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Abstract Electrical impedance spectroscopy (EIS) model is used to determine ion transport

parameters. The transport parameters such as mobility, carrier density and diffusion coefficient

of ions are the subject of great interest. The solution cast method is used to fabricate SPEs using

polyvinyl alcohol (PVA) loaded with different amounts of sodium iodide (NaI). XRD deconvolu-

tion is used to separate the crystalline phase from amorphous phase. The degree of crystallinity is

reduced with an increased amount of NaI. FTIR is used to investigate the polymer/salt interactions.

To find out the circuit element, the Nyquist plots of impedance results are fitted with EEC model-
rsity of
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Dielectric and electric mod-

ulus;

AC conductivity
ing. The bulk resistance obtained from the EEC modeling is used to determine DC conductivity. At

room temperature the maximum conductivity of 2:41� 10�4 S=cm is measured. The regions belong

to the electrode polarization (EP) effect are distinguished form the spectra of dielectric constant and

dielectric loss. Due to the buildup of charge carriers, the dielectric constant and loss are observed to

be high at the low-frequency region. Obvious peaks are appeared in the tand and M‘‘ spectra at high

salt concentrations. Shifting of the tand peaks to the high frequency region are detected. The incom-

plete circular arc of the argand plot is shown the non-Debye relaxation. It is found that with

increasing frequency, AC conductivity increased. The regions belong to the EP and DC contribu-

tions are differentiated in the AC spectra.

� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Since the pioneering work of Wright (1975) and Armand et al. (1979).

SPEs (solid polymer electrolytes) have received a great deal of study.

The typical organic sol–gel electrolyte has been replaced by a new fam-

ily of electrolyte materials known as SPEs. Their great durability,

safety, processability, flexibility, and electrochemical and dimensional

stability make them ideal for use in the food industry (Aziz, 2013).

When alkali metal salts with low dissociation energy are dissolved in

polar polymers, polymer electrolytes (PEs) are formed, and they can

be employed in a variety of electrochemical devices (Aziz et al.,

2016). Dissolving metal salts in a polymeric matrix and breaking them

apart into cations and anions may be used to create PEs. These poly-

mers have gotten a great attention because of their possible application

in electro-chemical devices (Kim et al., 2004).

Because SPEs have been employed in lithium batteries and

other electrochemical devices, many researchers are interested in

their development (Jaafar et al., 2011). SPEs provide several bene-

fits over liquid electrolytes, including Strong mechanical qualities,

simplicity of thin-film manufacturing, and the ability to create good

electrode–electrolyte interaction (Aziz, 2013). Electrolyte conductors

made of conducting PEs are often made of polyvinyl alcohol

(PVA): pure polymers (Lim et al., 2014; Radha et al., 2013;

Hema et al., 2009) and blended polymer including polyvinyl

pyrrolidone (Sundaramahalingam et al., 2019), arginine

(Bhuvaneswari et al., 2115) and carboxymethyl cellulose (Mazuki

et al., 2020). As a PE reformulator PVA has a number of positive

properties that include semi-crystalline, non-toxicity, appropriate

strength, and sufficient charge storage capacity (Liew et al., 2015;

Liew et al., 2014). Biopolymers are polymers derived from natu-

rally occurring sources. Using PVA as a host polymer for elec-

trolyte synthesis is an attractive option, and it has previously

been utilized in batteries and direct methanol fuel cells (Ming

Yang and Chih Chiu, 2012). Responsive chemical functional groups

abound in this hydrophilic polymer (Aziz, 2016). SPEs as a part of

condensed matter physics have been widely explored in terms of

ion relaxation and charge transfer processes (Aziz, 2013). Ion con-

ducting electrolytes are often regarded as the brains of electrochem-

ical devices. For electrochemical applications like batteries and

supercapacitors, previous research has shown that the electrical

properties of electrolytes must be determined. They may then be

chosen for a certain application based on their DC conductivity.

