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Abstract The growing demand for Spirulina (Arthrospira platensis) as a dietary supplement sug-

gests that a rapid and reliable method to determine its saccharides and polyols content would be

of great interest. Additionally, the impact of these microalga growing conditions may have on such

content would be really useful for Spirulina producers. This manuscript presents the development

and validation of a new analytical microwave-assisted extraction (MAE) method as the first step in

determining saccharides and polyols in spirulina samples. A Box Behnken design has been

employed to evaluate three extraction variables, viz., temperature (x1: 30, 55 and 80 �C), solvent
composition (x2: 0, 25, and 50% ethanol in water), and solvent to sample ratio (x3: 10:1, 20:1,

and 30:1 mL of solvent per g of sample). These extraction variables have been optimized by

Response Surface Methodology (RSM). Under the optimal conditions that have been thereby

established (i.e., 30 �C, 50% ethanol in water, and 30:1 solvent to sample ratio), a kinetic study
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has been performed with full recovery in 15 min. Subsequently, the developed MAE method was

validated by determining the number of parameters, including linearity, LODs, LOQs, accuracy,

and precision. Finally, the resulting MAE method was successfully applied to determine saccharides

and polyols contents in a number of Spirulina samples that had been cultivated in varying salinity

media. Five saccharides and polyols were identified in Spirulina, i.e., inositol, glycerol, sorbitol, glu-

cose, and maltose. The total amount of the compounds of interest in the Spirulina that had been

cultivated in a higher salinity media (17 and 25 g L�1 of sodium chloride in water) was six-folds

higher than the one cultivated in low saline water (0 and 3 g L�1 of sodium chloride in water). This

substantial content difference was mainly explained by the considerable increment in glycerol and

glucose contents when grown in a more saline medium. Therefore, it has been demonstrated that the

new method is suitable to determine saccharides and polyols contents in different Spirulina samples.

� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Spirulina (Arthrospira platensis) is mainly consumed as an alimentary

supplement (Ma et al., 2019). This microscopic blue-green alga con-

tains a number of interesting nutritional substances, including saccha-

rides and polyols (Carrasco-Reinado et al., 2019; Chaiklahan et al.,

2013). Glucose is one of the main saccharides found in Spirulina

(Pyne et al., 2017; Shekharam et al., 1987) and is closely associated

with the formation of cyanophyte starch in Spirulina. This starch is

formed by glucose monomers linked by a-1,4-type glycosidic (Julius,

2018). Such a glycosidic bond facilitates sugar–protein interactions

during the polymerization of phycocyanin, thus preventing pigment

degradation (Hadiyanto et al., 2018). A stable green color indicates

that Spirulina can be ideally used as a food ingredient (Hosseini

et al., 2013).

It has also been experimentally demonstrated that Spirulina is not

only an attractive food ingredient but also that thanks to its polysac-

charides content, it exhibits anticarcinogenic properties (Hirahashi

et al., 2002). The moiety of the crude extract of water-soluble polysac-

charide after been hydrolyzed to the monosaccharides contains glu-

cose, rhamnose, galactose, ribose, and xylose (Kurd and Samavati,

2015), whilst the concentrated alcoholic extracts revealed the presence

of glucose, fructose, galactose, mannose, and other lower molecular

weight carbohydrates. Additionally, polyalcohols (inositol, glycerol,

sorbitol, and mannitol) are also present in the extract along with the

saccharides (Carrasco-Reinado et al., 2019). The aforementioned poly-

ols have formerly been used in the treatment of diverse pathologies

such as diabetes mellitus, galactosemia, or bipolar depression

(Bhagavan, 2002; Eden Evins et al., 2006).

The biochemical traits of Spirulina are strongly related to its grow-

ing conditions (Mutawie, 2015; Shalaby et al., 2010). Since the cultiva-

tion media is an essential growth factor, a large number of studies have

focused on the influence of water salinity levels. Previous research

studies have reported that a highly saline growing media produces

Spirulina with an increasing concentration of carotenoids and lipids

(Sujatha and Nagaran, 2014) as well as with a greater content of

antioxidants with enhanced antiviral activity (Shalaby et al., 2010).

