
Arabian Journal of Chemistry (2022) 15, 104257
King Saud University

Arabian Journal of Chemistry

www.ksu.edu.sa
www.sciencedirect.com
ORIGINAL ARTICLE
Optimal control approach for nonlinear chemical

processes with uncertainty and application to a

continuous stirred-tank reactor problem
* Corresponding authors at: Corresponding authors at: School of Mathematical Sciences, Guizhou Normal University, Guiyang 5500

China (X. Wu); School of Life Sciences, Guizhou Normal University, Guiyang 550001, PR China (Y.Z. Hou).

E-mail addresses: xwu@gznu.edu.cn (X. Wu), yuzhou_hou@163.com (Y. Hou).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

https://doi.org/10.1016/j.arabjc.2022.104257
1878-5352 � 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Xiang Wu
a,c,*, Yuzhou Hou

b,*, Kanjian Zhang
d,e
aSchool of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, PR China
bSchool of Life Sciences, Guizhou Normal University, Guiyang 550001, PR China
cSchool of Electrical Engineering, Southeast University, Nanjing 210096, PR China
dSchool of Automation, Southeast University, Nanjing 210096, PR China
eKey Laboratory of Measurement and Control of CSE, Ministry of Education, Southeast University, Nanjing 210096, PR China
Received 11 June 2022; accepted 11 September 2022

Available online 17 September 2022
KEYWORDS

Optimal control;

Nonlinear chemical pro-

cesses;

Stochastic constraints;

Approximation function;

Convergence analysis;

Stirred-tank reactor
Abstract Practical chemical process is usually a dynamic process including uncertainty. Stochastic

constraints can be used to chemical process modeling, where constraints cannot be strictly satisfied

or need not be fully satisfied. Thus, optimal control of nonlinear systems with stochastic constraints

can be available to address practical nonlinear chemical process problems. This problem is hard to

cope with due to the stochastic constraints. By introducing a novel smooth and differentiable

approximation function, an approximation-based approach is proposed to address this issue, where

the stochastic constraints are replaced by some deterministic ones. Following that, the stochastic

constrained optimal control problem is converted into a deterministic parametric optimization

problem. Convergence results show that the approximation function and the corresponding feasible

set converge uniformly to that of the original problem. Then, the optimal solution of the determin-

istic parametric optimization problem is guaranteed to converge uniformly to the optimal solution

of the original problem. Following that, a computation approach is proposed for solving the orig-

inal problem. Numerical results, obtained from a nonlinear continuous stirred-tank reactor prob-

lem including stochastic constraints, show that the proposed approach is less conservative
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compared with the existing typical methods and can obtain a stable and robust performance when

considering the small perturbations in initial system state.

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

It is well-recognized that the chemical process problem is a challenging

control problem due to its nonlinear nature and the existence of system

state and control input constraints (Braatz and Crisalle, 2007;

Ostrovsky et al., 2012; Skogestad, 2004; Wang et al., 2011; Zheng

et al., 2022). In generally, chemical processes can be controlled by

using linear dynamical systems analysis and design tools due to the

existence of analytical solutions for linear dynamical systems (Choi

et al., 2000; Koller and Ricardez-Sandoval, 2017; Tsay et al., 2018).

In addition, compared with the nonlinear dynamical system simula-

tion, the computational demands for linear dynamical system simula-

tion are quite small (El-Farra and Christofides, 2001; Liao et al., 2018).

Unfortunately, if a chemical process is highly nonlinear, the use of a

linear dynamical system approach is quite limiting (Chen and

Weigand, 1994; Kelley et al., 2020). With advances in nonlinear con-

trol theory and computer hardware, nonlinear control technique is

allowed to raise the productivity, profitability and/or efficiency of

chemical processes (Bhatia and Biegler, 1996; Han et al., 2008;

Sangal et al., 2012). Thus, nonlinear modeling, optimized dispatching,

and nonlinear control have been becoming basic methods to optimize

design and operate production facilities in chemical industries

(Abdelbasset et al., 2022; Bhat et al., 1990; Bradford and Imsland,

2019; Graells et al., 1995; Li et al., 2022).

A method based on optimal control is extremely important for

chemical process applications, such as reactor design (De et al.,

2020), process start-up and/or shut down (Naka et al., 1997), reac-

tive distillation system (Tian et al., 2021), etc. The main task of the

optimal control problem is to choose a control input such that a

given objective function is minimized or maximized for a given

dynamical system (Doyle, 1995; Ross and Karpenko, 2012; Zhang

et al., 2019). The classical optimal control theory is based on the

Pontryagin’s maximum principle (Bourdin and Trélat, 2013) or the

dynamic programming method (Grover et al., 2020). The Pon-

tryagin’s maximum principle presents a necessary condition for opti-

mality. By using this principle, some simple cases can be solved

analytically. However, this problem may be too complex and big

such that the use of a high-speed computer is inevitable in engineer-

ing practice (Kim et al., 2011; Assif et al., 2020; Andrés-Martı́nez

et al., 2022). The dynamic programming method requires solving a

Hamilton–Jacobi-Bellman equation, which is a partial differential

equation. For linear dynamical systems, the Hamilton–Jacobi-

Bellman equation degenerates into a Riccati equation, which is very

easy to solve. However, the analytical solution of the Hamilton–

Jacobi-Bellman equation cannot usually be obtained for nonlinear

dynamical systems (Bian et al., 2014; Zhang et al., 2016). In order

to overcome above difficulties, numerical computation methods are

proposed for solving optimal control problems. In generally, the

approaches for obtaining the numerical solution of optimal control

problems can be divided into two categories: the indirect approach

and the direct approach (Chen-Charpentier and Jackson, 2020;

Cots et al., 2018). In the indirect approach, the calculus of varia-

tions is usually adopted to obtain the first-order optimality condi-

tions for the optimal control problem. Then, we can determine

candidate optimal trajectories called extremals by solving a

multiple-point boundary-value problem. Furthermore, each extremal

obtained will be checked to see if it is a local maximum, minimum,

or a saddle point, and the extremal with the lowest cost will be

selected. In the direct approach, the system state or/and control

input of the optimal control problem is discretized in some way.
Then, this problem is transformed into a nonlinear optimization

problem or nonlinear programming problem, which can be solved

by using well known nonlinear optimization algorithms and high-

speed computers.

During the past two decades, many numerical computation meth-

ods have been reported about the optimal control problem

(Hannemann-Tamás and Marquardt, 2012; Chen et al., 2014;

Assassa and Marquardt, 2016; Goverde et al., 2020; Wu et al., 2017;

Wu et al., 2018; Wu et al., 2022a; Wu et al., 2022b). Unfortunately,

most of these methods are designed for deterministic models. However,

various parameter disturbances or actuator uncertainty must fre-

quently be considered in many practical problems (Kaneba et al.,

2022; Li and Shi, 2013; Ostrovsky et al., 2013; Salomon et al., 2014;

Wang sand Pedrycz, 2016; Yang et al., 2022; Yonezawa et al., 2021;

Wu and Zhang, 2022c). For this purpose, this paper considers an opti-

mal control problem for nonlinear chemical processes with uncertainty

by introducing stochastic constraints. In generally, there exist two

main difficulties in solving these optimal control problems with

stochastic constraints (Rafiei and Ricardez-Sandoval, 2018 Paulson

et al., 2019; Sartipizadeh and Açkmes�e, 2020). One is checking the fea-

sibility of a stochastic constraint is usually impossible. The other is that

the feasible region of these optimal control problems is usually non-

convex. In order to overcome these two difficulties, many methods

have been proposed to approximate these stochastic constraints. Fur-

ther, the original stochastic problem is formulated as a deterministic

problem and the corresponding solution is guaranteed to satisfy the

stochastic constraints. In generally, there exist two types of approxima-

tion approaches in existing literatures: one is the sampling based

method, the other is the analytical approximation based method.

