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Abstract A new series of novel indolyl benzo[b][1,4]diazepins bearing a 2,5-dichlorothiophene

moiety are reported. Claisen–Schmidt condensation of 2,5-disubstituted indole-3-carboxaldehydes

with 2,5-dichloro-3-acetylthiophene will produce (E)-3-(2,5-disubstituted-1H-indol-3-yl)-1-(2,5-

dichlorothiophene-3-yl)prop-2-en-1-one. The acid catalysed cyclocondensation of preformed

chalcones with substituted ortho-phenylenediamine has produced the titled compounds in good

yields. All the newly synthesized compounds are characterised by IR, 1H NMR, 13C NMR, elemen-

tal analysis and mass spectroscopic data. Compounds 4b, 4c and 4f have emerged as most potent

analogues in antimicrobial and antioxidant evaluations.
ª 2011 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Benzodiazepines have attracted greater attention as an impor-

tant class of heterocyclic compounds in the field of drugs and
pharmaceuticals. These compounds are widely used as anti-
convulsants (Landquist, 1984), as antianxiety drugs (Schutz,

1982; Randall and Kapple, 1977), analgesics (Fryer, 1991),
sedatives (Randall and Kapple, 1977), anti-depressives
(Schutz, 1982), hypnotics (Randall and Kapple, 1977) and

anti-inflammatory agents (De Baun et al., 1977). Since the dis-
covery of flurazepam, flunitrazepam, quazepam, halazepam
and triflubazepam the chemistry of [1,4] and [1,5] benzodiaze-
pines and allied compounds have assumed considerable impor-

tance due to their use as drugs controlling mild to moderate
CNS depression (Olkkola and Ahonen, 2008), mental tension
depression (Olkkola and Ahonen, 2008), as hypnotics, anxyo-

litic agents and for controlling chronic insomnia (Stembach,
1971; Olkkola and Ahonen, 2008). In particular [1,4]benzodi-
azepines have been demonstrated to be non-nucleoside reverse

transcriptase inhibitors, acquire a significant place in the treat-
ment of the infections by the HIV (Darnag et al., 2010). The
same analogues containing conjugated acrylyl C2-substituents
possess significant cytotoxicity according to the NCI 60-cell

line screen surpassing anthramycin in potency (Chen et al.,
2004). Geigy, 1965, has described the [1,4]benzodiazepine
analogues as anticonvulsants, muscle relaxants, blood pressure

lowering and CNS depressant agents (Geigy, 1965).
Alongside, indoles and its biheterocycles are featured

widely in a wide variety of biologically and pharmacologically
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active compounds (Sundberg, 1996). The indole derivatives are

known to possess anticancer (Wu et al., 2009; Pojarova et al.,
2007; Biradar and Sasidhar, 2011), antioxidant (Biradar et al.,
2010a; Biradar et al., 2010b; Biradar and Sasidhar, 2011), anti-
rheumatoidal and anti-HIV (Buyukbingol et al., 1994; Suzen

and Buyukbingol, 1998) activities. Many indole derivatives
are considered as the most potent scavenger of free radicals
(Chyan et al., 1999). Indolyl[1,4]benzodiazepines are reported

to possess inhibitory activity of central and motor nervous sys-
tem, depression of blood pressure and dilation of pulmonary
vessels (Reynolds and Carson, 1972). In our previous ap-

proach, we have reported the indolyl[1,4]benzodiazepine sys-
tems as antimicrobial, DNA cleavage (Biradar et al., 2010a;
Biradar et al., 2010b), analgesic, CNS depressant and anti-

inflammatory agents (Biradar and Manjunath, 2004).
In continuation of our enduring efforts on synthesis of

‘Drug-Like’ molecules (Biradar et al., 2008; Biradar and Sasi-
dhar, 2011; Biradar and Manjunath, 2004a, 2004b), It was

envisaged that the two pharmacophores if linked together
(Scheme 1) would generate novel molecular templates which
are likely to exhibit interesting biological properties.
Scheme 1 Schematic representation for the synthesis of novel