On the contrary, the highly saline media also produces Spirulina with

lower protein content (Hadiyanto et al., 2018; Hirahashi et al., 2002;

Kurd and Samavati, 2015). A reliable determination method, there-

fore, is necessary to accurately quantify saccharides and polyols in

Spirulina as a tool to monitor the quality of Spirulina grown under dif-

ferent conditions. Additionally, as mentioned above, the developed

method could also assist with further research studies that intend to

explore the benefits that the saccharides and polyols found in microal-

gae may provide as diet products or alimentary supplements.

As a first step to conceive a practical determination method for sac-

charide and polyols in Spirulina, a suitable analytical extraction should

be developed. Although Soxhlet is the most commonly used extraction

method, it presents some drawbacks in terms of economic viability,
solvent consumption, and waste generation. Microwave-assisted

extraction (MAE) based methods seem to present some advantages

when compared to other traditional methods. This technique has

already been demonstrated to be suitable for extracting a number of

analytes from Spirulina (Aftari et al., 2017; Chew et al., 2019;

Kalsum, 2019). When MAE is applied to a vegetable sample, the rapid

generation of heat and pressure draws the analytes out of the matrix.

Since exposure to high temperatures takes place in a short period of

time, extract degradation is mostly avoided and greater compound

recoveries are usually achieved.

Microwave exhibits a rapid increase in the volumetric heating so

that the energy can penetrate the matrix; thus, the whole of the sample

is evenly heated. This heating procedure is what really characterizes

and makes microwaves a really different energy source when compared

to conventional ones (Eskilsson and Björklund, 2000).

MAE efficiency is largely affected by solvent composition and sol-

vent to sample ratio (Setyaningsih et al., 2015) since the solvent acts as

the energy and mass transfer medium during the MAE process

(Mandal et al., 2007). For this reason, these parameters should be

optimized.

When the interactions between the different variables in an extrac-

tion process may have a substantial influence on the final result, a

chemometric approach becomes a really practical way to outline a

new extraction method. Contrarily to the one-factor-at-a-time experi-

mental design, a factorial design would allow a more effective experi-

ment and simultaneous evaluation of the variables and their

interactions in an MAE (Aftari et al., 2017; Setyaningsih et al.,

2012). For example, Box–Behnken design (BBD) allows a shorter num-

ber of runs than other factorial designs. Additionally, BBD is compat-

ible with Response Surface Methodology (RSM), which would

determine the optimal values for the parameters in the model

(Ferreira et al., 2007).

Therefore, this study has applied a BBD in conjunction with RSM

to optimize the variables in a microwave-assisted analytical extraction

method. The optimized method was subsequently used to determine

the saccharides and polyols contents in a number of samples obtained

from Spirulina that had been cultivated in a range of media at specific

salinity levels.

2. Materials and methods

2.1. Materials and reagents

Carbohydrate standards (analytical grade), HPLC-grade etha-
nol, sodium hydroxide (NaOH), and sodium acetate (NaOAc)

were obtained from Sigma (Madrid, Spain). Water was filtered
by means of a Milli-Q purification system (Millipore, Billerica,
MA, USA).

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2.2. Spirulina samples and growing conditions

A single strain of Spirulina (Arthrospira platensis) was
acquired from the Microalgae Culture Collection at the
Indonesian Institute of Sciences (Jakarta, Indonesia). The

Spirulina stock culture was inoculated into 2 L autoclaved nat-
ural seawater enriched with modified Zarrouk medium for its
nutrition (Figure S1). The culture was carried out under con-
trolled conditions in four different tubes at the following salin-

ity levels: pure distilled water and 3, 17, and 25 g L�1 of
sodium chloride in water. These levels were prepared by dilut-
ing natural seawater (35 g L�1 of salt mostly containing

sodium chloride (95–99%) in the solution) with distilled water.
The culture was kept at a constant temperature between 25 and
26 �C and was exposed for 12 h light/dark alternative periods

to 40 W cool-white fluorescent tubular LED lamps. The grow-
ing process of the Spirulina culture was monitored by counting
the number of cells, and optimum growth was reached after

approximately 12 days. According to an optimum exponential
growth chart, all the cultures were scaled-up to 20 L culture
medium. The culture conditions remained the same as before
the scaling-up. A new growth chart was built and monitored

to determine the harvesting time. After approximately 18 days,
the culture reached its optimum growth point, and a semi-
continuous culture system was set up. At this stage, the cul-

tures were suitable for continuous harvesting. The cells from
each harvest batch were directly frozen at –80 �C overnight
before they were submitted to the freeze-drying process on

the following day to produce the final Spirulina powder.