For example, the scenario optimization (SO) approach (Calafiore

and Campi, 2006), the sample approximation (SA) method (Luedtke

and Ahmed, 2008), the meta-heuristic (MH) algorithm (Poojari and

Varghese, 2008), and the robust optimization approximation (ROA)

technique (Li and Li, 2015). It should be pointed out that the SO

approach and the SA method are two different sampling based meth-

ods. In the SO approach, a set of samples are adopted for the stochas-

tic variable so that the stochastic constraints can be approximately

replaced by using some deterministic constraints. For the SA method,

an empirical distribution obtained from a random sample is used to

replace the actual distribution. Further, it can be used to evaluate

the stochastic constraints. The MH algorithm is also a sampling based

method. In the MH algorithm, the stochastic nature is processed by

using the Monte Carlo simulation, whereas the non-convex and non-

linear nature of the optimization problem with stochastic constraints

are addressed by using the Genetic Algorithm. Unfortunately, these

three methods are designed to obtain feasible solutions without any

optimality guarantees. The ROA technique is an analytical approxima-

tion method. Its idea is that the stochastic constraint is transformed

into a deterministic constraint. Compared with the SO approach, the

SA method, and the MH algorithm, it can provide a safe analytical

approximation, the size of the corresponding problem is independent

of the solution reliability, and needs only a mild assumption on ran-

dom distributions. However, this safe approximation may lead to the

conservatism is very high and the corresponding solution has very poor

performance in practice. In order to overcome the disadvantages of

these existing methods, a novel approximation approach is proposed

for treating the stochastic constraints. Its idea is that a novel smooth

approximation function is used to construct a subset of feasible region

for this optimal control problem. Convergence results show that the

smooth approximation can converge uniformly to the stochastic con-

http://creativecommons.org/licenses/by-nc-nd/4.0/
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straints as the adjusting parameter reduces. Finally, in order to illus-

trate the effectiveness of the proposed numerical computation method,

the nonlinear continuous stirred-tank reactor problem (Jensen, 1964;

Lapidus and Luus, 1967) is extended by introducing some stochastic

constraints. The numerical simulation results show that the proposed

numerical computation method is less conservative and can obtain a

stable and robust performance when considering the small perturba-

tions in initial system state.

Our main contributions of this paper can be summarized in the fol-

lowing aspects:

� An approximation-based approach is proposed and used to

approximate the stochastic constraints. Further, the convergence

analysis results show that the approximation function and the cor-

responding feasible set converge uniformly to that of the original

optimal control problem.

� The nonlinear continuous stirred-tank reactor problem (Jensen,

1964; Lapidus and Luus, 1967) is further extended by considering

some stochastic constraints. Subsequently, this stochastic-

constrained optimal control problem is solved by using the pro-

posed numerical computation method.

� The numerical simulation results and comparative studies show

that compared with other existing typical methods, the proposed

approach is less conservative and can obtain a stable and robust

performance when considering the small perturbations in initial

system state.

The rest of this paper is organized as follows. In Section 2, we

describe the optimal control problem for nonlinear chemical pro-

cesses with stochastic constraints. Further, an approximation

method of the stochastic constraints and its convergence results

are presented by Sections 3 and 4, respectively. In Section 5, a

numerical computation approach is proposed for solving the

approximate deterministic problem. Following that, by introducing

some stochastic constraints, the nonlinear continuous stirred-tank

reactor problem is provided to illustrate that our method is effective

in Section 6.

2. Problem formulation

Consider the following optimal control problem for nonlinear

chemical processes over the time horizon 0;T½ � with stochastic
constraints:

min
u tð Þ

J u tð Þð Þ ¼ / x Tð Þð Þ þ R T

0
L x tð Þ; u tð Þð Þdt 2:1að Þ

s:t: dx tð Þ
dt

¼ f x tð Þ; u tð Þð Þ; 2:1bð Þ
x 0ð Þ ¼ x0; 2:1cð Þ
Prob gi x tð Þ; u tð Þ; hð Þ 6 0f g P �i; i ¼ 1; � � � ; q; 2:1dð Þ
u tð Þ 2 U; 2:1eð Þ

8>>>>>>><>>>>>>>:
where T presents a given terminal time; x tð Þ 2 Rm presents the
system state variable; u tð Þ 2 U � Rn presents the control input

variable; U presents a compact set; h presents a random vari-
able with a known probability density function F hð Þ supported
on the measurable set K � Rr;Prob �f g presents the probabil-

ity;

/ : Rm ! R;L : Rm �U ! R; f : Rm �U ! R; gi
: Rm �U� K ! R; i ¼ 1; � � � ; q

, present given continuously differentiable functions;
�i 2 0; 1½ �; i ¼ 1; � � � ; q, present q risk parameters chosen by
the decision maker; and Eq. (2.1d) presents q stochastic
constraints.
3. Approximation of stochastic constraints

In generally, during the process of solving problem (2.1a)-
(2.1e), the major challenge is obtaining the probability values

Prob gi x tð Þ; u tð Þ; hð Þ 6 0f g; i ¼ 1; � � � ; q, for a given control
input u tð Þ. However, it is challenging to obtain the exact ana-
lytic representation for nonlinear stochastic constraints. Thus,

some approximation methods are developed for solving the
optimal control problem for chemical processes with stochastic
constraints. Among these approaches, sample average approx-
imation and scenario generation are two most typical methods.

Unfortunately, the solutions obtained by sample average
approximation and scenario generation may be infeasible for
the original optimal control problem. To overcome this diffi-

culty, it is required to develop some better approximation
methods for dealing with the stochastic constraints described
by (2.1d).

3.1. Properties of problem (2.1a)-(2.1e)

Note that the system state variable x tð Þ depends on the control

input u tð Þ and the random variable h. Then, a more brief math-
ematical expression for the stochastic constraints described by
(2.1d) can be achieved as follows:

Prob gi x tð Þ; u tð Þ; hð Þ 6 0f g P �i ¼ Prob gi u tð Þ; hð Þ 6 0f g
P �i; i ¼ 1; � � � ; q: ð3:1Þ

Then, for any i ¼ 1; � � � ; q, the probability function Gi can be
defined as follows:

Gi u tð Þð Þ ¼ Prob gi u tð Þ; hð Þ 6 0f g; i ¼ 1; � � � ; q: ð3:2Þ
From Equalities (3.1)-(3.2), it follows that

1� Gi u tð Þð Þ ¼ Prob gi u tð Þ; hð Þ > 0f g
¼ E A gi u tð Þ; hð Þð Þ½ �; i ¼ 1; � � � ; q; ð3:3Þ

where E presents the mathematical expectation and

A gi u tð Þ; hð Þð Þ ¼ 0; if gi u tð Þ; hð Þ 6 0;
1; if gi u tð Þ; hð Þ > 0;

�
i ¼ 1; � � � ; q. By using

Equalities Eqs. (3.1)-(3.3), one can obtain that the following
equivalence relation:

Prob gi u tð Þ; hð Þ 6 0f g P �i () 1� Gi u tð Þð Þ
6 1� �i () E A gi u tð Þ; hð Þð Þ½ �
6 1� �i; ð3:4Þ

for any i ¼ 1; � � � ; q. Note that the compactness of the set U.
Thus, the feasible set of problem (2.1a)-(2.1e)
D ¼ u tð Þ 2 UjGi u tð Þð Þ P �i; i ¼ 1; � � � ; qf g and the set

X ¼ u tð Þ 2 UjE A gi u tð Þ; hð Þð Þ½ � 6 1� �i; i ¼ 1; � � � ; qf g are
compact. Further, from Equality (3.3), we can obtain D ¼ X,
which indicates that the following two problems on the time
horizon 0;T½ �:

min
u tð Þ

J u tð Þð Þ ¼ / x Tð Þð Þ þ R T

0
L x tð Þ; u tð Þð Þdt 3:5að Þ

s:t: dx tð Þ
dt

¼ f x tð Þ; u tð Þð Þ; 3:5bð Þ
x 0ð Þ ¼ x0; 3:5cð Þ
u tð Þ 2 D; 3:5dð Þ

8>>>>><>>>>>:
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min
u tð Þ

J u tð Þð Þ ¼ / x Tð Þð Þ þ R T

0
L x tð Þ; u tð Þð Þdt 3:6að Þ

s:t: dx tð Þ
dt

¼ f x tð Þ; u tð Þð Þ; 3:6bð Þ
x 0ð Þ ¼ x0; 3:6cð Þ
E A gi u tð Þ; hð Þð Þ½ � 6 1� �i; i ¼ 1; � � � ; q; 3:6dð Þ
u tð Þ 2 U; 3:6eð Þ

8>>>>>>><>>>>>>>:
have the same optimal solution set. Although

E A gi u tð Þ; hð Þð Þ½ � 6 1� �i; i ¼ 1; � � � ; q, gives an exact represen-
tation of the stochastic constraints described by (2.1d), it is still
difficulty to obtain the numerical solution of problem (3.6a)-

(3.6e) due to the existing of the functions A gi u tð Þ; hð Þð Þ;
i ¼ 1; � � � ; q. Encouragingly, the function E A gi u tð Þ; hð Þð Þ½ � pro-
vides a feasible technical route for constructing a tractable
smooth approximation of problem (2.1a)-(2.1e).