Few attempts have been undertaken to synthesize PVA-based SPEs

complexed with sodium ions, according to a comprehensive litera-

ture assessment (Bhargav et al., 2007; Bhargav et al., 2007;

Bhargav et al., 2009). The purpose of investigating the conduction

process in polymer-based electrolytes is to obtain a better under-

standing of the nature of ion transport (Sheha and El-Mansy,

2008). There are also continuing efforts to increase the conductivity

of various salts and polymers at room temperature. A lot of atten-

tion has been paid to Li salts complexed polymer electrolytes. PES

containing sodium salts have only been tested in a few of studies.
Bhargav et al. (2007) prepared sodium ion conducting PE based

on PVA comined with NaI using solution cast technique. The

authors showed that the amorphous phase of PVA and conductiv-

ity increased by increasing the NaI salts dute the decrease of the

degree of crystallinity. The maximum conductivity of 1.02 � 10�5

at 303 K achieved in their study for the PVA:NaI (70:30) wt.

%. Hmamm (2020) fabricated PVA doped with different NaI

amount. The authors showed that the degree of crystallinity

decreased with the increase of the NaI salts. They also showed that

the conductivity increased with increasing NaI amount. The similar

behavior was reported by Makled et al. (2013) who indicated that

the DC conductivity of PVA/CuI increased by increasing CuI mole

fraction. Farah et al. (2019) synthesized SPE based on PVA,

sodium trifluoromethanesulfonate (NaTf) salt, and 1-butyl-3-

methylimidazolium bromide (BmImBr) ionic liquid. The authors

found that the optimum weight ratio between NaTf salt and

PVA to obtain maximum conductivity was 40:60. They showed

that 50 wt% BmImBr into the PVA60 improved the ionic conduc-

tivity at room temperature from 4.87 � 10�6 S/cm to 2.31 � 10�3

S/cm.

Lithium is more scarce and costly, whereas sodium is more plenti-

ful and cheaper. In addition, the pliability of these materials facilitates

the establishment and maintenance of contact with other battery com-

ponents (Subba Reddy et al., 2006). This study uses AC impedance

spectroscopy, an essential technique for assessing electrical and dielec-

tric characteristics of materials, to explore conductivity and relaxation

processes connected to ion mobility. Recently research on relaxation

and ion transport mechanisms in polymer electrolytes are the subject

of great debate using various models. In the current study ion trans-

port and relaxation dynamics are fouced in NaI ion conducting

PVA-based SPE.

2. Experimental

2.1. Sample preparation

1 g of polyvinyl alcohol (PVA) dissloved in distilled water

(D.W) at 90 �C for 65 min and then cooled to room tem-
perature. NaI was dissolved in D.W and then (10, 20, 30,
40, 50 wt%) of NaI were added to the PVA solution under
constant stirring at room temperature. Table 1 listed the

fabricate samples. PVNA1, PVNA2, PVNA3, PVNA4,
and PVNA5 are the codes of the SPE films. After addi-
tional stirring to ensure obtaining homogeneity, the solu-

tions were placed in the plastic Petri dishes and dried at
room temperature. SPE films were dryed for around 2 weeks
at room temperature. For more clarification, the pictorial

fabrication processes and picture of the electrolyte films
for the fabricated SPE are shown in Fig. 1.

http://creativecommons.org/licenses/by/4.0/


Table 1 The sample design of PVA:NaI based SPEs.

Sample Designation PVA (1 g) NaI (wt%) NaI (g)

PVNA1 1 10 0.111

PVNA2 1 20 0.250

PVNA3 1 30 0.428

PVNA4 1 40 0.666

PVNA5 1 50 1
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2.2. X-ray diffraction (XRD) investigation

X-ray diffraction (XRD) patterns were obtained using
(X’PERT-PRO) X-ray diffractometer with operating of cur-
rent 40 mA and voltage 40 kV, to explore the nature of com-

plexation between NaI and PVA. CuK X-rays of wavelength
1.5406 Ao were used for scanning the materials, and the glanc-
ing angles ranged from 10� to 70�, and the diffraction step size

was 0.1�.

2.3. Fourier transform infrared (FTIR) study

The samples were subjected to FTIR spectroscopy in order to
look for any probable interactions between distinct chemical
groups. The films were measured using a Nicolet iS10 FTIR
Fig. 1 Fabrication process of SPEs
spectrophotometer between 400 and 4000 cm�1 with a resolu-
tion of 2 cm�1 (Perkin Elmer, Melville, New York, United
States). FTIR spectroscopy was used to investigate the poly-

mer electrolyte’s ion conduction mechanism (Nicolet 380
spectrometer).