2.3. Extraction of saccharides and polyols

The Microwave-assisted Extractions (MAE) were conducted

by means of a MARS 6 240/50 (CEM, Matthew, NC, USA)
equipped with extraction vials manufactured in modified poly-
tetrafluoroethylene (PTFE-TFM). The Spirulina samples were

accurately weighed to match the solvent ratios established for
the experiments, i.e., 10:1, 20:1, and 30:1 (mL of solvent per g
of sample) and placed into extraction vials. These vials were

filled with 15 mL of a solvent accurately composed of pure
water or ethanol (25 or 50%) in water and then submitted to
the corresponding temperature level within the experimental

range (30, 55, or 80 �C). After the extraction had been com-
pleted, the vials were submerged to cool down into a water
bath at 5 �C for 30 s until they reached room temperature.
The solid matter in the samples was separated using filtering

paper. The filtration cake was then rinsed using a different sol-
vent, and the volume of the extract was adjusted to 25 mL. The
extracts were then diluted at 1:10 in Milli-Q water and filtered

through a 0.45 lm nylon filter (Millipore) before injecting into
the HPAE–PAD system.

2.4. Identification and quantification of saccharides and polyols

The chromatographic analyses were carried out employing an
ion chromatography system (Metrohm 930 Compact IC Flex)

with a pulsed amperometric detector (HPAE-PAD) fitted with
a golden electrode. The compounds were separated in a Met-
rosep Carb 2–150/4.0 column (Metrohm), and the analyses
were recorded utilizing MagIC net� version 3.1 (Metrohm

AG, Switzerland). The mobile phases were formed by
300 mM NaOH and 1 mM NaOAc. The injection volume
was established at 20 mL. The elutions were submitted to iso-
cratic conditions under a 0.5 mL min�1 flow rate. The saccha-

rides and polyols contents in Spirulina samples were
determined by comparing their retention times against the
retention times of the pure standards.

2.5. Experimental design and statistical analysis

In order to determine the independent factors that might affect

the efficiency of the microwave-assisted extraction (MAE)
method, a Box Behnken design (BBD) was applied. Then,
the variables were optimized by Response Surface Methodol-

ogy in order to develop a second-order polynomial model.
The BBD included three independent factors, x1, temperature,
x2, solvent composition, and x3, solvent to sample ratio, at
three different levels (�1, 0, 1) (Table 1). The experiments

(Table 2) were carried out in random order. This methodology
is intended to determine the influence of each independent fac-
tor as well as their interactions. Then, by adjusting the result-

ing data to a polynomial model, the corresponding surface
response should be obtained. The final results in the RSM
could be expressed as follows:

y ¼ fðx1; x2; x3Þ ð1Þ
where y is the dependent factor while x1, x2, and x3 are the
independent factors (temperature, solvent composition, and
solvent to sample ratio, respectively).

Since the objective was to optimize the response (y), the
best estimation for the correlation between the independent
factors and the response surface had to be previously deter-
mined. A second-order model is generally used to calculate

the RSM:

y ¼ bo þ
Xk

i¼1

bixi þ
Xk

i¼1

biixi
2 þ

Xk

i¼1

Xk

j¼1;j–i

bijxixj þ e ð2Þ

where b0, bii (i = 1, 2,. . ., k), b ij (i = 1, 2, . . .,k; j = 1, 2,. . .,k)
are the regression coefficients; xi are k represents the factors
that may affect MAE efficiency, while e represents a random

error.
The regression coefficients were estimated by a least-square

method where only up to the second-order interactions would
be considered.