Indolylbenzodiazepins.
2. Results and discussion

2.1. Chemistry

Herein, we report the synthesis of novel indolyl
benzo[b][1,4]diazepines bearing thiophenes via two step meth-

odology utilising 2,5-disubstituted indole-3-carboxaldehydes.
(E)-3-(2,5-disubstituted-1H-indol-3-yl)-1-(2,5-dichlorothio-
phen-3-yl)prop-2-en-1-one (3a–d) are obtained by the Claisen–

Schmidt condensation of 2,5-dichloro-3-acetylthiophene (2)
with various 2,5-disubstituted indole-3-carboxaldehydes (1a–
d) (Scheme 1). The IR spectrum of (E)-1-(2,5-dichlorothio-

phen-3-yl)-3-(5-methyl-2-phenyl-1H-indol-3-yl)prop-2-en-
1-one (3a) has shown a strong absorption at 3258 cm�1 corre-
sponding to indole NH, absorptions at 2936 and 1717 cm�1

correspond to C–H (Aromatic) and C‚O stretching, respec-
tively. The 1H NMR spectrum of 3a has exhibited a singlet
at d 11.2 (S, 1H, indole NH) integrating for single proton
due to deshielded indole NH which is D2O-exchangeable. A

singlet at d 2.0 (S, CH3, 3H,) for methyl protons and a multi-
plet between d 6.9–8.0 (m, 9Ar-H, 2H, –CH‚CH–) integrating
for eleven protons in the molecule. This spectrum has also

exhibited the absence of aldehydic proton confirming the for-
mation of product. The 13C NMR spectrum of 3a has dis-
played highly deshielded signal at d 180 for carbonyl carbon,

up field signal at d 30 for methyl carbon. In the mass spectrum
of compound 3a, molecular ion peak is observed at m/z
412(100%) which is also the base peak, corresponding to the
molecular weight of the compound. These spectral data sup-

port the formation of 3a.
The acid catalysed cyclocondensation of preformed chal-

cones (3a–d) and substituted ortho-phenylenediamine in etha-

nol has produced the titled compounds (4a–h) (Scheme 1). All
the newly synthesized compounds were characterised by IR,
1H NMR, 13C NMR, elemental analysis and mass spectro-

scopic data.
The IR spectrum of (2Z,4E)-2-(2,5-dichlorothiophen-3-yl)-

4-(5-methyl-2-phenyl-1H-indol-3-yl)-1H-benzo[b][1,4]diaze-

pine (4a) has shown a strong absorption at 3131 cm�1 corre-
sponding to indole NH and absorption at 3063 cm�1 is for
diazepine NH. Absorptions at 2910 and 1626 cm�1 correspond
to the C–H and C‚N stretching respectively. The 1H NMR

spectrum of 4a has exhibited a singlet at d 11.80 due to
deshielded indole NH, which is also D2O exchangeable. A sin-
glet at d 2.3 (s, 3H, CH3) for methyl protons and a multiplet

between d 6.8–7.6 ppm (m, 15H, 14Ar-H and Diazepine NH)
integrating for fifteen protons. The 13C NMR spectrum of 4a
has displayed a downfield signal at d 165 integrated for the

C‚N of diazepine ring. Up field signal at d 30 corresponds
to the methyl carbon.

Mass spectrum of compound 4a has shown a peak at m/z

499 (90%), 501 (30) and 503 (10%) corresponding to the molec-
ular weight and isotopic chlorine in the required ratio. Molec-
ular ion has undergone into fragmentation by two routes. In the
first route it has lost chlorine from thiophene ring to generate

m1 at m/z 464(25%) and 466 (8%), fragment m1 has lost thio-
phene ring (C4HClS) to generate m2 at m/z 348 (55%), the rad-
ical cation m2 has lost C6H5N to generate the cation m3 at m/z

257 (35%). Cation m3 has lost azitidinyl fragment to generate
m4 at m/z 206 (55%) and m4 has generated m5 at m/z 90
(27%) by loosing the fragment C8H6N. In another route,
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molecular ion on fragmentation looses C6H5N2 radical from

the diazepine ring and displayed peaks at m6 m/z 394 (15%),
396 (5%) and 398 (1%) corresponding to the isotopic chlorine
in the required ratio. M6 has lost the fragment C7H3Cl2S to
generate m7 at m/z 206 (55%) and m7 has lost the fragment

C8H6N to generate m8 at m/z 90 (27%). This fragmentation
pattern supports the proposed structure of compound 4a. Spec-
tral data of compounds 4b–h support their structures.

