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Abstract In this work, liquid-phase catalytic oxidation of toluene was carried out under solvent-

free conditions, and highly selective synthesis of benzaldehyde (BAL) and benzyl alcohol (BOL) and

benzoic acid (BAC) in the presence of Mn@ZIF-8 calcined material as catalyst with oxygen mole-

cules. As a heterogeneous catalyst, the zeolitic imidazolate framework Mn@ZIF-8 derived material

exhibited reasonable substrate-product selectivity (70.3% of selectivity to BAL and BOL, 95.1 % of

selectivity to BAL, BOL and BAC) and conversion (6.5%) under optimum reaction conditions. The

catalysts were characterized by BET-specific surface area determination, XRD, XPS, FT-IR, TG-

DTG and SEM-EDS-Mapping. The results demonstrated that the catalytic capacity of the catalysts

was enhanced by the good dispersion of amorphous Mn species in ZIF-8 derivatives and high speci-

fic surface area. The possible reaction pathway for the catalytic oxidation of toluene was also sug-

gested. Maybe this method employing Mn@ZIF-8 as efficient catalyst affords a new and

environmentally friendly route for the synthesis of BOL and BAL from the selective oxidation of

toluene.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As every-one knows, liquid-phase oxidation of toluene has been criti-

cal to the development and utilization of fine chemicals (aromatic alco-

hol and aldehydes) from organic chemical material (Gardner and

Mayer, 1995; Tan et al., 2017). The partial oxidation of toluene is an

important method for the preparation of benzaldehyde (BAL), benzyl

alcohol (BOL) and benzoic acid (BAC) (Somma et al., 2017; Chen

et al., 2022). BOL and BAL are important chemical intermediates with

high added value, it is widely used in industrial chemical production as

organic synthesis raw materials, solvent, stabilizer and preservation,

daily chemical essence, and so on (Alabbad et al., 2014; Assal et al.,
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2019; Rezaei et al., 2017; Zhang et al., 2011). In addition, BAC is an

important bulk raw materials for the preparation of sodium benzoate

preservatives, and the additives for drugs, dyes (Afnan et al., 2020; Zhu

et al., 2016). The methods of toluene as the raw material to prepare

BAL and BOL, such as benzyl chloride hydrolysis, indirect electroox-

idation, and gas-phase partial oxidation, are extensive limited; mostly

because the product obtained by these methods contains chlorine, high

environmental pollution and excessive power consumption (Ding

et al., 1996; Brown and Hudson, 1951). Due to advantages of

environment-friendly way, high atom utilization and suitable reaction

conditions, liquid-phase oxidation of toluene is an important method

for the preparation of oxygen-containing compounds (Scheme 1). In

the oxidation of toluene, heterogeneous catalyst has widespread appli-

cation, due to their remarkable advantages in efficient selectivity of

products, catalyst recovery and utilization, post-processing.

However, in the early research process of catalytic oxidation of

toluene used peroxide as oxidant, acetic acid as solvent, bromide salt

as assistant. Now, it mostly used expensive catalyst in the case of no

assistant solvent, such as metal porphyrin, doped Pd, Au and other

precious metals catalysts, or that catalyst with complex preparation

process. For instance, Wang et al. (Wang et al., 2009) explored bis

(acetylacetonato) oxovanadium (VO(acac)2) catalysts for toluene oxi-

dation with H2O2 as oxidant in acetic acid, giving 19.8 % conversion

of toluene and 56.1 % selectivity to BAL + BOL, 22.2 % selectivity

to BAC. Hu et al. (Hu et al., 2006) investigated metalloporphyrin cat-

alyst l-oxo-bis[tetra-phenylporphyrin (III)] to catalyze toluene oxida-

tion, the conversion was 7.4 %, the selectivity to BAL + BOL was

59.0 %. In another study, Zhang et al. (Zhang et al., 2008) immobilized

Au-Pd alloy nanoparticles on carbon or TiO2 as catalysts to oxidize

toluene under solvent-free conditions, the main products are benzyl

benzoate (greater than 80 % selectivity) and the by-products are

BAL and BAC. Jiang et al. (Jiang et al., 2013) used Au-cMnO2 cata-

lysts for solvent-free toluene oxidation with oxygen, giving 13.5 %

conversion of toluene and 67.6 % selectivity to BAL + BOL,

16.8 % selectivity to BAC, 15.6 % selectivity to benzyl benzoate.

