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Abstract White bivalve clam shell (WBCS), a good source of calcium carbonate collected from sea
shore was subjected to calcination—hydration—-dehydration treatment to obtain CaO with high
activity. The performance of the newly obtained CaO from the calcination—-hydration—dehydration
treatment of WBCS and commercial CaO was tested for their catalytic activity via transesterifica-
tion of waste frying oil (WFO). The results showed that the methyl ester conversion for the
commercial CaO was 67.57% whereas it was 94.25% for the CaO obtained from calcination—
hydration—dehydration treatment of WBCS at a 7 wt.% catalyst (based on oil weight), methanol

to oil ratio of 12:1, reaction temperature of 65 °C and reaction time of 1 h.
© 2014 King Saud University. Production and hosting by Elsevier B.V. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Biodiesel has been paid great attention in recent years because
fossil fuel resources are limited and one needs to look for
alternatives to fossil fuel to ensure environmental protection
and energy security. Biodiesel is nontoxic, renewable and biode-
gradable and it is considered as one of the most alternative fuels
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for diesel engines (Vincente et al., 2004). Biodiesel is prepared
from various sources of edible oil such as soybean, safflower,
sunflower, rapeseed, palm, canola etc. throughout the world
(Lang et al., 2001). Use of high quality virgin vegetable oil as
feedstock increases biodiesel production cost. Feedstock con-
tributes about 75-85% of the total biodiesel production cost
(Siddiquee and Rohani, 2011). An effective way to reduce the
cost of biodiesel production is to use inexpensive vegetable oil
(Wang and Yu, 2012) and waste frying oil (Zhang et al., 2003;
Math et al., 2010) as raw materials. Increasing food consump-
tion all over the world has increased the production of large
amounts of waste frying oil. Some of the waste frying oil is used
for soap preparation and as additive oil for fodder making, but
major quantities of waste frying oils are illegally dumped into
landfills and rivers (Math et al., 2010). Utilization of waste fry-
ing oil into fuel also eliminates the environmental impacts
caused by the disposal of these waste oils. Transesterification
is the most commonly employed method for the production of
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biodiesel using acidic or alkaline catalysts. It is a reaction
between triglycerides and alcohol in the presence of a catalyst
to formesters and glycerol (Vyaset al., 2010). Transesterification
reaction can be performed with both homogeneous and hetero-
geneous catalysts. Homogeneous alkaline catalysts provide high
yields and conversion of biodiesel at mild temperature, atmo-
spheric pressure and shorter reaction time. These homogeneous
catalysts dissolve fully in the glycerin layer and partially in the
biodiesel which makes product isolation and purification diffi-
cult (Graboski and McCormick, 1998). Moreover homoge-
neous catalysts such as sodium hydroxide and potassium
hydroxide are hazardous, caustic and hygroscopic (Helwani
etal., 2009). To address the issues, heterogeneous catalysts have
been developed. Heterogeneous catalysts are less sensitive to the
presence of free fatty acids and water and they can easily be sep-
arated from the reaction mixture, regenerated and reused. The
major drawback with the heterogeneous catalyzed process is
its slow reaction rate compared with the homogeneous process.
This is due to diffusion problems owing to the formation of three
phases of the reactants (methanol/oil/solid catalyst) (Zabeti
et al., 2009). Therefore, it is a great challenge to identify a solid
base catalyst for transesterification process under mild reaction
conditions in shorter reaction time. Alkaline earth metal oxides
with high basicity are suitable for biodiesel production because
of their low solubility in oil (Gryglewicz, 1999). Among the alka-
line earth metal oxides, calcium oxide is one of the most prom-
ising heterogeneous base catalysts and it has many advantages
such as mild reaction conditions, low cost, high reusability
and easy availability (Boey et al., 2011; Kawashima et al.,
2009). Recently CaO derived from natural resources such as
egg and mollusk shells (Viriya-empikul et al., 2010, 2012) and
mussel shell (Rezaei et al., 2013) has been used as a heteroge-
neous catalyst for biodiesel production. In our previous work,
very recently we utilized white bivalve clam shell (Girish et al.,
2013) for biodiesel production. All these studies on waste mate-
rials revealed that a higher amount of catalyst and a longer reac-
tion time are needed to achieve a high biodiesel yield.

