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A B S T R A C T   

This study addressed the solubility of Rivaroxaban in supercritical carbon dioxide at a temperature range of 
308–338 K and a pressure range of 12–30 MPa with and without a Co-solvent in binary and ternary systems. The 
impact of ethanol Co-solvent was also examined. Furthermore, the examined systems were modeled using semi- 
empirical approaches once the tentative solubility data were determined. Rivaroxaban solubility in the binary 
and ternary systems ranged based on mole fraction from 1.0 × 10− 6 to 2.57 × 10− 5 and 1.9 × 10− 5 to 2.02×

10− 4, respectively. Based on the results, the use of a Co-solvent can greatly boost the solubility of Rivaroxaban. 
The highest Co-solvent effect on the Rivaroxaban-Ethanol-CO2 mixture was observed at 18.73 (338 K and 12 
MPa). Furthermore, empirical and semi-empirical models can effectively fit the solubility values of the analyzed 
materials by AARD% and Radj for binary and ternary approaches. The Jouyban et al. (AARD%=7.40 and Radj =

0.993) model for the binary system and the Garlapati-Madras (AARD%=6.16 and Radj = 0.991) and Sodeifian- 
Sajadian (AARD%=6.13 and Radj = 0.979) and Soltani-Mazloumi (AARD%=6.89 and Radj = 0.987) models for 
the ternary system are the most accurate models.   

1. Introduction 

Rivaroxaban (RXN) is the first authorized oral direct factor Xa in-
hibitor (xabans) and a direct oral anticoagulant. Inhibiting Factor Xa 
diminishes the activation of coagulation and platelets. RXN can be used 
to minimize the risk of coronary heart disease and embolism individuals 
with nonvalvular atrial fibrillation, to prevent and/or treat venous 
thromboembolism, and to treat bioprosthetic mitral valves. It has 
emerged as an acceptable alternative to vitamin K antagonists, which 
are more susceptible to drug-drug interactions and more complicated to 
administer. However, RXN has an inherent risk of bleeding and can in-
crease the risk of hemorrhage when used with other hemostasis- 
weakening medications. It is not recommended in pregnant or 
lactating women, children, or those with severe hepatic (ChildPugh C), 
renal, antiphospholipid syndrome, or artificial heart valves (Kubitza 
et al., 2010, Patel et al., 2011, Samama et al., 2013, Thomas et al., 2013, 
Costa et al., 2020, Duarte et al., 2020, Evans et al., 2020, Fernandez 
et al., 2021, Galiuto and Patrono, 2021). Capell et al. discovered that 

RXN improved the incidence of thrombotic events, hospitalizations, and 
deaths among symptomatic outpatients with COVID-19 (Capell et al., 
2021). 

RXN is categorized as a high-permeability and low-solubility sub-
stance by the Biopharmaceutical Classification System (BCS) (Class II) 
(Mueck et al., 2014, Kushwah et al., 2021). It exhibits low pH- 
independent solubility in aqueous solution. Xarelto is the commercial 
brand of RXN, and 685–132-2 is the and EC number (European Com-
munity) of RXN, respectively (Seshamamba and Sekaran, 2017, Kush-
wah et al., 2021). 

The bioavailability of drugs is limited by their solubility in aqueous 
media, which is governed by their dissolution time. Reducing the par-
ticle size of drugs that are normally water-insoluble is a typical strategy 
for enhancing their solubility and dissolution rate (Esfandiari, 2015, 
Esfandiari and Ghoreishi, 2015a,b, Sodeifian et al., 2020a, Esfandiari 
and Sajadian, 2022a). Supercritical carbon dioxide (SC-CO2)-based 
particle production technology is a cutting-edge method for creating 
nano-sized pharmaceuticals. The rapid mass transfer rate and superior 
dissolving capability of supercritical fluids can be assigned attributed to 
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their viscosities that are more similar to those of gases rather than liq-
uids. Additionally, SC-CO2 is harmless, colorless, odorless, and leaves no 
residue in the finished product, further promoting its extensive appli-
cation in the paramedical industry (Cheng et al., 2018, Ardestani et al., 
2020, MacEachern et al., 2020, Pishnamazi et al., 2020a,b, Sodeifian 
et al., 2020f, Zabihi et al., 2020a, Pishnamazi et al., 2021a). A super-
critical fluid (SCF) is frequently used as a dense solvent or anti-solvent to 
manufacture therapeutic nanoparticles. The solubility of the medicine in 
the solvent is one of the prerequisites for employing supercritical tech-
nology. In general, SCF can be utilized in particle production processes 
through three different approaches: (i) SCF as a solvent, such as RESS, 
RESSAS, and RESOLV; (ii) SCF as an anti-solvent, such as GAS, SAS, 
SEDS, and ASES; and (iii) SCF as a Co-solvent, such as PGSS and PGSS- 
drying (Esfandiari and Ghoreishi, 2013, Esfandiari and Ghoreishi, 2014, 
Esfandiari, 2015, Esfandiari and Ghoreishi, 2015a, Cheng et al., 2018, 

