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Abstract There is a growing attention to the bio and renewable energies due to fast depletion of

fossil fuels as well as the global warming problem. Here, we developed a modeling and simulation

method by means of artificial intelligence (AI) for prediction of the bioenergy production from

vegetable bean oil. AI methods are well known for prediction of complex and nonlinear process.

Three distinct Adaptive Boosted models including Huber regression, LASSO, and Support Vector

Regression (SVR) as well as artificial neural network (ANN) were applied in this study to predict

actual yield of Fatty acid methyl esters (FAME) production. All boosted utilizing the Adaptive

boosting algorithm. The important influencing parameters on the biodiesel production such as

the catalyst loading (CAO/Ag, wt%) and methanol to oil (Soybean oil) molar ratio were selected

as the input variables of models while the yield of FAME production was selected as output. Model

hyper-parameters were tuned to maintain generality while improving prediction accuracy. The

models were evaluated using three distinct metrics Mean Absolute Error (MAE), Root Mean

Square Error (RMSE), and R2. Error rates of 8.16780E-01, 4.43895E-01, 2.06692E + 00, and

3.92713 E-01 were obtained with the MAE metric for boosted Huber, SVR, LASSO and ANN

models. On the other hand, the RMSE error of these models were about 1.092E-02, 1.015E-02,

2.669E-02, and 1.01174E-02, respectively. Finally, the R-square score were calculated for boosted

Huber, boosted SVR, and boosted LASSO as 0.976, 0.990, 0.872, and 0.99702, respectively. There-

fore, it can be concluded that although the boosted SVR and ANN models were better models for

prediction of process efficiency in terms of error, but all algorithms had high accuracy. The opti-

mum yield of 83.77% and 81.60% for biodiesel production were observed at optimum operating

values from boosted SVR and ANN models, respectively.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Fossil fuels such as petroleum oil comprise 80% of current pri-
mary energy of world due to fast development of industries

and economies (Qiu, 2019; Abas et al., 2015). However, fos-
sil fuels have two main drawbacks environmental pollution
as well as unsustainability and non-renewability (Bayat et al.,

2015; Khounani, 2019). One of the best alternatives for fos-
sil fuels are biofuels which are clean fuel, renewable and
degradable (Guo, 2013). Fatty acid methyl esters (FAME)

which are commonly referred as bioenergy can be generated
from animal fats, waste edible oil and alcohol as well as veg-
etable oil through transesterification process (Alhassan, 2014;

Ma, 2017). In transesterification, glycerides react with alcohols
in the presence of a catalyst to form fatty acids esters and alco-
hol mixtures (Stavarache, 2005; Ma et al., 1998; Marchetti and
Errazu, 2008). Catalysts can be homogeneous or heteroge-

neous catalysts. Despite of the main advantage of homoge-
neous catalyst such as high reactivity, they have some
disadvantages including dissolution in the intermediate

reagent, equipment corrosion and difficult separation from
the solution media (Cole-Hamilton, 2003; Cole-Hamilton
and Tooze, 2006). Heterogeneous catalyst due to ease of sepa-

ration and reusability are used more favorably in transesterifi-
cation process. The biodiesel production processes are very
complex and nonlinear process and therefore designing and
optimization of these processes are very difficult (Aghbashlo,

2021; Franceschini and Macchietto, 2007; Brásio, 2013). Com-
plex scientific problems have been solved using data science
tools in recent years. It has been demonstrated that machine

learning (ML) modeling procedure can be a great alternative
for prediction of the process efficiency in complex reactions
including biodiesel production processes (Pelalak, 2021; Li,
2021; Chen, 2021; Heidari, 2020; Pelalak, 2021;
Khoshmaram, 2021; Cao, 2021).