Therefore, the development of efficient catalysts that are high toluene

conversion and efficient selectivity to BAL, BOL in an O2-based sys-

tem is a great challenge.

Recently, metal–organic frameworks (MOFs) were received consid-

erable attention to catalytic reaction, oxidative degradation and elec-

trochemical sensing because of their properties, such as large surface

area, well-defined structures, structural diversity and easy processing

(Taghavi et al., 2022; Dehdashtian et al., 2022; Alamgholiloo et al.,

2020; Alamgholiloo et al., 2021; Zhao et al., 2020). Pliekhov et al.

(Pliekhov et al., 2018) reported Co-MOF-74@NDHPI catalytic system

with 16 % toluene conversion; and good selectivity to BAL + BOL

(66.0 %) and relatively higher selectivity to BAC (34.0 %), resectively.

However, their application is limited by their complicated preparation

process and expensive raw materials (Jiang et al., 2010). To our delight,

this research has led to a strong interest in catalytic oxidation of
Scheme 1 Routes of the synthesis of BOL, BAL and BAC.
toluene using MOFs or zeolitic imidazolate frameworks (ZIFs) to find

low-cost, simple and efficient mono-metal-doped metal–organic frame-

works catalytic system (Hu et al., 2018; Mohtasham et al., 2022).

Carry on with our work, we successfully synthesized Mn@ZIF-8.

Furthermore, based on the previous researcher of liquid-phase oxida-

tion reactions in the solvent- and additives-free conditions (Ni et al.,

2021; Jian et al., 2020; Liu et al., 2019; Chen et al., 2022); we will report

a simple eco-friendly method for synthesis of BAL, BOL employing

Mn@ZIF-8 derived material as an effectual catalytic system for the

partial oxidation of toluene with oxygen in this work. This is the mean-

ingful report about the oxidation of toluene to three oxidation prod-

ucts in industry.

2. Experimental

2.1. Reagents and instrument

Mn(CH3COO)2·4H2O (AR, 99.0 %) was obtained from Tian-
jin Guangfu Fine Chemical Institute, China. Toluene (AR,

99.5 %), Zn(NO3)2·6H2O (AR, 99.0 %) and Ce(NO3)

3·6H2O (AR, 99.0 %) were gained from Sinopharm Chemical
Reagent Co., ltd., China. 2-Methylimidazole (AR, 99.0 %)
and other reagents were purchased from Shanghai Mclean

Co., ltd. Miniature high pressure reactor (BE100) was
obtained from Shanghai LABE Instrument Co., ltd. GC–MS
qualitative analysis of all products was carried out by Japan

Shimadzu GCMS-QP2010 plus. The quantitative analysis of
reaction products was detected by GC Agilent 7890B with
HP-5 column and hydrogen flame ion detector.

2.2. Catalyst preparation

Mn@ZIF-8 was synthesized by solvothermal method (Zheng

et al., 2020). Typically, Mn@ZIF-8 with the 10:1 Zn/Mn
molar ratio was prepared by the following steps: firstly, 0.2 g
Mn(CH3COO)2·4H2O, 0.6 g 2-methylimidazole and 2.1 g Zn
(NO3)2·6H2O were added into 126.5 mL N,N-

dimethylformamide under stirring, and then set in a 200 mL
autoclave. After autoclaving at 140 �C overnight, the resulting
powder was rinsed repeatedly with anhydrous ethanol, dried at

low temperature, then calcined at 300 �C for 2.0 h under air
atmosphere (static in muffle) to acquire the fresh Mn@ZIF-8
derived catalyst, and the catalyst after reuse was calcined

and defined as regenerated catalyst. Other MOF series cata-
lysts (MOF-5, MOF-74) were prepared according to reference
(Pliekhov et al., 2018; Xiang et al., 2019).