2.4. Electrochemical impedance spectroscopy (EIS)

An impedance spectroscopy model HIOKI 3532–50 LCR
HiTESTER linked to a computer was utilized to do the con-

ductivity measurements. The thickness of the films, which
sandwiched between two stainless steel electrodes with a diam-
eter of 2.05 cm, was measured using a micrometer screw gauge

under spring tension.The EIS tests were carried out at ambient
temperature with a signal intensity of 10 mv and frequency
ranges from 100 Hz to 2 MHz. The negative imaginary compo-
nent of (Zi) was plotted against positive impedance (Zr), when

analysing the data obtained. Intercept at (Zr) gives the bulk
resistance (Rb).

3. Result and discussion

3.1. FTIR study

Composition, structure, and interactions between the func-
tional groups of PVA and NaI salts were studied using FTIR
and image of the electrolyte films.
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spectroscopy, which was used to analyse variations in the loca-
tion of IR transmittance bands between 400 and 4000 cm�1.
As can be seen in Fig. 2, PVA polymer with various NaI wt.

% ratios is seen in the 400–4000 cm�1 wavenumber. Vibra-
tional frequencies that differentiate the PVA polymer are the
OH, CAO, CH2, CH3, and C‚O bands (Nofal, et al., 2021).

C‚O stretching of carboxyls is connected to the 1709 cm�1

stretching absorption band. Carboxyls are believed to form
hydrogen bonds with hydroxyl or other carboxyl groups in

the films, either intramolecularly or intermolecularly
(Kumari et al., 2012). Because of the creation of a complexa-
tion between the host polymer and the added NaI salt, hydro-
xyl group absorption frequency changes. The stretching

absorption band at 1709 cm�1 is ascribed to the carboxyl
C‚O stretching. In the films, hydrogen bonds between car-
boxyl groups and hydroxyl groups or other carboxyl groups

are expected to be the most common (Choo et al., 2016).
The noticeable reduction in transmittance intensity as well as
band shifting show the interactions between the host polymer’s

functional groups and the salt cations. Salt cations and func-
tional groups interact electrostatically, reducing the vibration
of polar groups (Choo et al., 2016; Negim, 2014; Gh et al.,

2016).

3.2. XRD analysis

The XRD technique is used to determine the structure and

crystallinity of the prepared sample. As reported in ref.
(Brza, 2020) and ref. (Abdelghany, 2020), for pure PVA a
sharp board peak at 2�=19.5 correlates to the lattice plane
Fig. 2 FTIR spectrum for PV
(110) which shows the semi-crystalline character of PVA.
PE’s amorphous structure is likely to improve by adding salt
to the polymer. The connection between DC conductivity

(rDC) and degree of amorphous nature is connected to the
amorphous structure’s higher ionic mobility and diffusivity
of ions due to low energy barriers (Brza et al., 2020). Back-

bones of polymers with an amorphous structure are more flex-
ible and have more segmental motion of the chains. Due to the
electrical field (EF) effect, the segmental movement in the

amorphous structure improves ionic movement by generating
and breaking the solvated ions coordination sphere and pro-
viding more free space or volume in which the ions can diffuse
(Malathi et al., 2010; Rangasamy et al., 2019).

The XRD deconvolution for the pure PVA and PVA/NaI
SPE systems are depicted in Figs. 3 and 4, respectively. The
deconvolution technique is useful for determining a material’s

microcrystalline characteristics (Zulkifli et al., 2020). This
method is based on an algorithm that allows the crystalline
and amorphous peak to be separated (Zainuddin, 2018).

Table 2 lists the percentage of crystallinity (Xc) which is calcu-
lated using Eq. (1).

Xc ¼ AC

AT

� 100 ð1Þ

where AC denotes the area of crystalline peaks and AT denotes

the combined area of crystalline and amorphous peaks. The
degree of crystallinity for pure PVA is 41.68 as shown in
Fig. 3 while the NaI salts were added the degree of crystallinity

considerably decreased as seen in Fig. 4 (a-e). According to the
calculations, when 10 wt% NaI was added to PVA, the per-
A:NaI polymer electrolytes.