Similar to any other research area, chemical challenges,
such as building chemical systems with tailored property and
uncovering complicated structure–property relationships

(SPRs), have started to benefit from data science
(Hachmann, 2018; Pelalak, 2021; Jamalabadi, 2021). Data sets
may be analyzed mathematically, allowing to discover previ-
ously unnoticed relationships and patterns, leading to new

insights, patterns, rules, and guidelines. Different types of
ML can be used in prediction of processes including super-
vised, semi-supervised, unsupervised, and reinforcement learn-

ing methods (Alberi, 2018; Pelalak, 2021). Huber regression,
Least Absolute Shrinkage and Selection Operator (LASSO)
regression, and Support Vector Regression (SVR) are common

supervised regression models which used in modeling and sim-
ulation of complex processes (Fernández-Delgado, 2019).
Although these models have good generality and efficiency in

themselves, in order to improve the efficiency, the Adaboost
as an ensemble method, can be added to these methods
(Nowakowski, 2015).

D-driven Huber-type techniques are developed for linear

and sparse regression in addition to mean estimation in high
dimensions. The first step in each problem is to determine
the sub-Gaussian concentration bounds under the least

moment condition on the errors for the estimator that is based
on the Huber-type method. These results that are considered
as non-asymptotic can lead the way for choosing decisive tun-

ing parameters. Some of these results have an independent
interest which leads to the enhancement of the existing result
through diminishing the scaling of the sample size (Friedman

http://creativecommons.org/licenses/by/4.0/


Table 1 The whole data set used in this study (Zhu, 2021).

No. X1 = Catalyst

loading

(CaO/Ag wt%)

X2 = Methanol:oil

(Soybean oil)

molar ratio

Actual

yield (%)

1 1.17 9 76.34

2 1.17 9 75.56

3 2 6 73.52

4 2 6 72.73

5 2 12 80.27

6 2 12 79.84

7 4 4.76 68.32

8 4 4.76 67.17

9 4 9 80.46

10 4 9 82.56

11 4 9 82.41

12 4 9 83.48

13 4 13.24 83.23

14 4 13.24 82.07

15 6 6 62.32

16 6 6 61.05

17 6 12 78.05

18 6 12 77.45

19 6.83 9 65.46

20 6.83 9 66.32
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et al., 2010; Kim, 2007). The artificial neural network (ANN) is
one of the computing models and effectively can predict the
efficiency of biodiesel production (Pelalak, 2020; Pelalak,

2021; Heidari, 2022). The support vector machines (SVMs)
are one of the most trending approaches in machine learning
research. Variants of SVM or its different implementations

are introduced every week, claiming unique in particular con-
ditions. However, they are rarely compared to other methods
or only a few primarily neural networks. SVM Regression is

a sophisticated learning algorithm based on statistical learning
theory ideas (Ralaivola and d’Alché-Buc, 2001; Mangasarian
and Musicant, 2000; Mayoraz, 2001; Meyer et al., 2003).

The primary interest in LASSO regression a linear model

with regularization is a linear model that predicts sparse coef-
ficients. It is advantageous in specific settings because it prefers
solutions with reduced non-zero coefficients, lowering the

number of characteristics the supplied solution relies on. As
a result, LASSO and its variants in compressed sensing are
critical. It is possible to obtain the exact set of non-zero coef-

ficients under certain circumstances (Catoni, 2012). One or a
few essential samples on estimates of regression coefficients,
particularly in the lasso regression, can also influence the esti-

mator of shrinkage parameter, such that model selection find-
ings based on the lasso will differ due to one or few samples
(Kim, 2015).

In this study, different supervised regression modeling

methods including Huber regression, LASSO, SVR and
ANN models were selected for prediction of biodiesel produc-
tion. Different operating factors including the catalyst loading

(wt%) and methanol to oil molar ratio were selected as the
models input while the biodiesel production efficiency was
selected as the models output. The obtained results were com-

pared and optimized conditions for highest amount of biodie-
sel production were selected.

2. Methodology

2.1. Data set

There are 20 data points, two inputs, and one output in the
data set used in this study according to (Zhu, 2021). Table 1
represents the whole dataset that shows a small regression

problem. The inputs are X1 = catalyst loading (CaO/Ag, wt
%) and X2 = methanol to oil (Soybean oil) molar ratio and
the output of these vectors, is Y = fatty acid methyl ester

(FAME) production yield (%).