2.3. Catalyst characterization

The nitrogen adsorption–desorption isotherms were collected
by a Quantachrome NOVA-2200e (Degassing was performed

at high vacuum for 12 h, followed by N2 adsorption tests at
77 K). XRD analysis were tested by a Rigaku D/Max-
2550 V+ diffractometer (Single source CuKa target diffraction

source, k = 1.5418 Å, working voltage 30 kV, working current
40 mA, 2h = 5-90�, scanning speed 10�/min). XPS analysis
were recorded by a ESCALAB 250Xi analyser (Al Ka

(1486.6e V) with monochromator as the X-ray excitation
source, 150 W power, C 1 s, 284.8 eV). FT-IR spectra were
measured on a Nicolet-380 instrument in the range of 4000–
400 cm�1 (High purity KBr tablets were pressed and then

tested). TG/DTG curves were tested by a Mettler thermogravi-
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metric analyser (Vacuum dried at 105 �C for 12 h, the air flow
rate was 40 mL/min, and the room temperature was heated to
800 �C at a rate of 10 �C/min). SEM images were obtained

with Sigma HD, Carl Zeiss (FE-SEM, 20 kV acceleration
voltage).

2.4. Catalytic experimental procedure

Typically, 21.0 g toluene and 0.1 g Mn@ZIF-8 derived catalyst
were added into the 100 mL stainless steel reactor. When the

temperature of reactor heated to a certain temperature, molec-
ular oxygen in a high-pressure oxygen tank was continuously
put into the reaction equipment after decompression. The reac-

tion was implemented at 180 �C and 1.0 MPa for 2.5 h with
800 r/min stirring. After reaction, the resulted products were
quantified by GC (the internal standard substance
chlorobenzene).

The toluene conversion and the selectivity to BOL, BAL
and BAC were calculated using the following formulas.

Conversion of toluene ¼ themole of toluene reacted

themole of toluene added

� 100% ð1Þ

Selectivity of BOL %ð Þ ¼ themole of BOL

themole of toluene reacted

� 100% ð2Þ

Selectivity of BAL %ð Þ ¼ themole of BAL

themole of toluene reacted

� 100% ð3Þ
Fig. 1 N2 adsorption–desorption isotherms(A) and

Table 1 Textural properties of samples.

Samples ICP

(mZn/

mMn)

Surface area

(m2/g)

t-plot micropore area

(m2/g)

Fresh 161/1 669.7 394.9

Regenerative 157/1 654.5 348.4
Selectivity of BAC %ð Þ ¼ themole of BAC

themole of toluene reacted

� 100% ð4Þ
3. Results and discussion

3.1. Catalyst characterization

3.1.1. Textural analysis and X-ray diffraction (XRD)

BET-specific surface area determination of fresh and regener-

ative samples are shown in Fig. 1. The isotherms of two sam-
ples have a type-IV curve (type-H3 hysteresis loop), exhibiting
the presence of abundant mesoporous structures (Lü et al.,

2020; Movahed et al., 2018). Meanwhile, Table 1 shows the
textural properties of regenerative sample have little change
compare with fresh sample, attributing to great number of C

species of the catalyst in the calcination process. ICP result
shows low levels of Mn in the catalyst. In addition, two sam-
ples have large specific surface area (greater than650 m2/g),

which is one of the reasons for their good catalytic perfor-
mance. This is consistent with the experimental results.

Fig. 2 exhibits the XRD curves of four samples. Firstly, the
pattern of ZIF-8 was consistent with that reported previously

(Abdollahi et al., 2021), confirming the formation of pure crys-
talline ZIF-8 phase (Jing et al., 2014).The four diffraction
peaks appear at 31.8�, 34.4�, 36.3� and 47.5�, belonging to

ZnO (JCPDS 36–1451). Compared with ZnO, the patterns of
ZIF-8 and Mn@ZIF-8 show specific diffraction peaks. As
expected, the characteristic peak (110) of ZIF-8 at 7.3� was

found in four samples. However, the introduction of man-
ganese species in this catalyst leaded to its weakening at 7.3�.
pore diameter distribution curves of samples(B).

Pore volume

(cm3/g)

t-plot micropore volume

(cm3/g)

Pore diameter

(nm)

0.44 0.21 2.62

0.42 0.19 3.05



Fig. 2 XRD curves of samples.

Fig. 3 XPS spec
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Even more, XRD pattern of Mn@ZIF-8 didn’t have a diffrac-
tion peak assigned to Mn species, indicating that the Mn spe-
cies may be present in the framework of the molecule, or the

Mn content was below the detection limit (Liu et al., 2016;
Deng et al., 2017).

The average crystallite sizes of four samples are calculated

with the Scherrer equation (Ho et al., 2020), the crystallite size
of fresh, regenerative samples, ZIF-8 and regenerative ZIF-8
were 38.5, 43.0, 55.5 and 59.2 nm, respectively. It indicated

that manganese was successfully incorporated into the catalyst,
resulting in a smaller grain size. Combined with the experimen-
tal results, its catalytic performance was enhanced.