Fig. 3 XRD for pure PVA film.
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centage of crystallinity began to decrease, indicating that the

NaI had completely dissolved in the SPEs and had become
more amorphous. This disintegration was aided by the inter-
and intramolecular attractions shown by the FTIR. PVNA5

film had the lowest percentage of crystallinity among the SPEs,
which is 2.26 %, due to its extended broadness and lower peak
intensity (Xie et al., 2020). As previously stated, a higher

degree of salt dissociation results in a more amorphous mate-
rial and facilitates ion migration along the PVA polymer
chains, which may change the material’s conductivity (Rasali
and Samsudin, 2017). The current results are consistent with

those reported in ref. (Chitra et al., 2018) in which amorphous
materials exhibit high ionic diffusivity, mobility, and high ionic
conductivity.

3.3. Impedance and ion transport parameters study

An understanding of the charge transfer process in ion con-

ducting materials is essential from both a basic and technical
viewpoint. Because of this, impedance spectroscopy has been
developed (Machappa and Ambika Prasad, 2009; Abdullah

et al., 2021; Aziz et al., 2019). It is the method of choice for
researching the process. An ion-conducting membrane is a
novel form of polymer that is the subject of this study. This
has sparked the attention of several research teams over the

last few years since their applications in various types of
solid-state electrochemical devices are becoming more wide-
spread (Nasef et al., 2007). The impedance data for the pure

and electrolyte films are shown in Fig. 5 and Fig. 6 (a-e),
respectively. Carrier conduction in the bulk of the system is
related to the semicircles (Aziz et al., 2010). According to

Malathi et al., the DC conductivity at the bulk is responsible
for the parallel relationship between bulk resistance (Rb) and
capacitance (Malathi et al., 2010). The straight line is seen at
the low-frequency regions (i.e., spike). The spike is formed

by the motion of ions at the blocking electrodes (Malathi
et al., 2010; Selvasekarapandian et al., 2005; Aziz et al.,
2010; Aziz et al., 2019; Aziz, 2018).

Ion diffusion occurs across the membrane when an AC
electric field is applied to the membrane electrolytes, resulting
in ion accumulation at the electro/electrolyte interface. The

stainless-steel electrodes’ electronic nature prevents ions to
pass through it, therefore the real and imaginary components
of the impedance may be measured at various frequencies,

resulting in impedance graphs. By crossing the spike with the
plot’s real axis, it was measured the Rb values from the data
analysis.

The following equation can be used to calculate DC con-
ductivity (rdc) values:

rdc ¼ 1

Rb

� �
t

A

� �
ð2Þ

where t is the sample thickness and A is the sample area.
When selecting an electrolyte for a certain electrochemical
device, the ionic conductivity must be taken into account.

The DC conductivity of the electrolytes rises with the
increase in salt contents (see Table 3). As seen in Eq. (3),
the density of charge carriers and the mobility of the ions

both influence conductivity (i.e., size and electronegativity
of ion) (Mikolajick, Jul. 2001). In this experiment, a sample
of 50 wt% NaI salt showed maximum conductivity.

r ¼
X
i

niqili ð3Þ

where,ni,qi, and li are the charge carriers’ concentration (i.e.,
number of charges), electron charge, and ion mobility,
respectively.

The electrical equivalent circuit (EEC) model is used to

fit the impedance data as shown in Fig. 5 and Fig. 6 (a-e)
(Pradhan et al., 2011). The EEC model contains two con-
stant phase elements (CPE1 and CPE2) and Rb. As seen

in the inset of the Figures the EEC model consists of a
parallel combination of Rb and CPE1 and it is in series
with the CPE2 (Shukur et al., 2014). Pure PVA shows a

semicircle only as the ions have not been added yet. A
semicircle is only seen in the Fig. 6 (a-c) due to the motion
of ions in the bulk of the electrolyte while a spike is also
emerged owing to the motion of ions at the electrode

and electrolyte interfaces as seen in Figure (d, e).
ZCPE’s impedance is calculated as (Teo et al., 2012; Aziz

and Abdullah, 2018):

ZCPE ¼ 1

Ymxn
cos

pn

2

� �
� isin

pn

2

� �h i
ð4Þ

where Ym, n, and x are CPE capacitance, deviation of the plot
from the vertical axis in complex impedance graphs, and angu-

lar frequency, respectively. The values of Zr and Zi for the
equivalent circuit (insets of Fig. 5 and Fig. 6 (a-c)) can be
shown as follows:



Fig. 4 XRD deconvolution curves for SPEs a) PVNA1, b) PVNA2, c) PVNA3, d) PVNA4, and e) PVNA5.
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Table 2 The degree of crystallinity

from XRD deconvolution analysis.