2.2. Biological evaluations

2.2.1. Antimicrobial activity
Results of antimicrobial activity are summarised in Table 1.

Applying the agar plate diffusion technique (Verma and Imam,
1973) all of the newly synthesized compounds were screened in
vitro for antibacterial activity against Escherichia coli (E. coli),
(Gram-negative) and Bacillus subtilis (Gram-positive) at 25,

50, and 100 lg/ml concentrations, respectively. Under identical
conditions, Streptomycin sulfate was used as the standard. The
zone of inhibition was measured in mm for each concentration.

All of the screened compounds were found to have moderate
to significant antibacterial activity. Compound 4a and 4e have
shown very interesting results against both the strains. Com-

pound 4b against E. coli and 4f against B. subtilis have exhib-
ited maximum inhibition.

Similarly, the antifungal screening of the compounds was
carried out in vitro against two fungi Aspergillus niger and

Aspergillus flavus at 25, 50, and 100 lg/ml concentrations
respectively, by using griseofulvin as the positive reference.
Of all the tested indolylbenzodiazepine systems, majority of

the compounds exhibited moderate to significant antifungal
activity. Compounds 4a and 4e have shown very significant
activity against both the strains and 4f against A. flavus has

shown promising results by maximum inhibition than that of
the standard Griseofulvin.

Hence, results clearly signify, the antimicrobial activity was

increased with the methyl and chloro substitutions at the fifth
position of the indole ring. Further, significant improvement in
the activity was observed with the incorporation of methyl
substituted benzodiazepine ring.
Table 1 Zone of inhibition in mm at 25, 50 and 100 lg/ml concent

Compd Antibacterial activity

E. coli B. subtilis

25 50 100 25 50

3a 8 9 11 10 10

3b 8 9 10 7 8

3c 6 6 7 4 5

3d 4 5 6 6 6

4a 11 12 13 10 12

4b 9 10 12 9 9

4c 7 7 9 8 8

4d 7 8 8 7 7

4e 10 12 14 14 15

4f 9 11 12 12 12

4g 6 8 10 8 8

4h 6 7 7 9 9

Std. 1 10 12 13 12 13

Std. 2 –– –– –– –– ––

Std. 1, Streptomycin; Std. 2, Griseofulvin.
2.2.2. Antioxidant activity

2.2.2.1. Free radical scavenging activity. The newly synthesized
compounds were screened for free radical scavenging activity

by DPPH method (Singh et al., 2002). Samples were prepared
at concentrations of 10, 50, and 100 lg/100 ll and Butylated
hydroxy anisole (BHA) is taken as the standard. Among the
tested compounds, 4b and 4f have shown promising scaveng-

ing activity. The increased activity may be due to the existence
of ‘Cl’ substitution at the fifth position of the indole ring.
Whereas, compounds 4c, 4g and 4h with ‘H’ substitution at

the fifth position of the indole ring have shown moderate activ-
ity. In contrast, ‘CH3’ substituted indolylbenzodiazepine deriv-
atives 4a and 4e have shown least activity compared with the

standard. Bar graph representation of percentage free radical
scavenging activity is shown in Fig. 1.

2.2.2.2. Total antioxidant capacity. In total antioxidant activity
(Mruthunjaya and Hukkeri, 2008), antioxidant capacities are
expressed as equivalents of ascorbic acid. Among the com-
pounds tested, 4b and 4f which are ‘Cl’ substituted indo-

lylbenzodiazepine analogues have shown strong antioxidant
capacity and compounds 4e, 4g and 4h with CH3 and H sub-
stitution at the fifth position of the indole ring have shown

moderate activity. It is also observed that, indolylbenzodiaze-
pine system has improved the activity significantly than that of
the chalcones Fig. 2.