In the present work, an attempt was made to increase the
catalytic activity of the white bivalve clam shells (WBCS) by
calcination—hydration—dehydration treatment. The catalyst
was characterized by Scanning Electron Microscopy (SEM),
Brunauer—Emmett-Teller (BET) and Hammett indicators.
The biodiesel conversion was determined by 'H Nuclear Mag-
netic Resonance Spectroscopy (‘H NMR).

2. Experimental

2.1. Materials

WBCS was collected from the seashore of Kanyakumari,
India. Waste frying oil was procured from the Canteen,
National Institute of Technology, Tiruchirappalli, Tamilnadu,

Table 1 Physicochemical properties of waste frying oil used in
the present study.

Properties Measured values
Density at 25 °C (g/cm?’) 0.915

Kinematic viscosity at 40 °C (mm?/s) 28.98

Acid value (mg of KOH/g of oil) 2.11

India and its physiochemical properties were measured and are
presented in Table 1. Commercial CaO and anhydrous metha-
nol of analytical grade purchased from Merck Limited, Mum-
bai, India were used in the transesterification reaction. The
commercial CaO was treated at 600 °C in a muffle furnace
under static air conditions for 3 h before use.

2.2. Catalyst preparation

Highly active CaO catalyst was prepared by calcination—
hydration—dehydration treatment. WBCS was washed
thoroughly in tap water to remove any unwanted materials
adhered on its surface, and rinsed twice with distilled water.
The washed WBCS was then dried in a hot air oven at
105°C for 24 h. The dried WBCS were reduced to small pieces
and calcined in a muffle furnace under static air conditions at
900 °C for 4 h to transform the calcium species in the shell into
CaO particle (denoted as WBCS-900). The WBCS-900 was
refluxed in water at 60 °C for 6 h and the solid particle was
dehydrated by performing calcination at 600 °C for 3 h to
change the hydroxide form to oxide form (Yoosuk et al.,
2010) Thus, the WBCS subjected to calcination—hydration—
dehydration treatment generates CaO (denoted as
WBCS-900-600) with high activity.

2.3. Catalyst characterization

Scanning Electron Microscopy (SEM) analysis was performed
to confirm the morphology of the catalyst using High Resolu-
tion Scanning Electron Microscope (Model: F E I Quanta
FEG 200). The surface areas of commercial CaO, WBCS-
900, and WBCS-900-600 were determined by BET analysis
using a ASAP 2020 surface area analyzer (Micromeritics).
Basic strength of the catalysts was measured using Hammett
Indicator Titration.

2.4. Transesterification process

The transesterification reactions were carried out in a 250 ml
3-necked round bottomed flask. The middle neck was used to
insert a mechanical stirrer (BioLab BL 232 D), one of the side
necks was fitted with a water-cooled condenser, and the other
neck was fitted with a temperature indicating filament. The
speed of the mechanical stirrer was monitored by using an
analog tachometer (Fuji Kogyo Co. Ltd., Kyoto). The temper-
ature was recorded on a digital temperature indicator (Omega
Temperature Indicator with Pt-100 filament). The transesterifi-
cation process parameters such as amount of catalyst, metha-
nol to oil ratio, reaction temperature and reaction time were
varied to obtain maximum methyl ester conversion. After the
reaction is completed, the catalyst was separated by filtration
and the transesterification products were allowed to settle over-
night for the clear separation of biodiesel and glycerol. The
upper layer fatty acid methyl esters, formed by the conversion
of fatty acids to their respective esters are termed as biodiesel
and the lower dense layer is termed as glycerol. The conversion
of oil to fatty acid methyl esters was analyzed by 'H Nuclear
Magnetic Resonance Spectroscopy (‘"H NMR) using a Bruker
Avance III 500 MHz (AV 500) spectrometer. CDCl; was used
as a solvent. An equation has been given by Knothe (2006) to
calculate the percentage conversion of methyl esters as:
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C = Percentage conversion of triglycerides to methyl esters
Ame = Integration value of the methoxy protons of the
methyl esters