Electrolyte Degree of crystallinity (%)

Pure PVA 41.68

PVNA1 29.5

PVNA2 18.65

PVNA3 8.52

PVNA4 8.08

PVNA5 2.26

Fig. 5 EIS for pure PVA.
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Zr ¼
R1Y1x

n1cos pn1
2

� �þ R1

2R1Y1xn1cos pn1
2

� �þ R2
1Y

2
1x

2n1 þ 1
ð5Þ

Zi ¼
R2

1Y1xn1sin pn1
2

� �
2R1Y1xn1cos pn1

2

� �þ R2
1Y

2
1x

2n1 þ 1
ð6Þ

While for the Fig. 6 (d and e), the values of Zr and Zi asso-
ciated with the equivalent circuit (insets of Fig. 6 (d, e)) can be
expressed as:

Zr ¼
R1Y1x

n1cos pn1
2

� �þ R1

2R1Y1xn1cos pn1
2

� �þ R2
1Y

2
1x

2n1 þ 1
þ cos pn2

2

� �
Y2xn2

ð7Þ

Zi ¼
R2

1Y1xn1sin pn1
2

� �
2R1Y1xn1cos pn1

2

� �þ R2
1Y

2
1x

2n1 þ 1
þ sin pn2

2

� �
Y2xn2

ð8Þ

Table 3 represents the circuit element parameters for all
samples. It’s important to note that when the concentration

of NaI increases, the conductivity is increased. Pure PVA has
a conductivity of 2.87 � 10�11 S/cm while the conductivity is
noticeably increased to 2.41 � 10�4 S/cm for the sample loaded

with 50 wt% NaI (PVNA5) due to the dissociation of more
ions in the system.

Ion transport parameters are critical aspects that should be
taken into account for energy storage device applications. For

the PVNA4 and PVNA5 samples the number carrier density
(n), diffusion coefficient (D), and mobility (l) are determined
using the following relationships (Arof, 2013; Electrolytes,
2022):

The diffusion coefficient (D) of ions is determined using Eq.

(9).

D ¼ K2�0�rAð Þ2
s2

( )
ð9Þ

where er and e0 represent the dielectric constant and the per-
mittivity of the space, respectively. The reciprocal of x is

denoted by s2 and corresponds to the lowest value in Zi. The
mobility of ions (m) is determined by.

l ¼ eD

KbT

� 	
ð10Þ

The Boltzmann constant and absolute temperature are
denoted by kb andT, respectively.

The number density of ions (n) is determined using Eq. (11).

n ¼ rdcKbT�

e
� 1

D

� 	
ð11Þ

It is seen in Table 4 the mobility and diffusion coefficient of

ions improved with icreasing NaI concentration as more salts
are dissocitaed to free cations and anions.

3.4. Dielectric properties

Dielectric material characteristics may be characterized using a
variety of approaches, according to recent research. A lot of

research has been done in recent years to improve material
characterization’s accuracy and sensitivity (Uǧuz, 2020; Al-
Omari and Lear, 2005; Park et al., 2016; Anderson and
Jacob, 2011; Aziz et al., 2017). It has been observed that impe-

dance measurements at various frequencies are an briliant
method to examine dielectric material’s molecular mobility
(Aziz et al., 2019). The conductivity trend may be studied using

dielectric studies. Fig. 7 and Fig. 8 show how the dielectric
constant (e) and dielectric loss (e‘‘) vary with frequency for dif-
ferent NaI salt amount at ambient temperature. Using the rela-

tionship given below, the dielectric constant and loss may be
calculated from Zr and Zi parts of the complex impedance
(Z�):

20 ¼ Zi

xCo Z2
r þ Z2

i

� � ð12Þ

200 ¼ Zr

xCo Z2
r þ Z2

i

� � ð13Þ

where Co is the vacuum capacitance which is equivalent
to2oA=t, where 2o is the permittivity of free space

(8:85 � 10�12F=m); the angular frequency denoted by x
(x = 2pf); and the applied field frequency denoted by f.