2.2.2.3. Ferric reducing antioxidant power activity. The com-
pounds are also screened for ferric reducing antioxidant activ-
ity (Barreira et al., 2008). Butylated hydroxy anisole (BHA)

was used as the standard. All the tested compounds have
shown positive tendency toward the ferric reducing activity.
As in the previous cases, indolylbenzodiazepine analogues

(4a–h) have shown improved activity than the chalcones (3a–
d). Further, compounds 4a, 4e and 4g with ‘CH3

’ substitution
have shown excellent ferric reducing antioxidant activity and

other derivatives of indole have shown moderate to high activ-
ity. The presence of benzodiazepine ring in addition to the al-
kyl group may play an important role to act as a better
rations.

Antifungal activity

A. niger A. flavus

100 25 50 100 25 50 100

11 8 9 11 9 10 12

9 8 9 10 8 8 9

7 5 6 6 6 6 7

7 4 6 6 6 6 7

14 10 11 13 9 11 14

11 10 10 11 8 9 11

9 8 8 9 7 8 8

7 7 8 10 8 8 9

17 11 12 14 11 12 14

14 11 11 13 12 13 15

9 7 7 8 9 9 10

9 9 10 10 7 8 9

15 –– –– –– –– –– ––

–– 12 13 15 11 13 14



Figure 1 Free radical scavenging activity of novel Indolylbenzodiazepins.

Figure 2 Total antioxidant capacity of novel Indolylbenzodiazepins.
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electron donor which may enhance reducing power ability of

4a, 4e and 4g. The results are presented in Fig. 3.

3. Experimental

3.1. Chemistry

3.1.1. General considerations
All the chemicals and reagents were purchased from MERCK,
Himedia and SD fine chemical companies and are used
Figure 3 Ferric reducing antioxidant ac
without further purification. Melting points of the synthesized

compounds are determined in open capillaries and are uncor-
rected. Reactions are monitored by thin-layer chromatography
(TLC) on Silica Gel 60 F254 aluminium sheets (MERCK) and

detection was made using UV light and iodine. IR spectra are
recorded in KBr on Perkin–Elmer and FTIR Spectrophotom-
eter (mmax in cm�1). 1H NMR and 13C NMR spectra on

BRUKER AVENE II 400 MHz NMR Spectrometer
(Chemical shift in d ppm down field from TMS as an internal
reference). The Mass spectra are recorded on LC-MSD-Trap-
tivity of novel Indolylbenzodiazepins.
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SL instruments. The elemental analysis was determined on

FLASH EA 1112 SERIES instrument. All the compounds
gave C, H and N analysis within ±0.5% of the theoretical
values.

3.1.2. Typical experimental procedure for the synthesis of 2,5-
disubstituted indole-3- carboxaldehydes (1a–d)
The precursors 2,5-disubstituted indole-3-carboxaldehydes
(1a–d) were obtained from the Vilsmeier Haack formylation
reaction of 2,5-disubstituted indoles (Biradar, 1982).
3.1.3. General procedure for the synthesis of (E)-3-(2,5-
disubstituted-1H-indol-3-yl)-1-(2,5-dichlorothiophene-3-
yl)prop-2-en-1-one (3a–d)
Claisen–Schmidt condensation of an equimolar mixture of 2,5-
dicholro-3-acetylthiophene (2) (0.01 mol) and various 2,5-
disubstituted indole-3-carboxaldehydes (1a–d) (0.01 mol) were

refluxed (3–4 h) in ethanol (15–20 ml) with 1 ml of (20%) so-
dium hydroxide solution (Scheme 1). The completion of reac-
tion was monitored by TLC in chloroform and benzene (1:1).