Ag.cz = Integration value of the o -methylene protons

3. Results and discussion
3.1. Characterization of the catalyst

3.1.1. SEM Analysis

Fig. 1 shows the SEM image of WBCS-900-600 catalyst. It
indicated rod like particles with sizes ranging from 53.9 to
62.6 nm of width. Some of them are bonded together as aggre-
gates. The smaller size of the grains and aggregates could pro-
vide a higher specific surface area (Viriya-empikul et al., 2012).
The nano particle size provides shorter paths to access active
sites for molecules which reduce the internal diffusion signifi-
cantly. However in the case of WBCS-900, a larger size of
aggregated particles was observed and it expressed micro mor-
phological particles with sizes ranging from 1.71 to 2.42 pm of
width (Fig. 2). This WBCS-900 catalyst on hydration and on
subsequent dehydration generates CaO particles in nano size.

3.1.2. BET analysis

BET analysis was performed on WBCS-900-600, WBCS-900
and commercial CaO to determine the specific surface area.
The surface area of a solid catalyst has a direct impact on its
catalytic activity, and hence the higher surface area catalyst
is expected to have higher catalytic activity (Kumar and Ali,
2012). As shown in Table 2, the measured surface area of the
commercial CaO used in the present study was 3.0022 m?/g.
The surface area of the CaO obtained from the calcination
of WBCS at 900 °C for 4h (WBCS-900) was 1.3477 m%/g.
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Figure 1 SEM image of WBCS-900-600.
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Figure 2 SEM image of WBCS-900.

However the surface area of the CaO obtained from the
calcination-hydration—dehydration treatment of WBCS
(WBCS-900-600) was found to be 10.5642 m*/g. Hydration
and dehydration treatment plays a vital role in improving
the surface area of a catalyst. During calcination of a hydrated
sample, a large number of gaseous water molecules from the
decomposition of Ca(OH), are released from the catalyst
and these gaseous water molecules create high porosity (Hu
et al., 2011). Due to this reason, the surface area of WBCS-
900-600 was 7.83 times higher than that of WBCS-900.The
reaction rate will be determined by the basic strength and
the number of accessible active sites on the surface. The larger
surface area provides much more accessible active sites and the
stronger basic strength of WBCS-900-600 enhanced the reac-
tion rate and explained the stronger catalytic activity than that
of WBCS-900 and commercial CaO.

3.1.3. Hammett indicator titration

Hammett indicator experiments were conducted to determine
the H range of basic sites in each catalyst. 25 mg of sample
was shaken with 4 ml of a solution of Hammett indicator
diluted in methanol and left to equilibrate for 2 h. The Ham-
mett indicators used were phenolphthalein (pK, = 9.8), indigo
carmine (pK, = 12.2) and 2.4-dinitroaniline (pK, = 15). The
basic strength of the catalyst was taken to be higher than the
weakest indicator that underwent a color change and lower
than the strongest indicator that underwent no color change
(Watkins et al., 2004). Among the catalysts tested, WBCS-
900-600 had the strongest base strength and the results
obtained are presented in Table 2.

Table 2 Specific surface area and basic strength of catalysts.

Name of the catalyst  Surface area (m?/g)  Basic strength(H )

WBCS-900 1.3477 98 <H_ <122
WBCS-900-600 10.5642 122 < H_ < 15.0
Commercial CaO 3.0022 9.8 < H_< 122
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3.2. Effect of process parameters

3.2.1. Influence of amount of catalyst

The effect of the amount of catalyst on methyl ester conversion
was investigated by varying the load from 5 to 10 wt.% (based
on oil weight) and is presented in Fig. 3. The reaction was car-
ried out at 65 °C for 1 h with a methanol to oil molar ratio of
12:1. It was observed that the conversion was initially
increased with the increase in the amount of catalyst from
84.37% to 94.25% as the amount of catalyst was increased
from 5 to 7 wt.% . Beyond that the conversion remained con-
stant at 8 wt.% and a slight fall in the conversion was observed
at 10 wt.%. At higher catalyst loads, the reaction mixture may
become more viscous which resists the mass transfer in the
liquid-liquid—solid system and hence, results in the decline of
methyl ester conversion (Madhuvilakku et al., 2013).