3.2. Approximation of stochastic constraints

Under the premise of ensuring the feasibility, the main task of

approximating the stochastic constraints described by (2.1d) is
to construct q continuous functions
!i a; u tð Þð Þ : 0;þ1ð Þ � Rn ! 0;þ1½ Þ; i ¼ 1; � � � ; q, satisfying

the following three properties:(1)
E A gi u tð Þ; hð Þð Þ½ � 6 !i a; u tð Þð Þ; i ¼ 1; � � � ; q, for any a > 0 and
u tð Þ 2 U;(2) inf

a>0
!i a; u tð Þð Þ ¼ E A gi u tð Þ; hð Þð Þ½ �; i ¼ 1; � � � ; q, for

any u tð Þ 2 U;(3) !i a; u tð Þð Þ; i ¼ 1; � � � ; q, are non-decreasing
functions with respect to the parameter a.

By using the properties (2)-(3) and the continuity of the
functions !i a; u tð Þð Þ; i ¼ 1; � � � ; q, respect to the parameter a,
it follows that

inf
a>0

!i a; u tð Þð Þ ¼ lim
a!0þ

!i a; u tð Þð Þ; i ¼ 1; � � � ; q: ð3:7Þ

Then, this constraint described by (3.6d) can be replaced by

inf
a>0

!i a; u tð Þð Þ 6 1� �i; i ¼ 1; � � � ; q. In addition, from the prop-

erty (1) of the functions !i a; u tð Þð Þ; i ¼ 1; � � � ; q, we can obtain

that for any fixed a > 0, the solution obtained by solving the
following problem on the time horizon 0;T½ �:

min
u tð Þ

J u tð Þð Þ ¼ / x Tð Þð Þ þ R T

0
L x tð Þ; u tð Þð Þdt 3:8að Þ

s:t: dx tð Þ
dt

¼ f x tð Þ; u tð Þð Þ; 3:8bð Þ
x 0ð Þ ¼ x0; 3:8cð Þ
!i a; u tð Þð Þ 6 1� �i; i ¼ 1; � � � ; q; 3:8dð Þ
u tð Þ 2 U; 3:8eð Þ

8>>>>>>><>>>>>>>:
is feasible for problem (3.6a)-(3.6e). Note that the feasible set
C að Þ ¼ u tð Þ 2 Uj!i a; u tð Þð Þ 6 1� �i; i ¼ 1; � � � ; qf g of problem
(3.8a)-(3.8e) is a subset of the feasible set of problem (3.6a)-

(3.6e). Then, the set C að Þ is also a subset of the feasible set
of problem (2.1a)-(2.1e).

Suppose that the following assumption is true:

Assumption 3.1. Let �i 2 0:5; 1½ Þ; i ¼ 1; � � � ; q. The stochastic
constraints described by (2.1d) is called to be regular if for any
u tð Þ 2 U with Prob gi x tð Þ; u tð Þ; hð Þ 6 0f g ¼ �i; i ¼ 1; � � � ; q,
there exists a sequence uk tð Þf gk2N such that lim

k!þ1
uk tð Þ ¼ u tð Þ

and Prob gi x tð Þ; uk tð Þ; hð Þ 6 0f g > �i; i ¼ 1; � � � ; q.
Then, the relationship between D;X, and C can be provided

by the following theorem:

Theorem 3.1. The compactness of the set U, the continuity
and monotonicity of the functions !i a; u tð Þð Þ; i ¼ 1; � � � ; q, with
respect to the parameter a, and the properties (1)-(3) of the
functions !i a; u tð Þð Þ; i ¼ 1; � � � ; q, indicate that for any
sequence akf gk2N, the following equality is true:

lim
k!þ1

C akð Þ ¼ D ¼ X; ð3:9Þ

where lim
k!þ1

ak ¼ 0 and the stochastic constraint described by

(2.1d) is regular.

Proof. Note that lim
k!þ1

ak ¼ 0. By using the property (3) of

the functions !i a; u tð Þð Þ; i ¼ 1; � � � ; q, we can obtain that the
sequence C akð Þf gk2N satisfies C akð Þ � C akþ1ð Þ; k ¼ 1; 2; � � �,
due to the compactness of the set U and the continuity of
the functions !i a; u tð Þð Þ; i ¼ 1; � � � ; q. Further, it follows that
lim inf
k!þ1

C akð Þ ¼ lim sup
k!þ1

C akð Þ: ð3:10Þ

Clearly, lim sup
k!þ1

C akð Þ � D is true. Thus, we only need to illus-

trate that lim sup
k!þ1

C akð Þ � D due to D ¼ X.

Suppose that u tð Þ 2 U. Then, there exist the following two

cases:
Case 1: E A gi u tð Þ; hð Þð Þ½ � < 1� �i; i ¼ 1; � � � ; q.
Note that E A gi u tð Þ; hð Þð Þ½ � ¼ inf

a>0
!i a; u tð Þð Þ; i ¼ 1; � � � ; q, and

the functions !i a; u tð Þð Þ; i ¼ 1; � � � ; q, are continuous and non-
decreasing with respect to the parameter a. Then, there exists a
�k such that the following inequality is true:

!i ak; u tð Þð Þ < 1� �i; i ¼ 1; � � � ; q; ð3:11Þ
for all k P �k. Thus, u tð Þ 2 C akð Þ for all k P �k, which implies

that u tð Þ 2 lim sup
k!þ1

C akð Þ.
Case 2: E A gi u tð Þ; hð Þð Þ½ � ¼ 1� �i; i ¼ 1; � � � ; q.
By using Assumption 3.1, there exists a sequence uk tð Þf gk2N

in the set U such that lim
k!þ1

uk tð Þ ¼ u tð Þ and

Prob gi x tð Þ; uk tð Þ; hð Þ 6 0f g > �i; i ¼ 1; � � � ; q. This indicates
that E A gi uk tð Þ; hð Þð Þ½ � < 1� �i; i ¼ 1; � � � ; q. Further, by using

the property (2) of the functions !i a; u tð Þð Þ; i ¼ 1; � � � ; q, it fol-
lows that for any uk tð Þ, there exists a sufficiently small param-
eter ak such that E A gi uk tð Þ; hð Þð Þ½ � < !i ak; uk tð Þð Þ < 1� �i; i ¼
1; � � � ; q. Thus, uk tð Þ 2 C akð Þ for all k, which indicates that
u tð Þ 2 lim sup

k!þ1
C akð Þ.

The properties (2)-(3) of the functions

!i a; u tð Þð Þ; i ¼ 1; � � � ; q, imply that the parameter ak can be
selected such that akf gk2N is a monotonically decreasing

sequence and satisfies lim
k!þ1

ak ¼ 0. Thus,

lim
k!þ1

C akð Þ ¼ D ¼ X. This completes the proof of

Theorem 3.1.
It should be pointed out that the equality

lim sup
ak!0þ

C akð Þ ¼ lim
ak!0þ

C akð Þ ¼ X ¼ D is also true because of

the compactness of the set C akð Þ and the monotony property

C akð Þ � C akþ1ð Þ for all 0 < akþ1 < ak. The so-called concentra-
tion of measure inequalities from probability theory can be
used as a background to construct the smooth approximation

functions !i a; u tð Þð Þ; i ¼ 1; � � � ; q, which satisfy properties (1)-
(3) (Pinter, 1989). For example, the functions
!i a; u tð Þð Þ; i ¼ 1; � � � ; q, satisfying properties (1)-(3) can be

defined as !i a; u tð Þð Þ ¼ E B a; gi u tð Þ; hð Þð Þ½ �; i ¼ 1; � � � ; q, where
B : 0;þ1ð Þ � R ! 0;þ1½ Þ is a given function. Further, it
provides a feasible technical route for constructing a tractable



Optimal control approach for nonlinear chemical processes with uncertainty 5
smooth approximation of problem (2.1a)-(2.1e). There exists
many functions B a; zð Þ such that the functions
!i a; u tð Þð Þ; i ¼ 1; � � � ; q obtained by

!i a; u tð Þð Þ ¼ E B a; gi u tð Þ; hð Þð Þ½ �; i ¼ 1; � � � ; q satisfy properties
(1)-(3). For example,

� B1 a; zð Þ ¼ e
z
a; a > 0;

� B2 a; zð Þ ¼ 1
a

R 0

�1 W sþz
a

� �
ds; a > 0, where W zð Þ is a non-

negative integrable and symmetric function (i.e.

W zð Þ ¼ W �zð Þ and Rþ1
�1 W zð Þdz ¼ 1).

Unfortunately, the functions B1 a; zð Þ and B2 a; zð Þ can not

be used directly to the computation of general non-convex
stochastic constraints (Pinter, 1989). To tackle this issue, this
paper use the following function

B a; zð Þ ¼ 1þ av1
1þ av2e�

1
az
; ð3:12Þ

to construct the functions !i a; u tð Þð Þ; i ¼ 1; � � � ; q, such that
!i a; u tð Þð Þ ¼ E B a; gi u tð Þ; hð Þð Þ½ �; i ¼ 1; � � � ; q, where v1 > 0 and
v2 > 0 are two given constants; v2 6 v1; and 0 < a < 1. The

function B a; zð Þ defined by (3.12) has some nice properties,
which allow us to obtain the desired approximation.