Sodeifian et al., 2019d, MacEachern et al., 2020, Pishnamazi et al., 
2020c,b, Najafi et al., 2021, Pishnamazi et al., 2021a, Esfandiari and 
Sajadian, 2022a). 

Throughout the last few decades, the estimation of the solubility of 
medications in SCFs has become one of the main subjects. So far, a few 
studies have addressed the reliability and correlation of the solubility 
documentation of different sorts of medications in SCFs. Table 1 sorts 
the solubility (crossover and mole fraction points of these medicinal 
compounds in SC-CO2) of certain medications examined in the years 
between 2017 and the present. The solubility of solid components in 
SCFs offers fundamental facts on the development of small-scale me-
dicinal particles with the ideal size dispersion, to achieve better disso-
lution rates (Ardestani et al., 2020, Saadati Ardestani et al., 2020, 
Askarizadeh et al., 2023). Although numerous experimental techniques 
can evaluate the solubility of a substance, correlations and mathematical 

Nomenclature 

a0-a6 Adjustable parameters for density-based models 
AARD% Average absolute relative deviation 
Cs Solute concentration in the collection vial (g/L)
e Co-solvent enhancement effects 
MCO2 CO2 molecular weight (g/mol) 
Ms Solute molecular weight (g/mol) 
MW Molecular weight (g/mol) 
N The number of experimental data, dimensionless 
nCO2 Mole of CO2 
nsolute Moles of solute (RXN) 
P Pressure (MPa) 
Pc Critical pressure (MPa) 
Pref Reference pressure (0.1 MPa) 
Q The number of self-determining parameters 
R2 Correlation coefficient 
Radj Adjusted correlation coefficient 
S Equilibrium solubility (g/L) 
SSE Sum square error 
SST Total sum of squares 
T Temperature (K) 
Tc Critical temperature (K) 
Tm Melting temperature (K) 
y2 Equilibrium mole fraction 
y′

2 Mole fraction in ternary system 
y3 Mole fraction of Co-solvent 
Vs Volume of the collection vial (L) 
VL Volume of the sampling loop (L) 
Z Number of adjustable parameters 

Superscript 
Cal Calculated 
Exp Experimental 
i, j Component 

Subscripts 
2 Solute 
i, j Component 

Abbreviations 
ASES Aerosol solvent extraction system 

BCS Biopharmaceutics Classification System 
cEoS Cubic equations of state 
DMSO Dimethyl sulfoxide 
EC number European Community number 
EoS Equations of State 
GAS Supercritical gas antisolvent 
GRAS Generally Recognized as Safe 
GUM Guide of uncertainty measurement 
HBA Hydrogen-bond acceptor 
HBD Hydrogen-bond donor 
HSP Hansen solubility parameter 
KJ Kumar and Johnston model 
KT Kamlet-Taft solvent parameters 
LFHB Lattice Fluid Hydrogen Bonding 
PGSS Particles from the gas saturated solution 
PC-SAFT Perturbed-chain SAFT 
PCP-SAFT Perturbed-chain polar SAFT 
PR Peng-Robinson 
MST Méndez-Santiago and Teja model 
RESS Rapid expansion of the supercritical solution 
RESOLV Rapid expansion of a supercritical solution into a liquid 

solvent 
RESSAS Rapid expansion of supercritical solution into aqueous 

solutions 
RV Retrograde vaporization 
RXN Rivaroxaban 
SA Simulated annealing 
SAS Supercritical antisolvent 
SCF Supercritical fluid 
SC-CO2 Supercritical CO2 
SEDS Solution-enhanced dispersion by supercritical fluid 
SRK Soave-Redlich-Kowng 

Greek symbols 
α H-bond donor 
β H-bond acceptor 
π* Kamlet-Taft dipolarity/polarizability 
δ Hildebrand solubility parameter 
λmax Maxim wave length (nm) 
ρ1 Density of SC-CO2 (kg m− 3) 
ρref Reference density (700 kg m− 3)  
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Table 1 
Review of some published works on the crossover and mole fraction points of various pharmaceutical compound in SC-CO2.  