After the completion of reaction, excess of solvent was re-
moved under reduced pressure and kept at room temperature
for few hours for the formation of crystals. The product ob-

tained was filtered and purified with ethanol. All the newly
synthesized compounds were characterised by IR, 1H NMR,
13C NMR and mass spectroscopic data. Yield 70–85%.
3.1.3.1. (E)-1-(2,5-dichlorothiophen-3-yl)-3-(5-methyl-2-phe-
nyl-1H-indol-3-yl)prop-2-en-1-one (3a). Yield 85% (ethanol);
mp 244–245 �C; IR (KBr) (mmax in cm�1): 3258, 2936, 1717,

1545; 1H NMR (DMSO-d6 + CDCl3) d (ppm): 11.20 (s, 1H,
indole NH), 6.9–8.0 (m, 11H, 9Ar-H, CH‚CH), 2.0 (s, 3H,
CH3);

13C NMR(DMSO-d6 + CDCl3) d (ppm): 185 (C‚O),

30 (CH3) and 152, 150, 146, 144, 142, 141, 139, 137, 133,
129, 124, 105, 104, 100 and 30; MS: m/z = 413 [M+1]+. Anal.
Calcd for C22H15Cl2NOS (412): C, 64.08; H, 3.67; N, 03.40.
Found: C, 64.10; H, 3.62; N, 03.45.

3.1.3.2. (E)-3-(5-chloro-2-phenyl-1H-indol-3-yl)-1-(2,5-dichlo-
rothiophen-3-yl)prop-2-en-1-One (3b). Yield 80% (ethanol);

mp 275–277 �C; IR (KBr) (mmax in cm�1): 3309, 2923, 1725,
1581; 1H NMR (DMSO-d6 + CDCl3) d (ppm): 11.60 (s, 1H,
indole NH), 7.1–8.2 (m, 11H, 9Ar-H, CH‚CH); MS: m/

z = 433 [M+1]+. Anal. Calcd for C21H12Cl3NOS (432): C,
58.28; H, 2.79; N, 3.24. Found: C, 58.30; H, 2.76; N, 03.28.

3.1.3.3. (E)-1-(2,5-dichlorothiophen-3-yl)-3-(2-phenyl-1H-
indol-3-yl)prop-2-en-1-one (3c). Yield 77% (ethanol); mp
236–237 �C; IR (KBr) (mmax in cm�1): 3228, 2946, 1730,
1550; 1H NMR (DMSO-d6 + CDCl3) d (ppm): 10.60 (s, 1H,

indole NH), 6.8–8.2 (m, 12H, 10Ar-H, CH‚CH); MS: m/
z = 400 [M+2]+. Anal. Calcd for C21H13Cl2NOS (398): C,
63.32; H, 3.29; N, 3.52. Found: C, 63.38; H, 3.26; N, 3.50.

3.1.3.4. (E)-1-(2,5-dichlorothiophen-3-yl)-3-(1H-indol-3-
yl)prop-2-en-1-one (3d). Yield 70% (ethanol); mp 220–

221 �C; IR (KBr) (mmax in cm�1): 3211, 2930, 1717, 1595; 1H
NMR (DMSO-d6 + CDCl3) d (ppm): 11.00 (s, 1H, indole
NH), 7.0–8.3 (m, 8H, 6Ar-H, CH‚CH); MS: m/z = 323
[M+1]+. Anal. Calcd for C15H9Cl2NOS (322): C, 55.91; H,

2.82; N, 04.35. Found: C, 55.97; H, 3.85; N, 04.24.
3.1.4. General procedure for the synthesis of (2Z,4E)-8-

substituted-2-(2,5-dichlorothiophen-3-yl)-4-(2,5-disubstituted-
1H-indol-3-yl)-1H-benzo[b][1,4]diazepine (4a–h)
A mixture of appropriate (E)-3-(2,5-disubstituted-1H-indol-3-

yl)-1-(2,5-dichloro thiophene-3-yl)prop-2-en-1-one (3a–d)
(0.01 mol) and substituted orthophenylenediamine (0.01 mol)
in ethanol (20 ml) were refluxed with catalytic amounts of ace-

tic acid for 5–6 h. The completion of reaction was monitored
by TLC in chloroform and ethylacetate (3:1). The excess of sol-
vent was removed; reaction mixture was cooled and poured

into crushed ice with constant stirring. The solid mass thus ob-
tained was filtered and washed with water and recrystallized
from ethanol to get the title compounds (4a–h) (Scheme 1).
All the newly synthesized compounds were characterised by

IR, 1H NMR, 13C NMR and mass spectroscopic data. Yield
67–75%.