Theorem 3.2. If 0 < v2 6 v1 and a > 0, then the function

B a; zð Þ possesses the following two properties:(1) B a; zð Þ > 0,
for any value of z;(2) B a; zð Þ P 1, for z P 0.

Proof. (1) Note that v1 > 0; v2 > 0, and a > 0. Then, from

e�
1
az > 0 with z 2 R, it follows that B a; zð Þ > 0, for any value

of z.(2) Clearly, one can obtain that

v2ae
�1
az 6 v2a 6 v1a; ð3:13Þ

due to 0 < v2 6 v1; a > 0, and e�
1
az 6 1 for z P 0. By using

Inequality (3.13), it follows that

B a; zð Þ ¼ 1þ av1
1þ av2e�

1
az
P 1; ð3:14Þ

because of 1þ av2e�
1
az 6 1þ av1. This completes the proof of

Theorem 3.2.
Theorem 3.3. If v1 and v2 satisfy the condition 0 < v2 6 v1

1þv1
,

then the function B a; zð Þ possesses the following three proper-
ties:(1) B a; zð Þ is strictly monotonically increasing with respect
to z 2 R;(2) B a; zð Þ is non-decreasing with respect to a 2 0; 1ð Þ;
(3) B a; zð Þ satisfies the following equality:

lim
a!0þ

B a; zð Þ ¼ 1; if z P 0;

0; if z < 0:

�
ð3:15Þ

for z 2 �1;�gð � [ 0;þ1½ Þ and arbitrary g > 0.

Proof. (1) Note that the function e�
1
az is strictly decreasing

with respect to z 2 R. Then, we can obtain that B a; zð Þ is

strictly monotonically increasing with respect to z 2 R.(2) By
using the definition B a; zð Þ described by (3.12), the partial
derivative of B a; zð Þ with respect to a can be given by

@B a; zð Þ
@a

¼ v1

1þ av2e�
1
az
þ 1þ av1

1þ av2e�
1
az

� �2 �v2e
�1
az � v2

z

a

� �
e�

1
az

h i
1 �1z

� � z� �
�1z

h i

¼

1þ av2e�
1
az

� �2 v1 1þ av2e a � v2 1þ av1ð Þ 1þ
a

e a :

ð3:16Þ
Applying the inequalities 0 < v2 6 v1
1þv1

; av2e�
1
az > 0, and

1þ sð Þe�s 6 1; s 2 R, to Equality (3.16) yields

@B a; zð Þ
@a

P
1

1þ av2e�
1
az

� �2 v1 � v2 1þ av1ð Þ½ �

P
1

1þ av2e�
1
az

� �2 v1 � v2 1þ v1ð Þ½ �
P
1

1þ av2e�
1
az

� �2 v1 � v1
1þ v1

1þ v1ð Þ
� �

¼ 0: ð3:17Þ

Equality (3.17) implies that B a; zð Þ is non-decreasing with
respect to a 2 0; 1ð Þ.(3) By using the definition B a; zð Þ
described by (3.12), we can obtain the following two
inequalities:

B a; zð Þ � 1j j ¼ 1þ av1
1þ av2e�

1
az
� 1

				 				 ¼ av1 � av2e�
1
az

1þ av2e�
1
az

					
					

6 av1; for z P 0; ð3:18Þ
0 < B a; zð Þ 6 1þ av1
1þ av2e

1
ae
; for z 6 �e; ð3:19Þ

due to av2e�
1
az > 0 and e�

1
az being monotonically increasing

with respect to z. In addition, we have

lim
a!0þ

1þ av1
1þ av2e

1
ae
¼ 0; ð3:20Þ

due to lim
a!0þ

ae
1
ae ¼ þ1. Then, by using (3.18)-(3.20), it follows

that the function B a; zð Þ satisfies Equality (3.15). This com-
pletes the proof of Theorem 3.3.

Assumption 3.2. For any fixed u tð Þ 2 U;Prob N u tð Þð Þð Þ ¼ 0,

where Prob �f g presents the probability and N u tð Þð Þ ¼
h 2 Kjgi u tð Þ; hð Þ ¼ 0; i ¼ 1; � � � ; qf g.
Now, by using the properties (2)-(3) of the functions

!i a; u tð Þð Þ; i ¼ 1; � � � ; q, the definition of B a; zð Þ, the definition
of A gi u tð Þ; hð Þð Þ; i ¼ 1; . . . ; q, and Theorem 3.3, the following
corollary can be obtained directly.

Corollary 3.1. If v1 and v2 satisfy the condition
0 < v2 6 v1

1þv1
, Assumption 3.2 is true, and the variable z is

replaced by using gi u tð Þ; hð Þ; i ¼ 1; . . . ; q, in Theorem 3.3, then

lim
a!0þ

!i a; u tð Þð Þ ¼ lim
a!0þ

E B a; gi u tð Þ; hð Þð Þ½ �

¼ E A gi u tð Þ; hð Þð Þ½ � ¼ 1� Gi u tð Þð Þ;
i ¼ 1; � � � ; q:

ð3:21Þ

Define a function A zð Þ; z 2 R, as follows:

A zð Þ ¼ 0; if z 6 0;

1; if z > 0;

�
ð3:22Þ

Then, the approximation level of B a; zð Þ with v1 ¼ 1 and

v2 ¼ 0:3 is presented by Fig. 3.1, which implies that the
approximation error can be artificially controlled by adjusting
the values of a.



Fig. 3.1 A zð Þ and B a; zð Þ with v1 ¼ 1; v2 ¼ 0:3, and different

values of a.
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4. Convergence analysis

For a fixed value of the parameter ak 2 0; 1ð Þ, an optimal con-
trol problem on the time horizon 0;T½ � is introduced as

follows:

min
u tð Þ

J u tð Þð Þ ¼ / x Tð Þð Þ þ R T

0
L x tð Þ; u tð Þð Þdt 4:1að Þ

s:t: dx tð Þ
dt

¼ f x tð Þ; u tð Þð Þ; 4:1bð Þ
x 0ð Þ ¼ x0; 4:1cð Þ
u tð Þ 2 C akð Þ; 4:1dð Þ

8>>>>><>>>>>:
where C akð Þ ¼ u tð Þ 2 Uj!i ak; u tð Þð Þ 6 1� �i; i ¼ 1; � � � ; qf g
presents the feasible region. Suppose that akf gþ1

k¼1 � 0; 1ð Þ is

a decreasing sequence (i.e., akþ1 < ak) and satisfies the equality

lim
k!þ1

ak ¼ 0. Further, this leads to a sequence of optimal con-

trol problems (i.e., problem (4.1a)-(4.1d) with k 2 1; 2; � � �f g).
Note that J �ð Þ and !i ak; �ð Þ; i ¼ 1; � � � ; q, are continuous on
the compact set U. Thus, C akð Þ is a compact set and problem

(4.1a)-(4.1d) can obtain an optimal solution uk tð Þ in C akð Þ. In
addition, J �ð Þ and !i ak; �ð Þ; i ¼ 1; � � � ; q, are also continuously
differentiable functions. Thus, the solution of problem

(4.1a)-(4.1d) can be obtained by using any gradient-based
numerical optimization algorithm. Now, our main interest is
the relation between problems (4.1a)-(4.1d) and (2.1a)-(2.1e).

4.1. Convergence analysis of feasible regions

By using the property (2) of !i ak; u tð Þð Þ; i ¼ 1; � � � ; q, if follows
that C að Þ � D, for any a 2 0; 1ð Þ. Particularly, the sequence

C akð Þf gþ1
k¼1 satisfies lim sup

k!þ1
C akð Þ � D, for any sequence

akf gþ1
k¼1 with lim

k!þ1
ak ¼ 0. Further, lim

k!þ1
C akð Þ ¼ D is

guaranteed under Assumption 3.1 (see Theorem 3.1). Next,
the following Theorem will show that the feasible regions
C akð Þ of problem (4.1a)-(4.1d) with k 2 1; 2; � � �f g are uni-

formly convergent to the feasible region D of problem (2.1a)-
(2.1e).

Theorem 4.1. Suppose that akf gþ1
k¼1 � 0; 1ð Þ is a sequence

satisfying lim
k!þ1

ak ¼ 0. Then, Assumption 3.1 indicates that

lim
k!þ1

D C akð Þ;Dð Þ ¼ 0; ð4:2Þ

where D �ð Þ denotes the Hausdorff distance.