Compound Pressure range 
(MPa) 

Temperature range 
(K) 

Cross over 
(MPa) 

Mole fraction (y) MW (g/ 
mol) 

Ref 

Esomeprazole (C17H19N3O3S) 12–27 308.2–338.2 22 1.11 × 10-5 to 
9.10 × 10-4 

345.42 (Sodeifian et al., 2019b) 

Amiodarone hydrochloride (C25H29I2NO3. HCl) 12–30 313.2–343.2 19 2.510 × 10− 5 to 
1.012 × 10− 3 

681.77 (Sodeifian et al., 2017b) 

Ketotifen fumarate (C23H23NO5S) 12–30 308.2–338.2 20 2.11 × 10− 5 to 
1.07 × 10− 3 

425.5 (Sodeifian et al., 2018a) 

Aprepitant (C23H21F7N4O3) 12–33 308.15–338.15 15–18 4.50 × 10− 6 to 
7.67 × 10− 5 

534.4 (Sodeifian et al., 2017a) 

Imatinib mesylate (C30H35N7O4S) 12–27 308.2–338.2 18–21 1.0 × 10− 7 to 4.4 
× 10− 6 

589.71 (Sodeifian et al., 2019e) 

Loratadine (C22H23N2O2Cl) 12–27 308.15–338.15 18–21 4.50 × 10− 6 to 
1.30 × 10− 3 

382.88 (Sodeifian et al., 2018b) 

Loxoprofen (C15H18O3) 12–40 308–338 20 1.04 × 10− 5 to 
1.28 × 10− 3 

246.10 (Zabihi et al., 2020a) 

Quetiapine hemifumarate 
(C21H25N3O2S.0.5C4H4O4) 

12–27 308–338 13–14 0.30 × 10− 6 to 
9.03 × 10− 6 

441.54 (Sodeifian et al., 2021a) 

2,4,7-Triamino-6-phenylpteridine (Triamterene) 
(C13H13N7) 

12–27 308–338 19.2–19.5 0.03 × 10− 5 to 
2.89 × 10− 5 

253.26 (Sodeifian et al., 2020a) 

Tolmetin (C15H15NO3) 12–40 308–338 16 5.00 × 10− 5 to 
2.59 × 10− 3 

257.29 (Pishnamazi et al., 2020c) 

Amlodipine besylate (C26H31ClN2O8S) 12–27 308–338 NO 4.15 × 10− 6 to 23 
× 10− 6 

567.05 (Sodeifian et al., 2021c) 

Busulfan (C6H14O6S2) 12–40 308–338 16 3.27 × 10− 5 to 
8.65 × 10− 4 

246.30 (Pishnamazi et al., 2020b) 

Sunitinib malate (C26H33FN4O7) 12–27 308–338 NO 0.5 × 10− 5 to 8.56 
× 10− 5 

532.56 (Sodeifian et al., 2020c) 

Fenoprofen (C15H14O3) 12–40 308–338 16 2.01 × 10− 5 to 
4.20 × 10− 3 

242.3 (Zabihi et al., 2020b) 

Azathioprine (C9H7N7O2S) 12–27 308–338 12–15 0.27 × 10− 5 to 
1.83 × 10− 5 

277.26 (Sodeifian et al., 2020b) 

Sorafenib tosylate (C28H24ClF3N4O6S) 12–27 308–338 NO 0.68 × 10− 6 to 
12.57 × 10− 6 

637.03 (Sodeifian et al., 2020d) 

Capecitabine (C15H22FN3O6) 10–––35 308.15–––348.15 19 3.18 × 10− 5 to 
120.29 × 10− 5 

359.35 (Ardestani et al., 2020) 

Aspirin (C9H8O4) 10–––30 308.15–––328.15 13–14 0.33 × 10− 4 to 
3.45 × 10− 4 

180.15 (Ardestani et al., 2020) 