3.1.4.1. (2Z,4E)-2-(2,5-dichlorothiophen-3-yl)-4-(5-methyl-2-
phenyl-1H-indol-3-yl)-1H-benzo [b][1,4]diazepine (4a). Yield
75% (ethanol); mp 180–181 �C; IR (KBr) (mmax in cm�1): 3131,

3063, 2910, 1626, 1573; 1H NMR (DMSO-d6 + CDCl3) d
(ppm): 11.80 (s, 1H, indole NH), 6.8–7.6 (m, 15H, 14Ar-H,
diazepine NH), 2.3 (s, 3H, CH3);

13C NMR(DMSO-
d6 + CDCl3) d (ppm): 165 (C‚N), 30 (CH3) and 148, 138,

134, 132, 131, 130, 129, 128, 127, 124, 120, 117, 115, 114,
113 and 108; MS: m/z = 499 [M�1]+. Anal. Calcd for
C28H19Cl2N3S (500): C, 67.20; H, 3.83; N, 08.40. Found: C,

67.17; H, 3.88; N, 08.32.

3.1.4.2. (2Z,4E)-4-(5-chloro-2-phenyl-1H-indol-3-yl)-2-(2,5-

dichlorothiophen-3-yl)-1H-benzo[b][1,4]diazepine (4b). Yield
70% (ethanol); mp 260–261 �C; IR (KBr) (mmax in cm�1):
3156, 3003, 2947, 1635, 1581; 1H NMR (DMSO-d6 + CDCl3)

d (ppm): 12.09 (s, 1H, indole NH), 7.2–7.8 (m, 15H, 14Ar-H,
diazepine NH); MS: m/z= 521 [M+1]+. Anal. Calcd for
C27H16Cl3N3S (520): C, 62.26; H, 3.10; N, 08.07. Found: C,
62.22; H, 3.04; N, 08.05.

3.1.4.3. (2Z,4E)-2-(2,5-dichlorothiophen-3-yl)-4-(2-phenyl-
1H-indol-3-yl)-1H-benzo[b][1,4]diazepine (4c). Yield 67%

(ethanol); mp 255–257 �C; IR (KBr) (mmax in cm�1): 3201,
3011, 2990, 1646, 1553; 1H NMR (DMSO-d6 + CDCl3) d
(ppm): 11.20 (s, 1H, indole NH), 6.6–7.3 (m, 16H, 15Ar-H,

diazepine NH); MS: m/z= 488 [M+2]+. Anal. Calcd for
C27H17 Cl2N3S (486): C, 66.67; H, 3.52; N, 8.64. Found: C,
66.58; H, 3.26; N, 8.50.

3.1.4.4. (2Z,4E)-2-(2,5-dichlorothiophen-3-yl)-4-(1H-indol-3-
yl)-1H-benzo[b][1,4]diazepine (4d). Yield 67% (ethanol); mp
225–227 �C; IR (KBr) (mmax in cm�1): 3109, 3070, 2923, 1630,

1581; 1H NMR (DMSO-d6 + CDCl3) d (ppm): 11.40 (s, 1H,
indole NH), 6.9–7.6 (m, 12H, 11Ar-H, diazepine NH); MS:
m/z = 409 [M�1]+. Anal. Calcd for C21H13Cl2N3S (410): C,

61.47; H, 3.19; N, 10.24. Found: C, 61.42; H, 3.23; N, 10.21.