2.2. Base models

This section introduces the base models used, including Huber
regression, LASSO, and SVR, which Adabost will reinforce in
this research. In previous studies such as (Zhou, 2018; Fan

et al., 2017), estimators of the Huber-type were proposed for
both high dimensional and low dimensional settings in addi-
tion to deriving non-asymptotic variance limits for the estima-
tion error. In order to utilize each of Catoni’s methods or the

Huber-type method, for balancing the estimation’s bias and
robustness, the specification of a tuning parameter shown
by s is necessary. The analysis of the deviation proposes that

the tuning parameter (robustification parameter) has to be
adjusted with respect to dimension, confidence level, the vari-
ance of the noise, and sample size. Calibration plans are com-
monly Lepski’s method or cross-validation, which requires an

intense amount of computation, especially in the case of high
dimensional approximation and large-scale interference prob-
lems for which the parameter’s number can be exponential in

the observation’s number (Wang, 2020). For instance, an
adaptive Huber-type estimator was proposed by (Avella-
Medina, 2018) in order to approximate the high dimensional

precision matrix and covariance matrix. For a covariance
matrix with the dimension of d � d, despite the Huber-type
method can robustly estimate every entry. At the same time,
s is chosen through cross-validation. The number of tuning

parameters for the whole procedure equals d2, and by the
growth of d, the cross-validation technique will become
intractable from the computational aspect. Efficiently tuning

is of importance for the interest of the problem and for usages
in a more extensive context (Catoni, 2012; Huber, 1981; An
et al., 1964).

The LASSO approach is used to minimize model complex-
ity and prevent over-fitting in prediction models. The following
bj parameters were used to optimize the residual sum of
squares (Fu and Knight, 2000):

Pn
i¼1 b0 þ

PK
k¼jbkxk;i � yi

� �2

# ð1Þ

here b0 is the constant coefficient, bk is the coefficient vector,
xk;i the covariate vector for the i

th case, and yi is the outcome.

The k parameter (amount of shrinkage) was used to minimize
the residual sum of squares in LASSO regression (Osborne

et al., 2000):

Pn
i¼1 b0 þ

PK
k¼1bkxk;i � yi

� �2 þ k
Pk

k¼1bk# ð2Þ
Vapnik pioneered SVR approach as a sophisticated learn-

ing algorithm based on statistical learning theory ideas

(Vapnik, 1999). SVR is trained to detect the dependence con-
nection between a set of goals t ¼ t1; t2; � � � ; tnf gspecified on



Fig. 1 Prediction of biodiesel production by ANN model.
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R and inputs x ¼ x1; x2; � � � ; xnf gthat xi 2 Rd, where n show
the size of the dataset. So, the problem is transformed into a
multidimensional feature, which can be matched using linear
regression in order to accomplish this. Equation (3) is a possi-

ble representation of this concept (Dargahi-Zarandi, 2020):

f xð Þ ¼ w:/ xð Þ þ b# ð3Þ
An input vector can be transformed into something else

using the mapping function / xð Þ in this example. b and w

denote the bias and weight axes (Amar et al., 2020). Model
complexity and related experimental error are wrapped in
the so-called ‘‘regularized risk function” to create a

regression-purpose optimization problem for calculating w
and b. What this means is that there is a problem (Keane
et al., 2008):

minimize 1
2
kwk2 þ C�Pn

k¼1 n�k þ nþk
� �

# ð4Þ

s:t:ftk � ðw:/ðxkÞ þ bÞ � eþ nþk ðw:/ðxkÞ þ bÞ � tk

� eþ n�k n
�
k ; n

þ
k � 0; i 2 1; 2; � � � ; nf g

where
Pn

k¼1ðn�k þ nþk Þ denotes empirical error and kwk2
denotes function flatness. Model complexity and associated
empirical error are regulated to a certain extent by the presence
of a penalty constant, C. Also, e denotes error tolerance; and
nþk andn

�
k are positive parameters that denote upper and lower

excess deviations, respectively.
Lagrange multipliers translate the restricted optimization

problem indicated above into a dual vector space. Next, the

resultant Lagrangian is resolved. The transformation phase
and resolution phase are described formerly (Keane et al.,
2008). The resulting answer is as follows (Shawe-Taylor and
Cristianini, 2004):

f xð Þ ¼ Pn
k¼1 ak � a�k

� �
K xk; xlð Þ þ b# ð5Þ

where Kðxk; xlÞ denotes the kernel function and akanda�k
denotes the Lagrange multipliers that meet the constraints
0 � ak anda�k � C.