3.2.2. Influence of methanol/oil molar ratio

The effect of methanol to oil ratio on methyl ester conversion
was investigated at a 7 wt.% of catalyst (based on oil weight),
reaction temperature of 65 °C and reaction time of 1 h (Fig. 4).
According to the stoichiometry of transesterification reaction,
3 mol of methanol is required for each mole of triglyceride.
However in practice, a higher methanol to oil molar ratio than
the stoichiometry is needed to drive the reaction for comple-
tion and production of more methyl esters. As indicated in
Fig. 4, methanol to oil molar ratio was varied in the range
of 9:1-15:1 and the methyl ester conversion was increased from
86.67% to 94.25% with an increase in the methanol to oil
molar ratio from 9:1 to 12:1. It was also observed that there
was no significant improvement in the methyl ester formation
between the alcohol to oil ratio of 12:1 and 15:1.

3.2.3. Influence of temperature

Fig. 5 shows the effect of reaction temperature on methyl ester
conversion. The methyl ester conversion increased with
increase in the temperature from 55 to 65 °C and a maximum
conversion of 94.25% was obtained at a reaction temperature
of 65 °C. When the temperature was further increased beyond
65 °C, the conversion was decreased. This is due to the fact
that at high temperatures methanol would vaporize and form
a large number of bubbles which inhibit the reactions on the
three phase (methanol/oil/solid catalyst) interphase (Liu
et al., 2008).
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Figure 3  Effect of catalyst wt.% on methyl ester conversion
(methanol to oil ratio = 12:1, temperature = 65 °C, time = 1 h).
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Figure 4  Effect of methanol to oil molar ratio on methyl ester
conversion (catalyst = 7 wt.%, temperature = 65 °C,
time = 1 h).
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Figure 5  Effect of reaction temperature on methyl ester conver-
sion (catalyst = 7wt.%, methanol/oil molar ratio = 12:1,
time = 1 h).

Therefore 65 °C is considered as the appropriate tempera-
ture for maximum conversion in transesterification of waste
frying oil to biodiesel.

3.2.4. Influence of time

Fig. 6 depicts the effect of reaction time on methyl ester con-
version. The conversion increased significantly from 69.66%
to 94.25% as the reaction time was increased from 30 to
60 min and the conversion decreased slightly for the operation
beyond 1 h. This is due to the fact that the longer reaction time
resulted in the hydrolysis of esters and caused more fatty acids
to form soap (Tang et al., 2011; Niju et al., 2014).

Thus from the influence of parameters on transesterifica-
tion, it was found that a 7 wt.% catalyst (based on oil weight),
methanol to oil molar ratio of 12:1, reaction temperature of
65 °C and reaction time of 1 h are required to obtain a maxi-
mum methyl ester conversion of 94.25%.

3.3. Catalytic mechanism

The mechanism of transesterification of triglycerides to biodie-
sel in the presence of methanol using calcium oxide as a cata-
lyst was explained as follows. Calcium oxide is a major active
phase of the white bivalve clam shell. Calcium oxide reacts
with methanol to form calcium methoxide and in the first step,
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Figure 6 Effect of reaction time on methyl ester conversion
(catalyst = 7 wt.%, methanol/oil molar ratio = 12:1,
temperature = 65 °C).

the methoxide anion attached to the carbonyl carbon atom of
the triglyceride molecule to form a tetrahedral intermediate. In
the second step, the unstable tetrahedral intermediate breaks
down to diglycerides and fatty acid ester. In the third step,
the rearrangement of the tetrahedral intermediate results in
the formation of fatty acid ester and glycerol. These three steps
are repeated for cleavage of each fatty acid ester and finally
three fatty acid esters and a glycerol are formed (Boey et al.,
2011).