The implementation of the BBD and the modeling of the
RSM were performed with the aid of STATGRAPHICS Cen-
turion XVI (Statpoint Technologies, Inc., USA). These statis-

tical tools model the response surface based on a particular
quadratic model equation. The Analysis ToolPak that is pro-
vided with Excel by Microsoft Office was used to analyze the

experimental data obtained from the one-factor-at-a-time
method. The Analysis of Variance (ANOVA, p = 0.05) was
used to determine the degree of influence of each variable of
interest in the study. In those cases where ANOVA would

point at a particularly significant difference, a Least Significant
Difference (LSD, p < 0.05) test was applied to verify differ-
ences between average values.

2.6. Method performance

According to the ISO 17025 and ICH Guidelines Q2 (R1)

(ICH, 2005; ISO, 2005), the developed method was validated.



Table 1 Selected factors and their levels for Box–Behnken design.

Factors �1 0 +1 Unit

x1, extraction temperature 30 55 80 �C
x2, solvent composition 0 25 50 % ethanol in water

x3, solvent to sample ratio 10:1 20:1 30:1 (v/w)

Table 2 Box–Behnken design for three factors with their observed responses.

Run x1, temperature x2, solvent composition x3, solvent to sample ratio Relative values to the maximum response (%)

1 0 1 �1 69.56

2 0 �1 1 91.45

3 1 �1 0 76.98

4 �1 0 1 90.01

5 0 �1 �1 64.93

6 0 0 0 69.82

7 0 0 0 71.79

8 �1 �1 0 76.40

9 �1 0 �1 77.53

10 0 0 0 67.24

11 1 0 1 92.67

12 1 0 �1 50.44

13 �1 1 0 100

14 1 1 0 39.81

15 0 1 1 84.68
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In detail, to evaluate the linearity of the method over a partic-

ular concentration interval, it was applied to five standards
solutions of saccharides and polyols that had been elaborated
at the following concentration intervals: 0.1–10 mg L�1 for

inositol and sorbitol; 0.2–20 mg L�1 for glycerol and maltose;
and 1–100 mg L�1 for glucose. The coefficient of determina-
tion (R2) obtained according to the resulting calibration curve

ranged from 0.9923 (glycerol) to 0.9998 (maltose). The limit of
detection (LOD) obtained ranged from 0.16 (inositol) to
2.09 mg L�1 (glycerol), while the limit of quantification
(LOQ) ranged from 0.53 (inositol) to 6.97 mg L�1 (glycerol).

With regards to the method’s accuracy, unfortunately, no
definite statements can be made since a certified reference
material (CRM) for saccharides and polyols in Spirulina is

not yet available. Nevertheless, a spiking method was
employed to determine the extraction recovery (%R) and mea-
sure the stability of the studied analytes during the MAE pro-

cess. For that purpose, some Spirulina samples were submitted
to MAE in accordance with the previously established opti-
mum conditions. The samples had been added 1 mL of a
spiked mixture containing the standards of the compounds

of interest. The spiked mixture was formed by inositol, glyc-
erol, sorbitol, glucose, and maltose, and the concentration of
each compound was similar to the level found in the Spirulina

mix sample. The extraction recovery was calculated by com-
paring the levels of the spiked compounds found in the spiked
samples with the actual level of the compounds in the spiked

mixture.
The MAE method was also evaluated for repeatability

(intra-day) and intermediate precision (extra-day). Repeatabil-
ity was determined by performing nine extractions on the same
day, while intermediate precision was determined by conduct-

ing three separate extractions on three consecutive days. The
precision of MAE was expressed as the coefficient of variation
(%CV) of the extraction yield.

3. Results and discussion

3.1. Identification of saccharides and polyols

Given that the chromatographic method (HPAE-PAD) used in
this study does not provide specific information that allows the

identification of chromatographic peaks; a careful identifica-
tion of the compounds was conducted based on the retention
times of the pure standards and the spiking method applied

to real samples. As a preliminary study, a qualitative screening
was performed to identify saccharides and polyols in a
homogenous sample prepared using Spirulina that had been

cultured in the water at different saline levels. For this purpose,
0.75 g of Spirulina powder was extracted at 55 �C using 25 mL
of ethanol in water (1:3), and the extract was analyzed by the

HPAE-PAD system. The performance of the HPAE-PAD
method, including linearity, range, precisions, detection and
quantification limits, was evaluated and the results have been
included in Table 3.