2.3. Adaboost

Freund and Schapire (Freund and Schapire, 1997) proposed
AdaBoost algorithm as an ensemble learning approach.
Because of the possibilities of this technique, it has gained pop-
ularity. This approach, adaptively boosts basic models, allow-

ing them to solve complicated situations. There are two
methods to solve tough problems: simple models and sophisti-
cated models. Simple models have good generalization quali-

ties due to their simplicity of structure, which is one of the
reasons for their appeal (Buitinck, et al., 1309). The AdaBoost
approach is presented to address such challenges. In this

method, a weak learner is employed, and then the learner
and the other models are merged gradually and consistently
to form a robust system capable of dealing with complex case

(Lemaı̂tre et al., 2017).

2.4. ANN modeling

The ANN modeling was performed based on ten hidden layers

according to Fig. 1 in JMP software. One linear and two non-
linear (TanH) as well as one Gaussian functions were used in
the hidden layer’s nodes. The trial-and-error method was used
for optimization of biodiesel production.

3. Results and discussion

The predictability capability of the hybrid intelligence models

was examined using a number of statistical performance pre-
diction skills metrics that quantify the absolute inaccuracy in
prediction including mean absolute error (MAE), and root
mean square error (RMSE) according Equation (6) and (7)

(Pelalak, 2021):

RMSE ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 fpexp � fppre

� �2
r

# ð6Þ

MAE ¼ 1
N

PN
i¼1 fpexp � fppre

��� ���# ð7Þ

here, fpexp is the experimental value and fppre is the predicted

value of fp and N is the number of data. Also, R-squared

(Equation (8)) metrics are used in this study (Pelalak, 2021):

R2 ¼ 1�
Pm

i¼1
Xi�Yið Þ2Pm

i¼1
Y
� �Yi

� �2 # ð8Þ

Table 2 shows the optimized values of the hyper-
parameters. In this table, the learning rate is the weight applied

to each regressor during each boosting iteration. The loss func-
tion was also used to update the weights after every boosting
iteration. These optimal values are obtained using the grid

search method, and more than 1000 runs of different combina-
tions are done to find them.

Figs. 2 to 9 show the predicted and actual values in the

boosted Huber, boosted SVR, and boosted LASSO models
made in the training and testing phase. By comparing Figs. 4
and 8 with Figs. 2 and 6, it can be concluded that in these fig-
ures, which is related to the boosted SVR and ANN, the pre-

dicted values were closer to the actual values, and this
demonstrated the higher accuracy of boosted SVR and ANN
in the training phase. Comparing the results obtained in the

test phase (Figs. 3, 5, 7, and 9) demonstrated that there was



Table 2 selected Hyper-parameters.

Models Number of estimators Learning

Rate

Loss

Function

Tolerance Alpha C kernel

Adaptive Boosted Huber Regressor 25 1.7 square 5.0 � 10-5 0.00215 – –

Adaptive Boosted Support Vector Regressor 35 1.5 linear 6.0 � 10-5 – 1.5 poly

Adaptive Boosted Lasso 50 1.7 square 0.0002 0.0055 – –

Fig. 2 Boosted Huber (train phase): Actual vs. Predicted.

Fig. 3 Boosted Huber (test phase): Actual vs. Predicted.

Fig. 4 Boosted SVR (train phase): Actual vs. Predicted.