3.4. Comparison of biodiesel production activity for the CaO
catalysts

The catalysts; WBCS-900, WBCS-900-600 and commercial
CaO were employed for biodiesel production via transesterifi-
cation of waste frying oil. The process parameters such as
catalyst wt.%, methanol to oil ratio, reaction temperature
and time were varied to obtain the maximum methyl ester

conversion. In the case of WBCS-900-600 it was found that
a maximum conversion of 94.25% was obtained at a 7 wt.%
catalyst (based on oil weight), methanol to oil ratio of 12:1,
reaction temperature of 65 °C and 1 h reaction time. However
under these conditions the commercial CaO treated at 600 °C
for 3h produced a methyl ester conversion of 67.57% and
WBCS-900 produced a methyl ester conversion of 33.77%.
Fig. 7. represents the'H NMR spectrum of the waste frying
oil and the conversion of triglycerides to fatty acid methyl
esters catalyzed by WBCS-900-600 was analyzed using 'H
NMR and it is shown in Fig. 8. The characteristic peaks of
methoxy protons as a singlet at 3.667 ppm and o-methylene
protons as a triplet at 2.306 ppm were observed. These two
peaks are the distinct peaks for the confirmation of methyl
esters. The other peaks observed were at 0.871 ppm due to ter-
minal methyl protons, a strong signal at 1.308 ppm arises from
the methylene proton of the carbon chain, a multiplet at
1.6 ppm related to B carbonyl methylene protons, and a signal
at 5.354 ppm due to olefinic hydrogen. The percentage conver-
sion of triglycerides to methyl esters using Eq. (1) was found to
be 94.25%. Compared to the state of the art in the literature
(Viriya-empikul et al., 2010, 2012; Rezaei et al., 2013; Girish
et al., 2013), the amount of catalyst and methanol/oil ratio
were reduced to a certain extent, however the reaction time
is reduced significantly to 1h without compromising the
biodiesel conversion. The high catalytic activity is due to the
larger surface area and stronger basic strength of WBCS-
900-600 compared with WBCS-900 and commercial CaO.

3.5. Measured properties of the produced biodiesel

The properties density, kinematic viscosity, flash point cloud
point, sulfur content, amount of free and total glycerin con-
tent, wt.% of carbon, hydrogen, oxygen, nitrogen, copper,
strip corrosion test and acid value of the synthesized biodiesel
catalyzed by WBCS-900-600 were measured and compared

13 12 11 10 9 8 7

Figure 7

T
0 ppm

O

"H NMR spectrum of waste frying oil.
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"H NMR spectrum of the synthesized biodiesel catalyzed by WBCS-900-600.

Table 3 Comparison of properties of the synthesized biodiesel with the ASTM standards of biodiesel.

Properties

Standard values of biodiesel
(as per ASTM D6751)

Values obtained for
synthesized biodiesel

Density (g/cm3) at 25 °C 0.86-0.9
Kinematic viscosity (mm?/s) at 40 °C 1.9-6.0
Flash point (°C) 100-170
Cloud point (°C) (-3)-15
Carbon (wt.%) =
Hydrogen (wt.%) -
Nitrogen (wt.%) =
Sulfur (wt.%) -
Oxygen (wt.%) =

Free glycerol (mass%) 0.02
Total glycerol (mass%) 0.24
Copper strip corrosion test No. 3
(31,100 °C)

Acid value (mg KOH/g) 0.5

0.8824
4.85
156
4.0
76.36
12.41
0.39
0
10.84
0.01
0.13
1(a)

0.376

with the ASTM standards of biodiesel and are presented in
Table 3. The property flash point which is on the higher side,
gives an advantage in terms of option for storage and trans-
portation. However, the usage of this biodiesel is only possible
at moderate climates considering the value of cloud point
being 4 °C. Cold flow additives can be added for the usage
of these fuels in cold weather continents.

5. Conclusions

The present study revealed that calcination—hydration—
dehydration treatment of WBCS generates a highly active
CaO (WBCS-900-600) with larger surface area and stronger
basic strength. The results showed that the methyl ester

conversion for the commercial CaO was found to be 67.57%
whereas it was 94.25% for the WBCS-900-600 at a 7 wt.% cat-
alyst (based on oil weight), a methanol to oil ratio of 12:1, a
reaction temperature of 65°C and a reaction time of 1 h.
Therefore calcination—hydration—dehydration treatment is a
sufficient method to increase the catalytic activity of waste
shells possessing calcium carbonate as their main constituent.
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