Table 3 Analytical characteristic for the determination of sugar and polyols by HPAE-PAD.

Compound Range (mg L�1) Linear equation R2 LOD (mg L�1) LOQ (mg L�1)

Inositol 0.1–10 y = 99.9011x + 7.8016 0.9998 0.160 0.534

Glycerol 0.1–10 y = 9.9943x + 12.8568 0.9995 0.274 0.914

Sorbitol 0.2–10 y = 73.42834x + 0.3897 0.9923 2.091 6.968

Glucose 1–100 y = 54.5704x + 26.5239 0.9998 1.633 5.444

Maltose 0.2–20 y = 47.82173x + 1.52174 0.9998 0.303 1.002
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Twenty standard compounds, i.e., arabitol, erythritol,
galactitol, glycerol, inositol, maltitol, mannitol, ribitol, sor-

bitol, xylitol, arabinose, fructose, galactose, glucose, lactose,
maltose, mannose, rhamnose, saccharose, and xylose were
used as references. By comparing the retention time of those

standards with the peaks that appeared in the chromatogram
obtained by HPAE-PAD, five saccharides were identified in
the Spirulina mix sample: inositol, glycerol, sorbitol, glucose,

and maltose. Based on the LOD of the HPAE-PAD method
when applied to the standards, it could be concluded that
the contents of the 15 missing compounds (arabitol, erythritol,
galactitol, maltitol, mannitol, ribitol, xylitol, arabinose, fruc-

tose, galactose, lactose, maltose, rhamnose, saccharose, and
xylose) were below 0.320 mg kg�1 in the Spirulina sample.
The identified compounds were confirmed by spiking 1 mg

of corresponding standard solution providing similar levels
to the 50% of the levels in the Spirulina mix sample. No
new peaks appeared in the chromatogram.

3.2. Influence of the extraction factors

The extraction factors that may influence Microwave-assisted

Extraction (MAE) efficiency and that have been studied in this
research include temperature (x1), solvent composition (x2),
and solvent to sample ratio (x3). Since those extraction factors
have different values, units, and ranges, each factor value were

normalized within a domain ranging from �1 to +1 to obtain
a more even response (Bas� et al., 2007). The normalized factors
were then evaluated for their effects on the extraction yield by

a Box Behnken design (BBD).
A BBD with 15 experimental units, including three center

points, was performed. The responses for the BBD were estab-

lished at the relative values to the maximum peak area of glyc-
erol. This compound was selected because it provided
adequate response signals to the BBD (Table 2). Then, the
influence of temperature (x1), solvent composition (x2), and

solvent to sample ratio (x3) was evaluated based on an analysis
of variance (ANOVA). The mean square against an estimate of
the experimental error was used to determine the statistical sig-

nificance of the influence obtained for each one of the relevant
extraction variables. The standardized values of the main,
interactive, and quadratic effects are charted in a Pareto chart

(Fig. 1). The factors with a significant effect on the response
(p < 0.05) have been indicated by crossing a vertical line.
According to these results, two main effects (x1 and x3), two

interaction effects (x1x2 and x1x3), and a quadratic effect
(x3x3) with p-values lower than 0.05 have a significant influ-
ence on the extraction efficiency.

In regards to the Pareto chart, the solvent to sample ratio

presented a positive effect on extraction efficiency, i.e., the
higher the solvent to sample ratio, the higher the extraction
yield. On the contrary, a negative effect can be attributed to
temperature, where lower temperature levels would give place

to greater saccharide and polyols extractions. Furthermore,
the interaction between temperature and solvent composition
seemed to affect the recoveries negatively. Nevertheless, the

optimal set up of the model was carried out based on the con-
tribution of all factors according to the following formula:

y ¼ 69:62� 10:5x1 � 1:97x2 þ 12:05x3 þ 1:84x1x1

� 15:19x1x2 þ 7:44x1x3 þ 1:84x2x2 � 2:85x2x3

þ 6:20x3x3 ð3Þ
where y is the MAE yield and xi are the studied factors (x1,
temperature; x2, solvent composition; x3, solvent to sample
ratio).