Proof. Note that C akð Þf gþ1
k¼1 is a sequence consisting of

compact sets, C akð Þ � U, the set U is compact,
lim

k!þ1
C akð Þ ¼ D (see Theorem 3.1), and the set D is also com-

pact. Then, by using the definition of the Hausdorff distance,
we can obtain that

lim
k!þ1

D C akð Þ;Dð Þ ¼ 0:

This completes the proof of Theorem 4.1.
Remark 4.1. Note that the results of Theorem 3.1 and 4.1 is

true for any sequence akf gþ1
k¼1 with lim

k!þ1
ak ¼ 0 and

akþ1 < ak; i ¼ 1; 2; � � �. Then, these results can be summarized
as follows:

inf
a2 0;1ð Þ

D C að Þ;Dð Þ ¼ lim sup
a!0þ

D C að Þ;Dð Þ ¼ 0; ð4:3Þ
where C að Þ is the feasible region of problem (4.1a)-(4.1d) (ak is
replaced by a).

In generally, it is challenging to obtain the exact analytic
representation for the stochastic constraints described by

(2.1d). In addition, it is also very difficulty to solve directly
problem (2.1a)-(2.1e) numerically on D. Fortunately, the above
analysis and discussion show that C að Þ can be as close as pos-

sible to D and equal to D in the limit. This implies that we can
obtain the numerical solution of problem (2.1a)-(2.1e) on
C akð Þ with lim

k!þ1
ak ¼ 0.

4.2. Convergence analysis of approximate solutions

From the definition of problem (4.1a)-(4.1d) and the properties
(1)-(3) of !i a; u tð Þð Þ; i ¼ 1; � � � ; q, it follows that any solution

uk tð Þ of problem (4.1a)-(4.1d) is a feasible solution of problem
(3.6a)-(3.6e). Further, for any ak, the objective function’s opti-
mal value of problem (4.1a)-(4.1d) is an upper bound for the

objective function’s optimal value of problem (2.1a)-(2.1e).
Next, the following Theorem will show that any limit point

of the local optimal solution sequence uk tð Þf gþ1
k¼1 of problem

(4.1a)-(4.1d) is also a local optimal solution of problem
(2.1a)-(2.1e).

Theorem 4.2. Suppose that uk tð Þf gþ1
k¼1 is a sequence and

uk tð Þ is a local optimal solution of problem (4.1a)-(4.1d), for
any k 2 1; 2; � � �f g. Then, there exists a subsequence

ukj tð Þ

 �þ1

kj¼1
of uk tð Þf gþ1

k¼1 such that lim
kj!þ1

ukj tð Þ ¼ u	 tð Þ and

there exists an open ball C u	 tð Þð Þ around u	 tð Þ such that
u	 tð Þ 2 D \ C u	 tð Þð Þ and u	 tð Þ is a local optimal solution of

problem (2.1a)-(2.1e). Inversely, if ~u tð Þ is a strict local optimal
solution of problem (2.1a)-(2.1e), then there exists a local opti-

mal solution sequence uk tð Þf gþ1
k¼1 of problem (4.1a)-(4.1d) such

that lim
k!þ1

uk tð Þ ¼ ~u tð Þ.
Proof. Note that the set U is compact and uk tð Þf gþ1

k¼1 � U.

Thus, there exists a subsequence ukj tð Þ

 �þ1

kj¼1
of uk tð Þf gþ1

k¼1 such
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that lim
kj!þ1

ukj tð Þ ¼ u	 tð Þ. Since ukj tð Þ 2 C akj
� �

and

lim
k!þ1

C akð Þ ¼ D (see Theorem 3.1), one can obtain that

u	 tð Þ 2 D. Further, for a sufficiently large j 2 1; 2; � � �f g, there
exists a ball C u	 tð Þð Þ such that ukj tð Þ 2 D \ C u	 tð Þð Þ is a local

optimal solution of problem (4.1a)-(4.1d).
Suppose that u	 tð Þ 2 D \ C u	 tð Þð Þ is not a local optimal

solution of problem (2.1a)-(2.1e). This indicates that there
exists a �u tð Þ 2 D \ C u	 tð Þð Þ such that

J u	 tð Þð Þ > J �u tð Þð Þ: ð4:4Þ
Note that C akð Þ is a feasible region of problem (4.1a)-(4.1d) (a
is replaced by ak) and U is a compact set. From Theorem 3.1, it

follows that there exists a sequence yk tð Þf gþ1
k¼1 such that

yk tð Þ 2 C akð Þ \ C u	 tð Þð Þ and lim
k!þ1

yk tð Þ ¼ �u tð Þ, where �u tð Þ is

feasible for problem (2.1a)-(2.1e). Then, by using the local
optimality of ukj tð Þ, one can obtain that

J ykj tð Þ
� �

P J ukj tð Þ
� �

; ð4:5Þ

where ykj

n oþ1

kj¼1
is a subsequence of ykf gþ1

k¼1. Further, from

Inequality (4.5), it follows that

J �u tð Þð Þ ¼ lim
kj!þ1

J ykj tð Þ
� �

P lim
kj!þ1

J ukj tð Þ
� � ¼ J u	 tð Þð Þ. This is

in contradiction with Inequality (4.4). Thus, u	 tð Þ is a local
optimal solution of problem (2.1a)-(2.1e).

Suppose that ~u tð Þ is a local optimal solution of problem

(2.1a)-(2.1e). Let J u tð Þð Þ > J ~u tð Þð Þ, for any u tð Þ 2 �C ~u tð Þð Þ,
where �C denotes the closure of C and the inequality constraints
Gi u tð Þð Þ P �i; i ¼ 1; � � � ; q, hold true, for a bounded ball
C ~u tð Þð Þ. Further, let J u tð Þð Þ P J uk tð Þð Þ; k ¼ 1; 2; � � �, for any

u tð Þ 2 �C ~u tð Þð Þ with 1� !i ak; u tð Þð Þ P �i; i ¼ 1; � � � ; q. By using

the compactness of �C, it follows that there exists a sequence

uk tð Þf gþ1
k¼1 such that lim

k!þ1
uk tð Þ ¼ u	 tð Þ. Note that

lim
k!þ1

D C akð Þ \ �C ~u tð Þð Þ;D \ �C ~u tð Þð Þð Þ ¼ 0. Thus, by using the

continuity of the objective function J �ð Þ, it follows that

J u tð Þð Þ P J u	 tð Þð Þ for any u tð Þ 2 �C ~u tð Þð Þ with
Gi u tð Þð Þ P �i; i ¼ 1; � � � ; q. Thus, J u	 tð Þð Þ ¼ J ~u tð Þð Þ. If

u	 tð Þ– ~u tð Þ, then this is in contradiction with ~u tð Þ is a strict
local optimal solution of problem (2.1a)-(2.1e). Thus, the

sequence uk tð Þf gþ1
k¼1 converges to ~u tð Þ, where uk tð Þ is the local

optimal solution of problem (4.1a)-(4.1d). This completes the
proof of Theorem 4.2.

5. Solving problem (4.1a)-(4.1d)

In generally, it is challenging to obtain an analytical solution
of problem (4.1a)-(4.1d). To solve this problem numerically,

an important strategy is to discretize the dynamical system
such that the original optimal control problem can be trans-
formed into a nonlinear parameter optimization problem with
stochastic constraints.

5.1. Time domain transformation

To construct the method of solving problem (4.1a)-(4.1d), the

time domain is required to be transformed from t 2 0;T½ � to
s 2 �1; 1½ � by using the following scaling transformation:
t ¼ T

2
sþ 1ð Þ: ð5:1Þ

Then, by using the scaling transformation described by (5.1),
problem (4.1a)-(4.1d) can be transformed into the following

equivalent form:

min
u sð Þ

J u sð Þð Þ ¼ / x 1ð Þð Þ þ T
2

Rþ1

�1
L x sð Þ; u sð Þð Þds 5:2að Þ

s:t: dx sð Þ
ds

¼ T
2
f x sð Þ; u sð Þð Þ; 5:2bð Þ

x �1ð Þ ¼ x0; 5:2cð Þ
u sð Þ 2 C akð Þ; 5:2dð Þ

8>>>>><>>>>>:
where C akð Þ ¼ u sð Þ 2 Uj!i ak; u sð Þð Þ 6 1� �i; i ¼ 1; � � � ; qf g.