3.1.2. X-ray photoelectron spectroscopy (XPS)

XPS measurement was conducted to probe the electrons of C
1 s, N 1 s, O 1 s, Mn 2p3/2 and Zn 2p centered at 284.8, 398.9,

531.4, 641.5 and 1021.7 eV, respectively (Fig. 3A). Fig. 3B dis-
plays C 1 s spectra, it is fitted into three peaks centered at
284.8 eV (CAC), 286.3 (CAN), and 288.1 (N-C‚N), respec-
tively (Zhao et al., 2020). However, due to the effects of oxida-

tion reaction, the N-C‚N is a little bit of a shift towards
tra of samples.



Fig. 4 FT-IR spectra of samples.
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higher electron volts (An et al., 2022). Fig. 3C shows the N 1 s
spectra, it can be fitted into two peaks at 399.9 eV (NAH) and
398.8 eV (Zn-N), this is in good agreement with previously
Fig. 5 TG (A) and DTG

Fig. 6 SEM images of fresh(a)
reported (Ran et al., 2020). The O 1 s spectra are decomposed
into two peaks containing different oxygen chemical bonds
(Fig. 3D). The first peak at the lower bond energies

(531.1 eV) is attributed to lattice oxygen (Olatt). Another peak
(531.8 eV) is ascribed to chemisorption oxygen or weakly
bonded oxygen (Oads) (Du et al., 2018). Fig. 3E shows the

Zn 2p spectra of the catalysts, which are decomposed into
two peaks (1044.9 and 1021.8 eV) (Zhao et al., 2020; Ran
et al., 2020; Li et al., 2022). The Mn 2p3/2 peak (640.5 eV) cor-

respond to superficial Mn2+ species (Fig. 3F), the chemical
state of the superficial Mn species on the catalysts is Mn2+

(Music´ et al., 2009). Combined XRD analysis, it indicated that
the Mn species may be present in the framework of the

molecule.

3.1.3. Fourier transform infrared spectrogra (FT-IR) and

thermal stability characterization

FT-IR (Fig. 4) exhibits many characteristic peaks of three sam-
ples. A sharp peak (421 cm�1) is attributed to a typical Zn-N
stretching vibration, it indicates that Zn-N form a porous ZIF-

8 coordination structure (Jing et al., 2014; Nagarjun and
Dhakshinamoorthy, 2019). The peaks at 680 (CAH bending),
750 (CAH bending), 1323 (CH2 wagging) and 2922 cm�1

(CAH symmetric stretch) correspond to the bending signals
of the imidazole ring (Movahed et al., 2018; Yang et al.,
(B) curves of samples.

and regenerative (b) samples.
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2018; Mohammed et al., 2021). Furthermore, the peaks at 995
(=CAH in-plane bend), 1146 (=CAH in-plane deformation
vibration), 1425 cm�1 (CH2 asymmetric bend) are the stretch-

ing vibration of the imidazole ring (Zhao et al., 2020; Yang
et al., 2018). At 490 cm�1 for fresh and regenerative samples,
it can be ascribed to Mn-O stretching vibration (Music´ et al.,

2009; Wang et al., 2020). The broad peak (3420 cm�1) was
assigned to –OH deformation vibration and NAH stretching
mode (Zhang et al., 2020). The peak (1620 cm�1) can be

ascribed to C‚N stretch/ C‚C stretching vibration
(Asadzadeh-Khaneghah et al., 2021; Awadallah-F et al.,
2019; Chen et al., 2019). However, compared with ZIF-8, fresh
and regenerative samples have two new peaks at 1375 (CH3

asymmetric bend) and 818 cm�1, which may be caused by
the product left over from the reaction process. The results
demonstrated that the chemical structure of the Mn@ZIF-8

derived samples did not change significantly after regeneration,
Fig. 7 SEM-Mapping images and EDS analyzer o
so that its catalytic performance had a little change in the oxi-
dation of toluene.

Fig. 5 shows the TG/DTG curves of two samples. Main

weight loss of two samples are concentrated between 350 and
800 �C, meaning to the collapse of the frameworks of ZIF-8
(Fu and Ren, 2020). Notably, the regenerative catalyst exhibits

a higher percentage of weight loss, implying that organic mat-
ters of the toluene reaction process are primarily embedded in
the interior of the Mn@ZIF-8 derived catalyst. These results

showed that the catalyst had good thermo-stability in the oxi-
dation of toluene (reaction temperature is lower than 200 �C)
(Yang et al., 2018; Wen et al., 2021; Abdelmigeed et al., 2021).