Lack-of-fit was calculated according to the variability of the
current model residuals and the variability between observa-
tions at replicate settings. Since the p-value was 0.08 for the
lack-of-fit in ANOVA, the model was confirmed to be ade-

quate with a 95.0% confidence level for the observed data.
According to the R2, it was concluded that the fitted model
explains 94.38% of the response variability, where the residual

standard deviation was 2.28, and their average absolute error
was 3.10. Hence, the suggested model was confirmed to be suit-
able to determine the optimum MAE conditions to achieve a

maximum extraction yield.

3.3. Response optimization

A three-dimensional mesh plot that would allow predicting the

relationships between independent and dependent factors was
constructed. Response surface methodology (RSM) was used
to plot a yield prediction surface graph based on the variations

of the extraction factors considered in the study, viz. tempera-
ture (x1), solvent composition (x2), and solvent to sample ratio
(x3) (Fig. 2). The highest response level with a 104% MAE

yield was located at �0.99, 0.99, and 1.00 for x1, x2, and x3,
respectively. According to this, the optimum MAE conditions
for saccharide and polyols extraction would be established as

30 �C temperature, 50% ethanol in water, and 30:1 solvent-
to-sample ratio.

3.4. Kinetics study

According to the optimum condition previously established for
MAE, the optimum kinetics condition for the extraction of
saccharides and polyols from Spirulina samples was deter-

mined by verifying the yields obtained at specific time inter-
vals. The different kinetics extraction efficiencies were
determined as the average of the maximum yields obtained

of the five compounds of interest over varying extraction time



Fig. 1 Standardized values of main, interaction, and quadratic effects of MAE factors on the extraction yield.

Fig. 2 A 3D mesh of response plot for the studied MAE factors.

6 R.N. Fathimah et al.
intervals that ranged from 5 to 30 min. Fig. 3 shows the plot of
the extraction yields over the extraction time. The ANOVA

applied to the results from the extraction yields suggested that
the extraction time significantly influenced the extraction effi-
ciency (p < 0.05). Accordingly, the 15 min extraction time
seemed to present the best extraction yield (LSD, p < 0.05)

compared to even longer extraction times. Therefore, 15 min
was established as the optimal extraction time.

3.5. Method validation

The repeatability and intermediate precision of the new MAE
method were validated by extracting saccharides and polyols

from Spirulina under the previously established optimal condi-
tion. The precision of the MAE method was evaluated for
intra-day (repeatability) and inter-day (intermediate precision)

extractions. In accordance with ICH guidelines, the precision
was expressed as the coefficient of variation (CV, %). In fact,
the CV values for precision were 10% or lower in all the cases,
ranging from 0.66% up to 0.94% (intra-day and inter-day

variation, respectively) in the case of glycerol and from
7.03% up to 10.08% for inositol extractions (Table S1).
According to these results, the developed MAE method had

been validated with regards to repeatability and intermediate
precision when applied to the extraction of saccharides and
polyols from Spirulina samples.

The accuracy of the MAE method was evaluated by com-
paring the peak areas of the studied compounds in both spiked
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and control samples after the extraction procedure. The extrac-
tion recoveries by the developed MAE ranged from 84.51%
(sorbitol) to 93.79% (inositol). These results are satisfactory

for the extraction of saccharides and polyols from Spirulina
by MAE.

3.6. Application to real samples

The optimized and validated method was applied to determine
saccharides and polyols contents in real samples in the interest
to check the method applicability. The real samples were taken

from the Spirulina cultures that had been grown at four differ-
ent salinity levels: 0, 3, 17, and 25 g L�1 of sodium chloride in
water. The levels of inositol, glycerol, sorbitol, glucose, and

maltose in the Spirulina samples determined by the MAE
method that had been developed are compiled in Table 4.