A polymer electrolyte’s conductivity may be investigated
and evaluated using dielectric constants (Tamilselvi and

Hema, 2016). When it comes to determining dipole alignment
or polarization, the real component of dielectric permittivity
(e0) measures the capacitance. Similarly, the imaginary part
(e‘‘), which represents dielectric loss, is related to conductance

and it reflects the energy required to align the dipoles (Aziz,
2019). The study and detection of the formation of neutral
ion pairs from the aggregation of dissolved ion pairs is crucial



Fig. 6 Nyquist plots for the a) PVNA1, b) PVNA2, c) PVNA3, d) PVNA4, and e) PVNA5.

Table 3 Calculated parameters related to the Nyquist plot.

Sample p1 (rad) p2 (rad) CPE1(F) CPE2 (F) Conductivity (S cm�1Þ
Pure PVA 0.79 2.78 � 10�11 2.87 � 10�11

PVNA1 0.94 3.03 � 10�10 5.61 � 10�10

PVNA2 0.74 2.00 � 10�9 1.99 � 10�9

PVNA3 0.71 1.05 � 10�8 1.16 � 10�7

PVNA4 0.74 0.71 2.86 � 10�8 3.13 � 10�5 2.51 � 10�5

PVNA5 0.71 0.69 3.13 � 10�8 4.03 � 10�5 2.41 � 10�4

8 M.B. Ahmed et al.



Table 4 The value of n, D, and l for the all SPEs.

Sample D ðcm2s�1Þ l (cm2V�1s) N ðcm�3Þ
PVNA1 – – –

PVNA2 – – –

PVNA3 – – –

PVNA4 1.33 � 10�12 5.18 � 10�11 3.02 � 1024

PVNA5 1.60 � 10�11 6.22 � 10�10 2.42 � 1024
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since such formations may decrease electrical conductivity
(Aziz et al., 2017). As previously shown in XRD and FTIR

tests, increasing the amount of NaI lowered the crystalline
area. As illustrated in Figs. 7 and 8, the dielectric constant
and dielectric loss in the low-frequency region are found to

be high. This is due to charge carrier buildup or space charge
polarization at the electrode/electrolyte interface (Aziz et al.,
2019). At high frequency, the dielectric characteristics are

reduced (i.e., the bulk property). To put it another way,
decreasing the applied electric field frequency increases the
time available for charge carriers to move, increasing the
dielectric constant and dielectric loss in the process (Aziz and

Abdullah, 2018). The reverse of electric field happens rapidly
at frequency that cause the diffusion of ions not occurs along
its path, and thus decreases polarization (Teo et al., 2012). The

dielectric constant of the system containing 50 wt% NaI
(PVNA5) was higher than that of the other samples. This is
because the dielectric constant (e’) and the dielectric loss (e”)
are more influenced by amorphous phase in the system
Fig. 7 e’ spectra for PVNA1, PVNA2, PVNA3,
(Awasthi and Das, 2019; Khiar et al., 2016). As seen in
Fig. 7 the PVNA5 sample has the highest dielectric constant
and also DC conductivity as shown in Table 3 as more salts

are dissociated into free ions.
As can be seen from the graphs, the dielectric loss is greater

than the dielectric constant. Dielectric loss is influenced by two

factors: dielectric polarization processes and DC conduction
processes (Awasthi and Das, 2019).

3.5. Tangent delta analysis

Loss tangent peaks study the PE’s relaxation processes. The
PEs dipoles can be explained on the basis of dielectric relax-

ation (Marf et al., 2020; Aziz et al., 2017). Fig. 9 shows the loss
tand dielectric relaxation against frequency at room tempera-
ture. The loss tangent peak shifts to high frequency, meaning
that the dielectric relaxation occurs. The permanent dipoles

and induced dipoles cause the dielectric relaxation peaks and
conductivity. It has been documented that the polarization
relaxation of mobile ions in a material is hidden by the induced

diploes (Marf et al., 2020; Aziz et al., 2017). The peaks in Fig. 9
show the translational ion motions that are associated to the
conductivity relaxation of the mobile charge carriers. This is

a benefit for the transport of ions in the PEs segmental motion
(Aziz et al., 2017). The tan d increased as the frequency
increased, owing to the active element (ohmic) dominant in
comparison with the reactive element (capacitive). Followed

by, the tan d decrease at a higher frequency is seen which is
owing to the active element independency frequency and thus,
causes the dominant of the reactive element (Woo et al., 2012).
PVNA4, and PVNA5 at ambient temperature.