3.1.4. Morphology and element distribution characterization

SEM characterization is shown in Fig. 6. The shape of samples
exhibits polyhedron morphology with size of 6 lm (Guo et al.,

2018). Fresh sample is small and irregular pieces (Son et al.,
f fresh (A, B) and regenerative samples (C, D).
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2019). However, regenerative sample is a little aggregated par-
ticle. In the process of toluene oxidation reaction, combined
with repeated experiments, carbon deposition had a little

impact on the morphology and catalytic activity of the
catalyst.

The elemental mappings and EDS were done to identify the

presence and distribution of four elements (O, N, Mn and Zn)
in the two samples (Fig. 7). It indicates that O, N, Mn and Zn
are distributed relatively uniformly within two samples. It is

noteworthy to mention that the homogeneity of four elements
is one reason for its excellent performance in the reaction pro-
cess (Hao et al., 2018). However, the element ratio of the
regenerative sample is different with the fresh sample, which

may be the reason for a little decrease of catalytic activity.

3.2. Catalytic performance

To find an effective catalyst, we examined some MOFs cata-
lysts in the oxidation of toluene (Table 2). Actually, BAL
Table 2 Catalytic performance comparison of catalysts.a

Entry Catalyst Conversion (%) Selectivity (%

BAL B

1 None 2.5 41.2 3

2 ZIF-8 5.1 38.0 3

3 MOF-74 2.6 56.4 2

4 MOF-5 2.9 55.4 2

5 ZnO 3.9 40.4 3

6 MnO 4.2 44.6 3

7 Mn@MOF-74 5.8 34.5 3

8 Mn@MOF-5 7.0 27.2 2

9 Mn@ZIF-8 6.5 31.6 3

a Reaction conditions: toluene 21.0 g, reaction temperature 180 �C, 0.1 g
ratio 10:1.
b The selectivity of three main oxidation products.
c By-products were methylbiphenyl, benzoquinone, and benzyl benzoat

Table 3 Effects of Zn and Mn molar ratio.a

Zn/Mn

(molar ratio)

Conversion (%) Selectivity (%)

BAL BOL

20/1 5.5 33.2 37.2

10/1 6.5 31.6 38.7

5/1 6.9 25.6 30.1

a Reaction conditions: 300 �C calcination temperature, 21.0 g toluene,

Table 4 Effects of calcination temperature.a

Calcination

temperature (�C)
Conversion (%) Selectivity (%)

BAL BOL

300 6.5 31.6 38.7

500 3.4 46.0 35.5

700 3.4 46.0 34.4

900 3.2 39.9 35.9

a Reaction conditions: 0.1 g Mn@ZIF-8, 21.0 g toluene, 180 �C, 2.5 h,
and BOL were obtained in the oxidation of toluene without
any catalysts, only 2.5 % of toluene conversion (entry 1). To
our delight, it was showed good catalytic activity of ZIF-8 with

5.1 % toluene conversion, 73.6 % selectivity to BAL + BOL
(entry 2). However, other catalysts were weak catalysts (entries
3–6).

Next, we attempted to incorporate Mn during the in-situ
synthesis catalyst to enhance the catalytic activity of MOFs
(entries 7–9). Compared with other catalysts, the addition of

Mn into ZIF-8 ungently improve the catalytic activity. These
results indicates that Mn and ZIF-8 of this catalyst have an
interaction and improve the oxidation activity.

3.3. Effect of the preparation factors of catalyst

The performance of Mn@ZIF-8 derived catalyst with the dif-
ferent molar ratio of Zn/Mn and calcination temperature were

also explored. As shown in Table 3 and Table 4, With the
decrease of Zn/Mn molar ratio, the toluene conversion
)

OL BAC BAL + BOL Total b Others c

0.8 23.7 72.0 95.7 4.3

5.5 22.0 73.5 95.5 4.5

7.4 13.1 83.8 96.9 3.1

2.0 21.9 77.4 99.3 0.7

1.9 23.3 72.3 95.6 4.4

0.2 19.0 74.8 93.8 6.2

3.6 26.6 68.1 94.7 5.3

1.2 47.8 48.4 96.2 3.8

8.7 24.8 70.3 95.1 4.9

catalyst, oxygen pressure 1.0 MPa, reaction time 2.5 h, Zn/Mn molar

e.