5.2. Problem discretization

Numerical computation approaches for optimal control prob-

lems can be divided into two categories: indirect approaches
and direct approaches. The idea of indirect approaches is that
the optimality conditions are established by using variational
techniques and the original optimal control problem can be

transformed into a Hamiltonian boundary-value problem.
Unfortunately, the Hamiltonian boundary-value problem is
usually ill-conditioned because of hypersensitivity. The idea

of direct approaches is that the control input and/or system
state are parameterized by using basis functions and the orig-
inal optimal control problem can be transformed into a finite-

dimensional nonlinear optimization problem. Although direct
approaches usually are less ill-conditioning, many existing
approaches either are inaccurate or provide no costate infor-

mation. To overcome this difficulty, the Gaussian quadrature
orthogonal collocation approach is developed for solving opti-
mal control problems in recent years. Its idea is that the system
state and control input are approximated by using a basis of

global polynomials and are discretized at a set of discretization
points. In this paper, Legendre–Gauss-Radau points
(Kameswaran and Biegler, 2008) are adopted as the discretiza-

tion points. Suppose that s1; � � � ; sM are M Legendre–Gauss-
Radau points, where s1 ¼ �1 and sM < þ1. To contain the ter-
minal time s ¼ þ1, the point sMþ1 ¼ þ1 is added to the dis-

cretization point set. Now, a basis of Lagrange polynomials
are defined as follows:

Qj sð Þ ¼ P
Mþ1

i¼1
i–j

s� si
sj � si

; j ¼ 1; � � � ;Mþ 1: ð5:3Þ

Further, the system state and control input can be discretized
as

x sð Þ 
 X sð Þ ¼
XMþ1

j¼1

XjQj sð Þ; ð5:4Þ

u sð Þ 
 ~U sð Þ ¼
XM
j¼1

~UjQj sð Þ; ð5:5Þ

where Xj ¼ X sj
� �

and ~Uj ¼ ~U sj
� �

. Differentiating Eq. (5.4) and

substituting the approximations X sð Þ and ~U sð Þ of the system
state x sð Þ and the control input u sð Þ into Eq. (5.2b), one can
obtain thatXMþ1

j¼1

Xj

dQj sð Þ
ds

¼ T

2
f X sð Þ; ~U sð Þ� �

: ð5:6Þ
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From Eq. (5.6), it follows thatXMþ1

j¼1

Xj

dQj sð Þ
ds

				
s¼sj

¼ T

2
f Xj; ~Uj

� �
; j ¼ 1; � � � ;M: ð5:7Þ

Define Dj and ~X as follows:

Dj ¼ dQ1 sð Þ
ds

				
s¼sj

; � � � ; dQMþ1 sð Þ
ds

;

				
s¼sj

" #
ð5:8Þ

~X ¼ X1; � � � ;XMþ1½ �T: ð5:9Þ
Then, Eq. (5.7) can be rewritten as the following equivalent

form:

Dj
~X ¼ T

2
f Xj; ~Uj

� �
; j ¼ 1; � � � ;M: ð5:10Þ

Further, the integral term in Eq. (5.2a) can be approximated
byZ þ1

�1

L x sð Þ; u sð Þð Þds ¼
XM
j¼1

bjL Xj; ~Uj

� �
; ð5:11Þ

where bj denotes the weights corresponding to the discretiza-

tion points. Finally, problem (5.2a)-(5.2d) can be rewritten as
follows:

min
~Uj

J ~Uj

� � ¼ / XMþ1ð Þ þ T
2

XM
j¼1

bjL Xj; ~Uj

� �
5:12að Þ

s:t: Dj
~X ¼ T

2
f Xj; ~Uj

� �
; j ¼ 1; � � � ;M; 5:12bð Þ

E B ak; gi ~Uj; h
� �� �� 

6 1� �i; i ¼ 1; � � � ; q; 5:12cð Þ
X1 ¼ x0; 5:12dð Þ
~Uj 2 U; j ¼ 1; � � � ;M; 5:12eð Þ

8>>>>>>>>><>>>>>>>>>:
where E B ak; gi ~Uj; h

� �� ��  ¼ !i ak; ~Uj

� �
; i ¼ 1; � � � ; q.

To solve problem (5.12a)-(5.12e), the Monte Carlo sample

method is adopted to compute the expectation value in Eq.

(5.12c). Let hl

 �eM

l¼1
be ~M samples following the distribution

F hð Þ. Then, problem (5.12a)-(5.12e) can be approximated by

min
~Uj

J ~Uj

� � ¼ / XMþ1ð Þ þ T
2

XM
j¼1

bjL Xj; ~Uj

� �
5:13að Þ

s:t: Dj
~X ¼ T

2
f Xj; ~Uj

� �
; j ¼ 1; � � � ;M; 5:13bð Þ

1eM XeM
l¼1

B ak; gi ~Uj; h
l

� �� �
6 1� �i; i ¼ 1; � � � ; q; 5:13cð Þ

X1 ¼ x0; 5:13dð Þ
~Uj 2 U; j ¼ 1; � � � ;M; 5:13eð Þ

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
which is a static nonlinear programming problem and can be

solved by using any gradient-based numerical optimization
algorithm.

Remark 5.1. The work (Kameswaran and Biegler, 2008)

shows that the solution accuracy can be improved by using a
larger value of the number M for Legendre–Gauss-Radau
points. However, it may greatly increase the computation

amount of the numerical computation approach developed
by this paper. In order to balance the computation amount
and the numerical solution accuracy, Section 6.7 (i.e., Process-
ing power analysis) will propose a sensitivity analysis method

to set the value of the parameter M.
5.3. Solving problem (4.1a)-(4.1d)

For simplicity, we suppose that ~U is defined by
~U ¼ ~U1; � � � ; ~UM

� 
, where ~Uj 2 U; j ¼ 1; � � � ;M. Based on the

above analysis and discussion, the following numerical opti-
mization algorithm is proposed for solving problem (4.1a)-
(4.1d).

Algorithm 5.1.

Step 1: Initialize ~U0, choose the tolerance e > 0, set

a0 :¼ 1� 10�2; p :¼ 0.

Step 2: Generate M samples hl

 �M

l¼1
following the distribu-

tion F hð Þ.
Step 3: Solve problem (5.13a)-(5.13e) by using the sequen-

tial quadratic programming method, and suppose that the

solution obtained is ~Up.

Step 4: If J ~Up
� �� J ~Up�1

� �		 		 6 e, then stop and go to Step

5. Otherwise, set p :¼ pþ 1 and Up :¼ Up�1; ap :¼ ap�1

10
, and go

to Step 3.
Step 5: Construct the solution u	 of problem (4.1a)-(4.1d)

from ~Up by using (5.5), and output the corresponding optimal

objective function value J	.
Remark 5.2. This method proposed by this paper is

designed for problem (2.1a-2.1e), in which the random variable

h has an arbitrary probability distribution. Note that any limit
point of the local optimal solution sequence of problem (4.1a)-
(4.1d) is also a local optimal solution of problem (2.1a)-(2.1e)

(see Theorem 4.2). Then, a solution of problem (2.1a)-(2.1e) is
also obtained, as long as the parameter ak is sufficiently small.
Thus, Algorithm 5.1 can be used to obtain a solution of prob-

lem (2.1a-2.1e), in which the random variable h has an arbi-
trary probability distribution.

6. Numerical results

In this section, the nonlinear continuous stirred-tank reactor
problem (Jensen, 1964; Lapidus and Luus, 1967) is further
extended to illustrate the effectiveness of the approach devel-

oped by Sections 2–5 by introducing some stochastic con-
straints. All numerical simulation results are obtained under
Windows 10 and Intel Core i7-1065G7 CPU, 3.9 GHz, with

8.00-GB RAM.
6.1. Nonlinear continuous stirred-tank reactor

As shown in Fig. 6.1, the nonlinear continuous stirred-tank
reactor problem describes several simultaneous chemical reac-
tions taking place in an isothermal nonlinear continuous

stirred-tank reactor. The control variables are an electrical
energy input used to promote a photochemical reaction and
three feed stream flow rates. The objective of this problem is

to maximize the economic benefit by choosing the control vari-
ables of the nonlinear continuous stirred-tank reactor. This
problem can be described by an optimal control problem with
stochastic constraints as follows:

Choose the control input u tð Þ over the time horizon
t 2 0; 0:2500½ � to maximize the objective function

J u tð Þð Þ ¼ x6 0:2500ð Þ; ð6:1Þ
subject to the nonlinear continuous-time dynamical system
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dx1 tð Þ
dt

¼u4 tð Þ� u2 tð Þþu3 tð Þþu4 tð Þð Þx1 tð Þ�73:0000x1 tð Þx4 tð Þ; 6:2að Þ
dx2 tð Þ
dt

¼� u2 tð Þþu3 tð Þþu4 tð Þð Þx2 tð Þþ35:2000x3 tð Þx4 tð Þ�51:3000x2 tð Þx7 tð Þ; 6:2bð Þ
dx3 tð Þ
dt