Salt stress usually negatively affects the growth of land

plants by reducing their biomass or their bioactive compound
contents (Kirrolia et al., 2011; Tambiev et al., 2011). In con-
trast, microalgae react by adapting to salt and other stress con-

dition, especially in terms of polysaccharides content (Aftari
et al., 2017). A study performed by Zeng and Vonshak
(Zeng and Vonshak, 1998) reported that highly saline media
would favor Spirulina photosynthesis processes. This incre-
Table 4 The concentration of saccharides and polyols of Spirulina

Salinity (g NaCl L�1) Saccharides and polyols (mg Kg�1)

Inositol Glycerol Sorbitol

0 37.24 ± 0.52 1491.97 ± 31.36 1152.17 ±

3 37.83 ± 6.43 1945.69 ± 178.95 657.34 ±

17 40.59 ± 3.53 16091.02 ± 262.41 2601.92 ±

25 44.70 ± 7.22 15538.51 ± 383.86 2536.08 ±

Note. The total values followed by different letters are indicated as signi
ment of the photosynthesis process would give place to a
greater presence of glucose and other photosynthesis products.
Other research studies have been conducted on the effect of

salt stress on algae. Particularly, a study by Hiremath and
Mathad (2010) demonstrated that increasing salt concentra-
tion in Chlorella vulgaris culture medium beyond a particular

level would result in an increment of its carbohydrate contents.
Another green microalga, Scenedesmus obliquus, was also eval-
uated for salt stress by El-Katony and El-Adl (2019), who
reported an increased value in soluble saccharides contents

as the salinity of the growing medium went up.
The ANOVA completed over this study has revealed that

different water salinity produced statistically significant differ-

ences between the final saccharides and polyols contents in
Spirulina (p < 0.05). According to the LSD, the content levels
of the studied compounds in Spirulina showed a significant

escalation (p < 0.05) in line with salinity increments. Such
content went up from 4.82 to 30.38 g kg�1, where the most sig-
nificant increments were explained by glycerol and glucose

contents, which increased by 10- and 5-fold, respectively. Fur-
thermore, sorbitol content levels also doubled when the Spir-
ulina samples had been cultured under highly saline
conditions (17–25 g L�1). In this line, Hiremath and Mathad

(2010) reported that stress conditions might stimulate the syn-
(mg Kg�1) cultured in different salinity.

Total (mg Kg�1)

Glucose Maltose

53.74 908.95 ± 45.68 38.98 ± 11.76 3629.31a

39.85 2149.49 ± 94.98 31.45 ± 3.07 4821.80b

48.18 11596.64 ± 278.45 45.13 ± 1.97 30375.30c

66.46 11304.69 ± 218.55 49.89 ± 7.99 29473.87d

ficantly different (p < 0.05) for different salinity.
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thesis of carbohydrates since soluble saccharides play an essen-
tial role in the osmotic regulation of cells under stress
conditions.

4. Conclusions

The developed MAE method allows rapid and accurate extraction of

the saccharides and polyols present in Spirulina. A Box Behnken

design was used in combination with Response Surface Methodology

for the optimization of the method, and the extraction kinetics of

the saccharides and polyols found in Spirulina, i.e., inositol, glycerol,

sorbitol, glucose, and maltose, was assessed. The optimum conditions

for the MAE method to extract the five studied compounds were deter-

mined as 15 min extraction time, at 30 �C, using 50% ethanol in water

and a solvent-sample ratio of 30:1. The developed method demon-

strated suitable precision with coefficients of variation �10%. The pro-

posed MAE method was successfully used to determine saccharides

and polyols contents in Spirulina samples that had been cultured in

the water at different salinity levels. The total amounts of saccharides

and polyols in Spirulina grown in 17 and 25 g L�1 saltwater were more

than six times higher than those grown in 0 and 3 g L�1. The results

indicate that the increase of the water’s salinity in a growing medium

improved the final levels of saccharides and polyols contents in Spir-

ulina. The concentration of glycerol and glucose, in particular, showed

the most significant increase when Spirulina was grown in media with

high levels of salinity.
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