BAC BAL + BOL Total Others

24.9 70.4 95.3 4.7

24.8 70.3 95.1 4.9

37.1 55.7 92.8 7.3

0.1 g Mn@ZIF-8, 180 �C, 2.5 h, 1.0 MPa.

BAC BAL + BOL Total Others

24.8 70.3 95.1 4.9

13.8 81.5 95.3 4.7

15.4 80.4 95.8 4.2

19.7 75.8 95.5 4.5

1.0 MPa.
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revealed an upward trend. As the calcination temperature is
too high, ZIF-8 skeleton is collapses, which leads to the degra-
dation of catalytic performance (Li et al., 2006; Zhang et al.,

2018). when Zn/Mn molar ratio and calcination temperature
were 10:1 and 300 �C, respectively, BOL + BAL were
obtained the highest selectivity (70.3 %) under the same

conditions.

3.4. Reaction conditions optimization

This work optimized the toluene oxidation reaction parame-
ters (in Fig. 8). Fig. 8A and 8B showed that the conversion
of toluene was gently increased, while BOL + BAL selectivity

displayed trend downward with raised the amount of catalyst
and oxygen pressure, and the BAC selectivity was increased,
other by-products were both increased gradually in a small
range. It was that aromatic alcohols and aldehydes could be

increase acceleratory oxidized to other productes in higher
reaction parameters.

However, with the increase of reaction time and reaction

temperature (Fig. 8C and 8D), the conversion of toluene was
an increasing trend firstly, and then decreasing trend,
BOL+ BAL selectivity showed a falling trend firstly, and then

increasing trend, while the selectivity to other by-products
were opposite to the trend of BOL + BAL. For reaction time,
the performance of catalyst could not be fully exerted when
reaction was in the induction phase (Fan et al., 2017) (1.5 h),

so the BOL + BAL selectivity was very high. Finally, the pres-
sure of the gas phase toluene also increased as the temperature
rising gradually, and the molecular oxygen was actually
Fig. 8 Optimization of reaction parameters. Influences factors: (A

reaction time; (B) 0.1 g catalyst, 180 �C reaction temperature, 2.5 h r

reaction temperature; (D) 0.1 g catalyst, 1.0 MPa oxygen pressure, 2.5
decreases in the reactor, so it was leaded to the above results
(Fu et al., 2022).

Therefore, under the oxidation of toluene reaction condi-

tions: 21.0 g toluene, 180 �C, reaction time of 2.5 h, 0.1 g
Mn@ZIF-8 derived catalyst, oxygen pressure of 1.0 MPa, a
good substrate-product selectivity (70.3 % of BOL + BAL,

95.1 % of total selectivity to three products) and conversion
(6.5 %) were obtained.

3.5. The recycle of Mn@ZIF-8 derived catalyst in the toluene
oxidation

The recycle of heterogeneous Mn@ZIF-8 derived catalyst was

used in the reaction under the above optimal conditions.
Firstly, the catalyst separated by the centrifugation after reac-
tion, washed with ethanol, dried at 105 �C. After calcining at
300 �C for 2.0 h, it was used the following reaction.

As shown in Fig. 9, it was clear that the catalytic activity of
recovered catalyst was stable in five runs, the selectivity to
BAL + BOL maintained 69.4 % with 5.8 % of toluene con-

version. The results indicated that the stability and catalytic
activity of Mn@ZIF-8 was a litter changed in the recycle oxi-
dation reaction.

3.6. Performance comparison of catalysts reported in the

literatures

Table 5 shows the catalytic results of different catalysts in the

literatures. It can be seen that different catalytic systems
require different reaction conditions, and the toluene conver-
) 1.0 MPa oxygen pressure, 180 �C reaction temperature, 2.5 h

eaction time; (C) 0.1 g catalyst, 1.0 MPa oxygen pressure, 180 �C
h reaction time.



Fig. 9 Results of recycle of Mn@ZIF8 catalyst. Reaction

conditions: 0.1 g Mn@ZIF-8, 1.0 MPa, 180 �C, 2.5 h, 21.0 g

toluene.