¼u2 tð Þ� u2 tð Þþu3 tð Þþu4 tð Þð Þx3 tð Þ�17:6000x3 tð Þx4 tð Þ�23:0000x3 tð Þx8 tð Þu1 tð Þ; 6:2cð Þ
dx4 tð Þ
dt

¼u3 tð Þ� u2 tð Þþu3 tð Þþu4 tð Þð Þx4 tð Þ�17:6000x3 tð Þx4 tð Þ�146:0000x1 tð Þx4 tð Þ; 6:2dð Þ
dx5 tð Þ
dt

¼� u2 tð Þþu3 tð Þþu4 tð Þð Þx5 tð Þþ46:0000x3 tð Þx8 tð Þu1 tð Þ; 6:2eð Þ
dx6 tð Þ
dt

¼5:8000 u2 tð Þþu3 tð Þþu4 tð Þð Þx3 tð Þ�u2 tð Þ½ ��3:7000u3 tð Þ�4:1000u4 tð Þ 6:2fð Þ
þ u2 tð Þþu3 tð Þþu4 tð Þð Þ 23:0000x2 tð Þþ35:0000x5 tð Þþ11:0000x7 tð Þþ28:0000x8 tð Þð Þ 6:2gð Þ
�5:0000 u1 tð Þð Þ2�0:0990; 6:2hð Þ

dx7 tð Þ
dt

¼� u2 tð Þþu3 tð Þþu4 tð Þð Þx7 tð Þþ219:0000x1 tð Þx4 tð Þ�51:3000x2 tð Þx7 tð Þ; 6:2ið Þ
dx8 tð Þ
dt

¼� u2 tð Þþu3 tð Þþu4 tð Þð Þx8 tð Þþ102:6000x2 tð Þx7 tð Þ�23:0000x3 tð Þx8 tð Þu1 tð Þ; 6:2jð Þ

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:
with the initial condition

x 0ð Þ ¼ x0 ¼ 0:0467; 0:0899; 0:1883; 0:2507; 0:1046; 0:0000; 0:1804; 0:1394½ �T ; ð6:3Þ

the stochastic constraints

Prob u1 tð Þ � 4:0000þ h1 6 0:0000f g P �1; ð6:4Þ

Prob u2 tð Þ � 20:0000þ h2 6 0:0000f g P �2; ð6:5Þ

Prob u3 tð Þ � 20:0000þ h3 6 0:0000f g P �3; ð6:6Þ

Prob u4 tð Þ � 6:0000þ h4 6 0:0000f g P �4; ð6:7Þ
and the nonnegative constrains

ui tð Þ P 0:0000; i ¼ 1; 2; 3; 4; ð6:8Þ
where

x tð Þ ¼ x1 tð Þ; x2 tð Þ; x3 tð Þ; x4 tð Þ; x5 tð Þ; x6 tð Þ; x7 tð Þ; x8 tð Þ½ �T; u tð Þ
¼ u1 tð Þ; u2 tð Þ; u3 tð Þ; u4 tð Þ½ �T

; in this reaction, x1 tð Þ � x5 tð Þ and x7 tð Þ � x8 tð Þ denote the
weight fractions for the seven species, respectively; x6 tð Þ
denotes a transformed variable from the cost function; u tð Þ
denotes the feed rate; hi; i ¼ 1; 2; 3; 4, are four random vari-
ables, which denote the influence of external disturbance on
various restricted conditions of the nonlinear continuous

stirred-tank reactor problem; and �i; i ¼ 1; 2; 3; 4, denote the
allowable risk values.

6.2. Parameter description

To discretized the nonlinear continuous-time dynamical sys-
tem, we adopt M ¼ 60:0000 Legendre–Gauss-Radau points.
Let v1 ¼ 2:0000 and v2 ¼ 1:0000. In order to make Algorithm

5.1 converge quickly, we set ~U0 ¼ 2; 10; 10; 3½ �T, which satisfies

the stochastic constraints (6.4)-(6.8) (i.e., ~U0 2 U is an admis-
Fig. 6.1 Schematic diagram of a nonlinear continuous stirred-

tank reactor..
sible control). Then, the technique proposed in Sections 3
and 4 of this paper is adopted to transform the stochastic con-
straints describe by (6.4)-(6.7). Based on the analysis and

discussion of Sections 3 and 4, these stochastic constraints
can be transformed into the following form:

!1 a; u tð Þð Þ ¼ E B a; u1 tð Þ � 4:0000þ h1ð Þ½ � 6 1� �1; ð6:9Þ

!2 a; u tð Þð Þ ¼ E B a; u2 tð Þ � 20:0000þ h2ð Þ½ � 6 1� �2; ð6:10Þ

!3 a; u tð Þð Þ ¼ E B a; u3 tð Þ � 20:0000þ h3ð Þ½ � 6 1� �3; ð6:11Þ

!4 a; u tð Þð Þ ¼ E B a; u4 tð Þ � 6:0000þ h4ð Þ½ � 6 1� �4; ð6:12Þ
where the random variable hi; i ¼ 1; 2; 3; 4, follow normal dis-

tribution (e.g., hi � N 0:0000; 0:0100ð Þ; i ¼ 1; 2; 3; 4.) and the
allowable risk values are specified as
1� �i ¼ 0:1000; i ¼ 1; 2; 3; 4. In addition, a sufficiently large-

scale sample (e.g., ~M ¼ 1:0000� 106) should be chosen in

order to obtain convergent numerical results.
Following the above transformation method, the original

nonlinear continuous stirred-tank reactor problem with

stochastic constraints is rewritten as a deterministic con-
strained optimal control problem, which can be solved by
using some existing numerical algorithms. In this paper, all

the numerical simulation results are obtained by using the
technique proposed in Sections 3–5 with the sequential quadra-
tic programming method.

6.3. Impact of the parameter a

In this subsection, we will investigate the sensitivity analysis of
the parameter a with the proposed numerical computation

method. In generally, it is usually difficult to choose a suitable
value of the parameter a as the parameter a does not involve
any clear physical meaning. Based on Theorem 3.1 described

by Section 3 and Theorems 4.1–4.2 described by Section 4,
the solution accuracy can be improved by using a larger value
of the parameter a. Unfortunately, it may give rise to some

computational difficulties for the proposed numerical compu-
tation method. By specifying a ¼ 300; 600; 1200; 2400; 4800,
the numerical simulation results are presented by Fig. 6.2,

which implies that the numerical solution is sensitive with
respect to the value of the parameter a. In other words, a better
objective value, together with a more aggressive stochastic con-
straint violation rate, can be obtained by increasing the value

of the parameter a. Thus, a suitable treatment of the parameter
a is needed. For this reason, an adaptive strategy is designed in
Algorithm 5.1.

6.4. Numerical simulation results

The numerical computation method proposed in Sections 3–5

is adopted to solve the nonlinear continuous stirred-tank reac-
tor problem and the corresponding numerical simulation
results are presented by Figs. 6.3,6.4. Further, the stochastic
constraint violation of the proposed numerical computation

method is presented by Fig. 6.5, which shows that all the non-
negative constrains described by (6.8) can be satisfied strictly,
whereas the control input cannot achieve its boundary values

exactly due to the consideration of stochastic limits. In addi-
tion, from Fig. 6.5, the violation rate of stochastic constraints
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can be smaller than the maximum allowable values
1� �i ¼ 0:1000; i ¼ 1; 2; 3; 4, during the time horizon
t 2 0:0000; 0:2000½ �. These numerical simulation results imply

that the effectiveness of the proposed numerical computation
method can be well guaranteed.

6.5. Comparison with other typical approaches

To further illustrate the effectiveness of the proposed numeri-
cal computation method, a comparative research is adopted to

analyze the optimal system state trajectories and the stochastic
constraint violations by implementing the proposed numerical
computation method and the other typical approaches. For

example, the scenario optimization (SO) approach (Calafiore
and Campi, 2006), the sample approximation (SA) method
(Luedtke and Ahmed, 2008), the meta-heuristic (MH) algo-
rithm (Poojari and Varghese, 2008), and the robust optimiza-

tion approximation (ROA) technique (Li and Li, 2015). It
should be pointed out that the SO approach and the SA
method are two different sampling based methods. In the SO

approach, a set of samples are adopted for the stochastic vari-
able so that the stochastic constraints can be approximately
replaced by using some deterministic constraints. For the SA

method, an empirical distribution obtained from a random
sample is used to replace the actual distribution. Further, it
can be used to evaluate the stochastic constraints. The MH
algorithm is also a sampling based method. In the MH algo-

rithm, the stochastic nature is processed by using the Monte
Carlo simulation, whereas the non-convex and nonlinear nat-
ure of the optimization problem with stochastic constraints

are addressed by using the Genetic Algorithm. Unfortunately,
Fig. 6.2 Numerical results of sensitivity a
these three methods are designed to obtain feasible solutions
without any optimality guarantees. The ROA technique is an
analytical approximation method. Its idea is that the stochastic

constraint is transformed into a deterministic constraint. Com-
pared with the SO approach, the SA method, and the MH
algorithm, it can provide a safe analytical approximation,

the size of the corresponding problem is independent of the
solution reliability, and needs only a mild assumption on ran-
dom distributions. However, this safe approximation may lead

to the conservatism is very high and the corresponding solu-
tion has very poor performance in practice. The optimal sys-
tem state and control input obtained by using the other
typical approaches are also presented by Figs. 6.3, 6.4 and

the corresponding stochastic constraint violation is presented
by Fig. 6.5.

