2011) at optimized conditions,

ln k1 ¼ lnAo þ
Ea

RT

where Ao (1/min) is the ‘‘frequency factor’’ and independent of
temperature, Ea (kj/mol) is the activation energy, R (8.314 J/

mol/K) is the gas law constant and T is the absolute tempera-
ture. The value of Ea (94.32 kJ/mol) and Ao (0.757/min) is cal-
culated from the plot of lnk1 versus 1/T (Fig. 10). The value of

activation energy is in the range of 40–800 kJ/mol that suggests
the sorption is chemical in nature (Nollet et al., 2003; Singh
and Rawat, 1994).

From the plot of ln kc versus 1/T (Fig. 11), numerical values
of DH (kJ/mol), DS (kJ/mol /K) and DG (kJ/mol) were calcu-
lated using following equations.

ln kc ¼
�DH
RT

þ DS
R

ð11Þ

DG ¼ �RT ln kc ð12Þ

The evaluated thermodynamic parameters, change in enthalpy

DH (kJ/mol), change in entropy DS (kJ/mol /K) and change in
free energy DG (kJ/mol) are listed in Table 3. The negative va-
lue of DG shows the feasibility of the sorption process and the
decrease in DG values with an increase in temperature indicates

the spontaneity of the process at higher temperature. The po-
sitive value of DH confirms the endothermic process and DS
reveals that there is good affinity of Cr(VI) toward MAX-4

Resin.

3.6. Interference study

Most industrial effluents are source of many contaminations.
They may interfere with uptake of target species, for example
existing of other anions such as F�, Cl�, Br�, NO�3 , etc. The
with other sorbents.

Capacity mmol/g Reference

0.69 Pramanik, et al. (2007)

1.06 Mondal (2003)

0.97 Saha, et al. (2004)

0.40 Tunceli and Turker (2002)

0.72 Dupont and Guillon (2003)

1.08 Present study
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study was carried out with different concentration ratios of
target and interfering anion, i.e. 1:1, 1:5 and 1:10. From the re-
sults it is concluded that there is no significant change in up-

take of target species in the presence of other co-existing
anions at optimized conditions (Fig. 12).

3.7. Desorption

Efficiency of resin can be justified with its reusability and com-
parative efficiency (Table 4). The used resin can be regenerated

by washing with 5 M HCl (Fig. 13).

4. Conclusion

It has been concluded that modified Amberlite XAD-4 (MAX-
4) resin is an efficient ion exchange material for the removal of
Cr(VI) from aqueous media. The maximum sorption of Cr(VI)

achieved at pH 6.9 means that the MAX-4 resin can work at
neutral pH. The isotherm models, kinetics and thermodynamic
study further confirm the experimental results. The interfer-
ence study shows selectivity of resin for Cr(VI) at optimized

conditions. Hopefully, this study will find applicability in ana-
lytical, environmental and industrial fields.
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