Table 5 The performance comparison of catalysts reported in the l

Catalyst Oxidizer Solvent/

(Initiator)

Temperature

(�C)
Tim

(h)

VO(acac)2 H2O2 Glacial acid 90 4.0

Co-MOF-

74@NDHPI

O2 (NDHPI) 100 2.0

Mn3O4/CNTs O2 (TBHP) 90 12.0

Au-cMnO2 O2 – 160 8.0

Pt/ZrO2 O2 – 90 3.0

[TPPFeIII]2O O2 – 165 3.8

Co(II)TPP air – 160 3.5

Cu-Mn oxides O2 – 190 2.0

NHPI/Cu-BTC O2 – 110 2.0

SO4
2-/TiO2-CeO2 O3-O2 – 30 3.0

mpg-C3N4 O2 – 160 16.0

Mn@ZIF-8 O2 – 180 2.5

Fig. 10 Possible reaction pathway of t
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sion is higher in the presence of solvents or additives, but these
bring inconvenience to industrial production. If hydrogen per-
oxide is used as an oxidant, there are also safety problems in

industry. Although noble metals or metalloporphyrins have
high catalytic activity, their preparation process is complex
and their stability is poor, which limits their industrial applica-

tion. We reported a simple eco-friendly method for synthesis of
BAL, BOL employing Mn@ZIF-8 as an effectual catalytic sys-
tem for the partial oxidation of toluene with oxygen in this

work.

3.7. Possible catalytic oxidation reaction pathway of toluene
over Mn@ZIF-8 derived catalysts

Fig. 10 shows a possible catalytic oxidation reaction pathway
of toluene to BAL and BOL over heterogeneous Mn@ZIF-8
derived catalyst. The catalyst has been critical effect at the

beginning of the oxidation reaction through the activation of
reactant toluene, and then formation of the benzyl radical
(C7H7�) and the intermediate benzyl peroxyradical (ArOO�)
iteratures.

e Conversion

(%)

Selectivity (%) Ref.

BAL BOL BAC

19.8 50 6.1 22.2 (Wang et al., 2009)

16.0 18.0 48.0 34.0 (Alamgholiloo et al.,

2020)

24.63 43.5 47.0 - (Feng and Zeng, 2020)

13.5 3.5 64.1 16.8 (Jiang et al., 2013)

37.2 19.6 6.5 70.4 (Ilyas and Sadiq, 2009)

7.4 59.0 - (Hu et al., 2006)

8.9 33.0 27.0 39.0 (Guo et al., 2005)

17.2 11.7 18.7 63.1 (Li et al., 2006)

7.6 44.1 11.0 44.9 (Bao et al., 2016)

9.7 77.0 (Wang et al., 2009)

3.1 99.0 (Li et al., 2012)

6.5 31.6 38.7 24.8 [this work]

oluene oxidation to BAL and BOL.
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(Partenheimer, 2003). The reactive oxygen species can react
with absorbed toluene to form the radical intermediate
(ArOOH) (Biswas et al., 2020; Laribi et al., 2016). To prove

the existence of the radical, tert-butylalcohol (hydroxyl radical
scavenger) was add to the reaction system (Biswas et al., 2020).
Just as we expected, a significant decrease of toluene conver-

sion (1.2 %) was observed, which confirmed that the reactive
radical intermediates reacted with tert-butylalcohol, resulting
in a relative decrease of the toluene conversion. Finally, the

resulting ArOOH intermediate were decomposed to BAL,
and some of them were simultaneously reduced to BOL. The
resulting BOL can be to BAL, even to BAC (Xu et al., 2021).

4. Conclusions

In summary, a novel Mn@ZIF-8 derived catalyst with low-cost, high

catalytic activity, good heat resistance and stability was constructed,

and used for the selective partial oxidation of toluene to BOL, BAL

and BOL. 70.3 % selectivity to BAL + BOL with 6.5 % toluene con-

version was acquired under optimum reaction conditions (21.0 g

toluene, 180 �C, reaction time of 2.5 h, 0.1 g Mn@ZIF-8 catalyst, oxy-

gen pressure of 1.0 MPa). Besides, the possible reaction pathway was

suggested, and the results of characterization showed that the catalytic

capacity of the catalyst was enhanced by the good dispersion of amor-

phous Mn species in ZIF-8 and high specific surface area (669.7 m2/g).

This way using Mn@ZIF-8 calcined material as catalyst, molecular

oxygen as green oxidant is a favorable industrial applications routine

for efficient production of BOL and BAL.
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