Fig. 8 Dielectric loss spectra for PVNA1, PVNA2, PVNA3, PVNA4, and PVNA5 at ambient temperature.

Fig. 9 Loss tangent spectra for electrolytes at room temperature.

10 M.B. Ahmed et al.
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The PEs relaxation process signified by the tan d plot suggests
the films non-Debye behavior (Idris et al., 2007).

3.6. Electric modulus spectra analysis

The M* diagram is now widely used to investigate ionic con-

ductivities in the context of ionic process-conductivity relax-
ation time relationships (Resistivity et al., 2022). The
following formulae calculate the real and imaginary parts of
complex electric modulus (M�) by inserting the values of the

real (Zr) and imaginary (Zi) component:

M0 ¼ 2 0
ð2 02 þ 2 }2Þ ¼ xCoZi ð14Þ

M00 ¼ 2 00
ð2 02 þ 2 }2Þ ¼ xCoZr ð15Þ

where the angular frequency is denoted by x, and the capaci-
tance of the dielectric cell without the sample is denoted by C0.

By reducing the signal strength associated with electrode polar-
ization or focusing on small features in the high-frequency
range, the modulus may be easily shown (Aziz and Mamand,
2018). As a result, the electric modulus curves make it possible

to study conductivity and the relaxation associated with con-

ductivity in ionic conductors (Aziz et al., 2010). M0 as seen
in Fig. 10, donates the real components of the electric modu-
lus. The M’ spctra have a low value at lower frequencies. This

is due to the large capacitance linked with the electrodes, which
promotes ion conduction migration (Electrolytes, 2020). As

the frequency is raised, the M0 displays dispersion. This gives
support to the samples’ non-Debye behavior (Baskaran
et al., 2006).
Fig. 10 M’ spectra for a
M‘‘ spectra of the films are shown in Fig. 11. The peak in
the M” spectra corresponds to the relaxation of the conduc-
tance of the mobile ions. When a polymer chain segments

move, it lowers relaxation time (s) and boosts transport char-
acteristics. The relaxation time can be measured by the inverse
of the frequency of the relation peak (s = 1/2pfmax)

(Gondaliya et al., 2011). The relaxation peaks shifted to the
higher frequency side, as seen in Fig. 11. Increasing the concen-
tration of NaI causes an increase in relaxation time, which

causes an increase in ionic conductivity. The long tail detected
at low frequency proposes the capacitive behavior of the elec-
trolytes where the strong electrode polarization occurs without
any dispersion (Asnawi et al., 2021).

Fig. 12 shows the Argand plots for all samples, which
shows incomplete semicircle. The Argant plots’ tails began to
diverge much further from their original orientation. At low

frequencies, the enormous capacitance owing to electrode
polarization is responsible for the lengthy tail (Aziz et al.,
2017). The tails of the M’’-M’ for 10 and 20 wt% of NaI is

close enough to real axis due to resistive (insulating) behavior
of these electrolytes. For other systems (30–50 wt%) NaI the
curves shifts towards the origin ascribing to resistivity

decrease. In the Argand plots, non-Debye relaxation is repre-
sented by incomplete semicircular arcs. It is designed for
non-interacting identical dipoles in the Debye model (Aziz,
2016). As a result, the non-Debye behavior may be attributed

to the fact that there are several polarization mechanisms and
many interactions between ions and dipoles in real space in
actual material. The drawing diameter of the circle is well

below the real axis. For differentiating between conductivity
and viscoelastic relaxation processes, the Argant plot is essen-
tial. It was recently proven that the Argand plot with a perfect
ll polymer electrolytes.



Fig. 11 M‘‘ for PVNA1, PVNA2, PVNA3, PVNA4, and PVNA5 films.