Detailed numerical simulation results with relation to the

maximum violation rates Vhi ; i ¼ 1; 2; 3; 4, for the stochastic

constraints and the optimal value of objective function J	 for
different approaches are presented by Table 6.1. From Figs. 6.3
and 6.5, it follows that the nonnegative constrains and the
stochastic constraints can be satisfied by the SO approach,

the SA method, the MH algorithm, the ROA technique, and
the proposed numerical computation method. Thus, these five
approaches are all feasible for solving the nonlinear continu-

ous stirred-tank reactor problem. Further, according to the
data or information provided by Table 6.1 and Fig. 6.5, the
proposed numerical computation method can usually perform

better than the SO approach, the SA method, the MH algo-
rithm, and the ROA technique. More specifically, compared
with the SO approach, the SA method, the MH algorithm,

and the ROA technique, the constraint violation rates
nalysis with respect to the parameter a.



Fig. 6.3 The optimal control input obtained by using the SO approach (Calafiore and Campi, 2006), the SA method (Luedtke and

Ahmed, 2008), the MH algorithm (Poojari and Varghese, 2008), the ROA technique (Li and Li, 2015), and the numerical computation

method proposed by this paper..

Fig. 6.4 The optimal system state obtained by using the SO approach (Calafiore and Campi, 2006), the SA method (Luedtke and

Ahmed, 2008), the MH algorithm (Poojari and Varghese, 2008), the ROA technique (Li and Li, 2015), and the numerical computation

method proposed by this paper..
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Fig. 6.5 Constraint violations of u1 tð Þ; u2 tð Þ; u3 tð Þ, and u4 tð Þ obtained by using the SO approach (Calafiore and Campi, 2006), the SA

method (Luedtke and Ahmed, 2008), the MH algorithm (Poojari and Varghese, 2008), the ROA technique (Li and Li, 2015), and the

numerical computation method proposed by this paper.

Table 6.1 The optimality and conservatism for the SO approach (Calafiore and Campi, 2006), the SA method (Luedtke and Ahmed,

2008), the MH algorithm (Poojari and Varghese, 2008), the ROA technique (Li and Li, 2015), and the numerical computation method

proposed by this paper.

Algorithms Maximum Violation Rate Objective function value

Vh1 Vh2 Vh3 Vh4 J	

SO 3.4581% 3.5157% 3.4608% 3.3982% 18.4572

SA 5.3369% 5.2892% 5.3587% 5.2186% 19.3401

MH 6.2983% 6.4753% 6.3242% 6.4995% 19.8322

ROA 8.4675% 8.3696% 8.2678% 8.3702% 20.6925

Proposed method 9.9241% 9.9389% 9.9182% 9.9816% 21.7922
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obtained by using the proposed numerical computation
method is closer to the maximum violation rates, which implies

that it can offer a better solution.

6.6. Stability and robustness analysis

In this subsection, we will present the results of a 1000-trial
Monto-Carlo analysis. The main purpose for implementing
this analysis is to further illustrate the stability and robustness

of the proposed numerical computation method with some
small perturbations in initial system state. In every trial, the
initial system state is defined by ~x0 ¼ x0 þ d0, where d0j j 6 G
and G ¼ 0:0100; 0:0100; 0:0500; 0:0500; 0:0100; 2:0000; 0:½
0300; 0:0100�T. The numerical simulation results for 600 real-
izations with some small perturbations in initial system state
is presented by Figs. 6.6,6.7. From these two figures, it follows

that the introduction of some small perturbations in initial sys-
tem state will give rise to some differences with respect to the
optimal system state trajectory. Fortunately, the correspond-

ing violation rates are less than the preassigned risk parameter
values. In addition, all numerical simulation results can suc-
cessfully converge to the neighbourhood of the optimal solu-
tion for the nonlinear continuous stirred-tank reactor

problem, which indicates that the proposed numerical compu-
tation method is stable and robust with respect to the small
perturbations in initial system state.



Fig. 6.6 The system state obtained by using the proposed numerical computation method for 1000 realizations with some small

perturbations in initial system state.
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6.7. Processing power analysis

In this subsection, we will investigate and analyze the process-

ing power of the proposed numerical computation method.
The total calculated cost of the proposed approach is mainly
depended on the following two aspects: one is the function
Fig. 6.7 Violation rates of u1 tð Þ; u2 tð Þ; u3 tð Þ, and u4 tð Þ obtained b

realizations with some small perturbations in initial system state.
evaluations, the other is the time needed for the calculation

of the nonlinear programming solver. If M Legendre–Gauss-
Radau points are used, then the numbers of decision variables
and the function evaluations become O Mþ 1ð ÞmþMnð Þ and
O M mþ qþ 1ð Þð Þ, respectively. Clearly, the nonlinear pro-
gramming solver requires more computation than the function
y using the proposed numerical computation method for 1000



Table 6.2 Processing power analysis with M ¼ 60:0000 and different values of the tolerance e.

Values for the tolerance e 1� 10�2 1� 10�3 1� 10�4 1� 10�5 1� 10�6 1� 10�7

Objective function value 17.0541 19.7640 20.3690 21.7922 21.8327 21.8401

CPU time (second) 0.6480 0.6529 0.6703 5.2775 8.3590 19.3240

Table 6.3 Processing power analysis with e ¼ 1� 10�5 and different values of the parameter M.

Values for the parameter M 7:0000 15:0000 30:0000 60:0000 120:0000 240:0000

Objective function value 15.8483 18.9181 19.5481 21.7922 21.8346 21.8412

CPU time (second) 0.6022 0.6263 0.6419 5.2775 8.3621 19.3323
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evaluation part. In addition, the computational process is sen-

sitive with respect to the tolerance e described by Algorithm
5.1. A sensitivity analysis for the tolerance e is implemented
and the numerical simulation results are presented by

Table 6.2. From Table 6.2, it follows that the computation
time for the nonlinear continuous stirred-tank reactor problem
is monotonically increasing as the tolerance e becomes smaller.
In order to balance the computation amount and the numeri-

cal solution accuracy, the tolerance e is set to 1:0000� 10�5 in
this paper.

Although the solution accuracy can be improved by using a
larger value of the number M for Legendre–Gauss-Radau, it

may greatly increase the computation amount of the numerical
computation approach developed by this paper. Note that the
computational process is also sensitive with respect to the the

parameter M. Then, a sensitivity analysis for the parameter M
is implemented and the numerical simulation results are pre-
sented by Table 6.3. From Table 6.3, it follows that the com-

putation time for the nonlinear continuous stirred-tank
reactor problem is monotonically increasing as the parameter
M becomes larger. In order to balance the computation

amount and the numerical solution accuracy, the parameter
M is set to 60:0000 in this paper.

In conclusion, above numerical simulation results show
that compared with compared with the SO approach, the SA

method, the MH algorithm, and the ROA technique, the pro-
posed numerical computation method is less conservative and
can obtain a stable and robust performance when considering

the small perturbations in initial system state.

7. Conclusion

In this paper, a convergent approximation approach is proposed and

used for solving the optimal control problem for nonlinear chemical

processes with stochastic constraints. The main feature of this

approach is that it introduces a smooth and differentiable function

to obtain a subset of feasible solutions of the stochastic-constrained

optimal control problem. Further, the convergence analysis results

show that the approximation function and the corresponding feasible

set converge uniformly to that of the original optimal control problem

as the adjusting parameter a reduces. Following that, a numerical com-

putation approach is proposed for solving the original optimal control

problem. Finally, in order to verify the effectiveness of the approach

proposed by this paper, the nonlinear continuous stirred-tank reactor

problem is extended by considering some stochastic constraints. Subse-

quently, the proposed approach is used to solve this stochastic-

constrained optimal control problem. The numerical simulation results
and the comparative study show that compared with other existing

typical methods, the proposed approach is less conservative and can

obtain a stable and robust performance when considering the small

perturbations in initial system state.
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