3.1.4.5. (2Z,4E)-2-(2,5-dichlorothiophen-3-yl)-8-methyl-4-(5-

methyl-2-phenyl-1H-indol-3-yl)-1H-benzo[b][1,4]diazepine
(4e). Yield 71% (ethanol); mp 187–188 �C; IR (KBr) (mmax in
cm�1): 3211, 3105, 2915, 1650, 1543; 1H NMR (DMSO-
d6 + CDCl3) d (ppm): 9.90 (s, 1H, indole NH), 7.4–7.8 (m,

14H, 13Ar-H, diazepine NH), 2.6 (s, 3H, CH3), 2.4 (s, 3H,
CH3); MS: m/z = 515 [M+1]+. Anal. Calcd for
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C29H21Cl2N3S (514): C, 67.70; H, 4.11; N, 08.17. Found: C,

67.76; H, 4.14; N, 08.13.

3.1.4.6. (2Z,4E)-4-(5-chloro-2-phenyl-1H-indol-3-yl)-2-(2,5-
dichlorothiophen-3-yl)-8-methyl-1H-benzo[b][1,4]diazepine

(4f). Yield 70% (ethanol); mp 220–221 �C; IR (KBr) (mmax in
cm�1): 3305, 3150, 2918, 1641, 1601; 1H NMR (DMSO-
d6 + CDCl3) d (ppm): 11.70 (s, 1H, indole NH), 6.8–7.5 (m,

14H, 13Ar-H, diazepine NH), 2.2 (s, 3H, CH3); MS: m/
z= 535 [M+1]+. Anal. Calcd for C28H18Cl3N3S (534): C,
62.87; H, 3.39; N, 07.86. Found: C, 62.58; H, 3.41; N, 07.83.

3.1.4.7. (2Z,4E)-2-(2,5-dichlorothiophen-3-yl)-8-methyl-4-(2-
phenyl-1H-indol-3-yl)-1H-benzo[b][1,4]diazepine (4g). Yield

68% (ethanol); mp 267–268 �C; IR (KBr) (mmax in cm�1):
3233, 3115, 2895, 1630, 1531; 1H NMR (DMSO-d6 + CDCl3)
d (ppm): 10.10 (s, 1H, indole NH), 7.1–7.7 (m, 15H, 14Ar-H,
diazepine NH), 2.5 (s, 3H, CH3); MS: m/z = 347 [M+2]+.

Anal. Calcd for C28H19Cl2N3S (345): C, 67.20; H, 3.83; N,
8.40. Found: C, 67.28; H, 3.76; N, 8.20.

3.1.4.8. (2Z,4E)-2-(2,5-dichlorothiophen-3-yl)-4-(1H-indol-3-
yl)-8-methyl-1H-benzo[b][1,4]diazepine (4h). Yield 67%
(ethanol); mp 177–178 �C; IR (KBr) (mmax in cm�1): 3218,

3180, 2900, 1646, 1542; 1H NMR (DMSO-d6 + CDCl3) d
(ppm): 12.30 (s, 1H, indole NH), 7.3–8.0 (m, 11H, 10Ar-H,
diazepine NH), 2.4 (s, 3H, CH3); MS: m/z = 425 [M+1]+.
Anal. Calcd for C22H15Cl2N3S (424): C, 62.27; H, 3.56; N,

09.90. Found: C, 62.20; H, 3.52; N, 09.96.
4. Conclusions

In conclusion, a new series of novel indolylbenzo[b][1,4]diaze-
pins are designed and synthesized in good yields. In biological

evaluations; it was observed that, the antimicrobial activity
was increased with the methyl (4a and 4e) and chloro (4b
and 4f) substitutions at the fifth position of the indole ring.

Compounds 4b and 4f have shown promising results for free
radical scavenging and total antioxidant capacity activities.
In ferric reducing antioxidant power, compounds 4a, 4e and

4g have shown maximum reducing power. Therefore, our
findings will provide a great impact on chemists and biochem-
ists for further investigations in the indole field in search
of molecules possessing potent antioxidant and antimicrobial

activities. Based on these results, selected novel compounds
are being screened in vivo which will be reported in due course.
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