Fig. 5 Boosted SVR (test phase): Actual vs. Predicted.
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a considerable dispersion between the actual and predicted val-
ues in the boosted LASSO model. This shows that the accu-

racy of the boosted LASSO model in the test phase was
much less than the other two models. However, the boosted
Huber, boosted SVR and ANN models were almost similar

in the test phase and have almost the same accuracy.
Also, the mentioned models were evaluated using three dis-

tinct metrics including MAE, RMSE, and R2. Table 3 summa-
rizes the simulation results of model performance with the
criteria defined in the relevant section. As can be seen the
MAE metric error rates of 8.16780E-01, 4.43895E-01,

2.06692E + 00, and 3.92713 E-01 were obtained for boosted
Huber, boosted SVR, LASSO, and ANN models. On the other
hand, the RMSE error for boosted Huber, boosted SVR,

LASSO, and ANN models were about 1.092E-02, 1.015E-02,
2.669E-02, and 1.01174E-02 respectively. Finally, the R2 score
were calculated for boosted Huber, boosted SVR, and boosted



Fig. 6 Boosted LASSO (train phase): Actual vs. Predicted.

Fig. 7 Boosted LASSO (test phase): Actual vs. Predicted.

Fig. 8 ANN (train phase): Actual vs. Predicted.

Fig. 9 ANN (test phase): Actual vs. Predicted.
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LASSO, and ANN models as 0.976, 0.990, 0.872, and 0.99702

respectively. Based on the obtained results in train and test
phases as well as the mentioned results in Table 3, it can be
concluded that the boosted SVR and ANN model had the best
experience in prediction of biodiesel production yield.

The 3D plot in Fig. 10 shows the dual effect of catalyst
amount and methanol to oil molar ratio on the biodiesel pro-
duction yield. These results obtained from Adaptive Boosted

SVR modeling method. As can be seen at different catalyst
amount the molar ratio had different roles in production yield.
In the lower amounts of catalysts increasing the methanol to

oil ratio had no significant role in production of biodiesel
which can be due to insufficient amount of available catalyst
concentration that hinder the reaction progress. On the other
hand, in higher amount of catalyst loading increasing the

methanol to oil ratio had more significant role in production
of biodiesel. This can be explained by sufficient catalyst
amount in the solution. As it is obvious from Fig. 10 higher

amount of catalysts in the solution had a revers effect on the
process efficiency. This reduction can be due to the undesired
soap formation reaction which increase the solution viscosity

and decrease the process efficiency (Jaliliannosrati, 2013;
Nayak and Vyas, 2019). Thus, an optimum value should be
selected for this parameter to achieve the highest production

rate of biodiesel.
Fig. 11 shows the 3D plots obtained from ANN results for

predicted biodiesel production yield vs. input variables. More-
over, for better understanding the contour plots for prediction

of biodiesel yield is shown in Fig. 12. As can be seen increasing
the methanol to oil molar ratio, increased the FAME yield in
the first stages which is in agreement with the obtained results

of boosted SVR model. As mentioned above, in different
amount of catalysts the role of methanol to oil ratio was differ-
ent which was related to the amount of available catalysts in

the reaction media. Similarly high catalysts amount reduced
the process efficiency due to the undesired soap formation
reactions (Jaliliannosrati, 2013; Nayak and Vyas, 2019). As

can be seen in Figs. 11 and 12 after production yield reached
to maximum, its amount was decreased. Therefore, it is very
important to find the optimum values of each input variables
to find the highest amount of biodiesel production yield.



Fig. 11 Two input features projection with prediction surface in

ANN model: FAME yield (%) vs. the catalyst loading (wt%) and

methanol to oil mass ratio.

Fig. 12 Contour plot in ANN model: FAME yield (%) vs. the

catalyst loading (wt%) and methanol to oil mass ratio.

Table 4 optimal values of the paramours for maximum

response.

Model Catalyst loading

(wt%)

Methanol:oil

molar ratio

Actual yield

(%)

Boosted

SVR

4 13.24 83.77

ANN 4 13 81.60

Table 3 Final Model Results.