Fig. 12 Aragnd (M’’ vs M’) diagram for ion condicting films.
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semicircular arc (diameter coincides or overlaps with real axis)
linked with the ion relaxation process may be attributable to
the conductivity relaxation or pure ionic relaxation process,

in which polymer chain motion helps ion translation; that is;
not coupling occurs among polymer/cation motions. Conduc-
tivity and viscoelastic relaxation processes can only be distin-

guished with an in-depth understanding of the Argant plot.
Research has shown that the Argand plot is essential to distin-
guish ion relaxation process that is either caused by conductiv-

ity relaxation or by the viscoelastic relaxation process, in which
polymer chain motion helps ion translation (Aziz et al., 2017;
Aziz, 2016; Moreno et al., 2011; Mohomed et al., 2005).
Fig. 13 AC conductivity versus frequency for a) PVNA1, PV
3.7. AC conductivity study

The AC conductivity spectrum for the all membrane are
shown in Fig. 13. In this study the rAC for all the SPE films
at ambient temperature have been measured using the follow-

ing equation (Aziz and Abidin, 2015):

rAC ¼ Z0

Z02 þ Z002


 �
� t

A
ð16Þ

The room temperature rAC trend for all the prepared SPE
samples with the frequency of applied electric field at ambient

temperature is shown in Fig. 13(a,b). It should be noted that,
NA2, and PVNA3 films and b) PVNA4 and PVNA5 films.
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the electrical conductivity performance of the current SPE
films in the frequency dependent dispersion region are follow-
ing Jonscher’s power law, which is given by (Murugaraj et al.,

2003; Aziz et al., 2018):

rac xð Þ ¼ rDC þ Axn 0 < n < 1ð Þ ð17Þ
Here, rðxÞ is the total conductivity due to AC and DC contri-

bution, and the frequency independent conductivity denoted

by rDC. A is a parameter that depends on temperature and
composition of the sample, and n is the frequency exponent
related to the hopping rate to the relaxation time of site
groups, and has the value in the range of 0–1 (Perumal

Ramasamy et al., 2014).
It is clear when the frequency increases caused to rise

AC conductivity. This might be explained by the fact that

when the applied electrical signal excites the charge carri-
ers, their mobility increases, decreasing the relaxation per-
iod and increasing conductivity (Gondaliya et al., 2011).

DC electrical conductivity may be accurately predicted
by using the frequency of the applied electrical signal
as a measure of AC conductivity (Aziz et al., 2017;
Aziz et al., 2017; Aziz et al., 2017). The frequency depen-

dent AC spectra allow for the separation of three distinct
zones for materials with significant DC conductivity
(Moreno et al., 2011).

Fig. 13 has three distinct sections. Electrode polarization
(EP) is responsible for the low-frequency data, while DC con-
ductivity is responsible for the data in the intermediate zone.

The influence of electrode polarization is responsible for the
conductivity spectrum’s divergence from DC value (the pla-
teau area), according to th previous research in ref. (Aziz

et al., 2017). The EP region cannot be distiguished for the sam-
ples exhib semicircle only (see Fig. 13).

4. Conclusion

Casting techniques were used to prepare solid polymer elec-

trolytes (SPEs) films. The XRD deconvolution was used to inves-

tigate the degree of crystallinity the results show that with

increasing NaI the degree of crystallinity decreased. The PVNA5

film showed the lowest degree of crystallinity (2.26), meaning that

it has the highest amorphous phase. The noticeable decrease of

transmittance intensity and band shift in the FTIR spectra indi-

cated the complexation and interaction between the PVA func-

tional groups and Na cations. The impedance data were fitted

with the EEC modelling to determine bulk resistance which is

used to determine the DC conductivity. At ambient temperature

the maximum conductivity of 2:41� 10�4 S=cm was obtained at

room temperature. The EIS model was used to to detrmine

the in transport parameters. The mobility of 6.22 � 10�10 cm2-

v�1s, diffusion coefficient of 1.6 � 10�11 cm2s�1, and number

density of ions of 2.42 � 1024 cm�3 were determined for the

PVNA5 film. The regions belong to the effect of EP were distin-

guished form the dielectric constant and dielectric loss spectra.

Due to charge carrier buildup, the dielectric constant and loss

are high at the low-frequency region. Obvious peaks were

emerged at the high salt concentrations in the tand and M‘‘

spectra. The tand peaks were shifted to the high frequency

region. The argand plot showed an incomplete circular arc,

meaning that the distribution of relaxation time is dominant.

The AC conductivity versus frequency was plotted and used to

observe the DC contribution. It was found that with increasing

frequency, AC conductivity increased. Regions belong to the

EP and DC contributions were differentiated in the AC spectra.
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