Models MAE R2 RMSE

Adaptive Boosted Huber Regressor 8.16780E-01 0.97665 1.09221E-02

Adaptive Boosted Support Vector Regressor 4.43895E-01 0.99029 1.01515E-02

Adaptive Boosted LASSO 2.06692E + 00 0.87237 2.66921E-02

Artificial Neural Network 3.92713 E-01 0.99702 1.01174E-02

Fig. 10 Two input features Projection with prediction surface in

final Boosted SVR model: FAME yield (%) vs. the catalyst

loading (wt%) and methanol to oil mass ratio.

Optimization of heterogeneous Catalyst-assisted fatty acid methyl esters biodiesel production from 7
In order to optimize the biodiesel production yield boosted

SVR and ANN model were employed, and the obtained results
are mentioned in Table 4. According to these results the high-
est value of biodiesel production which is about 83.77% will be
obtained at catalyst loading of 4 wt% and MeOH:oil molar

ratio of 13.24. As can be seen ANN model predict that the
maximum biodiesel production of 81.6% can be obtained
when the catalyst loading is set at 4 wt%., methanol to oil

molar ratio is set as 13.
Figs. 13 and 14 show the 2D presentation of effect of indi-

vidual parameters on the biodiesel production yield. In each

diagram one of the operating factors was changed while the
other factors were kept constant. According to the diagram
presented in Fig. 8, increasing the catalyst loading lead to

the process yield increment. This can be because higher cata-
lyst amount is available while a constant amount of methanol
to oil is present in the reaction media. This trend was detected
until the catalyst loading reached to 4% and after that the pro-

duction yield was decreased due to occurrence of undesired
reactions as mentioned before. As a result of these reactions
the surface tension between glycerol phase and biodiesel will

be reduced (Nayak and Vyas, 2019). These data are in agree-
ment with the 3D diagram in Fig. 10.



Fig. 13 Response trend for Catalyst loading.

Fig. 14 Response trend for Methanol:oil molar ratio.
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Fig. 14 shows the individual effect of methanol to oil molar
ratio on the production yield of transesterification process

while the catalyst loading is kept constant at 6 wt%. According
to the outcomes, it can be said that by increasing the molar the
ratio up to the biodiesel production yield was increased. The

reason can be due to the sufficient amount of available catalyst
in the reaction medial which is around its optimum value.
Therefore, increasing the methanol to oil molar ration has a

positive effect on the biodiesel production yield.

4. Conclusion

Recently, there is an increase interest in using the machine
learning (ML) methods for predicting the production of renew-
able energy. These methods not only help in production of

high-quality bioenergy, but also lead to reducing the overall
costs, and finding optimized conditions for biodiesel produc-
tion. In this study three different Adaptive Boosted ML mod-
els including Huber regression, LASSO, Support Vector
Regression (SVR) and Artificial Neural Network (ANN) were
selected for simulation of biodiesel production. The catalyst
loading (wt%) and the methanol to palm oil molar ratio were

selected as the input variables of all models while the process
yield was selected as the models’ output. The model hyper-
parameters were then fine-tuned to maintain generality while

enhancing prediction accuracy. Three independent metrics
were used to evaluate the models. The MAE metric yields error
rates of 8.16780E-01, 4.43895E-01, 2.06692E + 00 and

3.92713 E-01 were obtained for boosted Huber, boosted
SVR, LASSO, and ANN models. The RMSE metric, the error
rates were 092E-02, 1.015E-02, 2.669E-02, and 1.01174E-02,
respectively. Finally, the R2 were determined as 0.976, 0.990,

0.872, and 0.99702 for boosted Huber, boosted SVR, boosted
LASSO, and ANN models respectively. Given that all four
algorithms had relatively good predictions with good approx-

imation, the boosted SVR and ANN models appear to be bet-
ter models. The effect of operating factors was evaluated on
the biodiesel production and the highest yield of 83.77 and

81.60% were obtained at optimum conditions of boosted
SVR (X1 = 4, X2 = 13.24) and ANN (X1 = 4, X2 = 13)
models, respectively. Overall, the current study demonstrates

the viability of different ML models for prediction of the bio-
diesel production yield.
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