Ibuprofen (C13H18O2) 10–––30 308.15–––333.15 10 0.72 × 10− 3 to 3.8 
× 10− 3 

206.28 (Ardestani et al., 2020) 

Repaglinide (C27H36N2O4) 12–27 308–338 16–18 2.89 × 10− 6 to 
9.53 × 10− 5 

452.29 (Sodeifian et al., 2019d) 

Sodium Valproate (C8H15NaO2) 12–27 308.15–––338.15 22–24 0.05 × 10− 5 to 
3.71 × 10− 5 

166.19 (Sodeifian et al., 2020f) 

Chloroquine (C18H26ClN3) 12–40 308–338 16–20 1.64 × 10− 5 to 
8.92 × 10− 4 

319.87 (Pishnamazi et al., 2021a) 

Decitabine (C8H12N4O4) 12–40 308–338 16 2.84 × 10–5 to 
1.07 × 10–3 

228.41 (Pishnamazi et al., 2021b) 

Oxcarbazepine (C15H12N2O2) 12–27 308–338 17–19 1.10 × 10-7 to 
2.675 × 10-5 

252.27 (Sodeifian et al., 2019c) 

Sulfabenzamide (C13H12N2O3S) 12–27 308–338 NO 1.53 × 10-6 to 
22.35 × 10-6 

276.3 (Sodeifian et al., 2021d) 

Galantamine (C17H21NO3) 12–27 308–338 17–19 0.006 × 10− 4 to 
0.233 × 10− 4 

287.35 (Sodeifian et al., 2021e) 

Gliclazide (C15H21N3O3S) 10–18.6 308.2–328.2 15–17 1.26 × 10− 7 to 
5.01 × 10− 6 

323.41 (Wang et al., 2021) 

Captopril (C9H15NO3S) 10–18.6 308.2–328.2 14–16 3.59 × 10− 6 to 
9.32 × 10− 5 

217.28 (Wang et al., 2021) 

Salsalate (C14H10O5) 12–40 308–338 16 3.77 × 10− 5 to 
3.88 × 10− 3 

258.23 (Zabihi et al., 2021a) 

Lansoprazole (C16H14F3N3O2S) 12–27 308.2–338.2 21 1.15 × 10− 5 to 
7.36 × 10− 4 

369.36 (Sodeifian et al., 2020g) 

(Letrozole) (C17H11N5) 12–36 318.2–348.2 16–18 1.6 × 10− 6 to 8.51 
× 10− 5 

263.33 (Sodeifian and Sajadian, 
2018) 

Rivaroxaban (C19H18ClN3O5S) 12–27 308–338 22.5 0.0104 × 10− 4 to 
0.2062 × 10− 2 

435.90 (Sodeifian et al., 2023e) 

Tamsulosin (C20H28N2O5S) 12–27 308–338 21 0.18 × 10− 6 to 
1.013 × 10− 5 

408.05 (Hazaveie et al., 2020) 

Gambogic acid (C38H44O8) 10–30 308.15–328.15 20 1.63 × 10− 6 to 
22.62 × 10− 6 

628.76 (Xiang et al., 2019) 

Tamoxifen (C26H29NO) 12–40 308–338 20 1.88 × 10− 5 to 
9.89 × 10− 4 

371.51 (Pishnamazi et al., 2020a) 

Losartan potassium, Cozaar (C22H22ClN6O) 12–27 308–338 19 2.03 × 10− 6 to 
1.88 × 10− 5 

461 (Sodeifian et al., 2021f) 

(continued on next page) 
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Table 1 (continued ) 

Compound Pressure range 
(MPa) 

Temperature range 
(K) 

Cross over 
(MPa) 

Mole fraction (y) MW (g/ 
mol) 

Ref 

Gatifloxacin (C38H50F2N6O11) 12–36 313–333 14 0.106 × 10− 6 to 
1.605 × 10− 6 

375.4 (Shi et al., 2017, Padrela 
et al., 2018) 

Enrofloxacin (C19H22FN3O3) 17–36 313–333 17 0.022 × 10− 6 to 
5.605 × 10− 6 

359.4 (Shi et al., 2017, Padrela 
et al., 2018) 

Ciprofloxacin (C17H19ClFN3O3) 24–36 313–333 NO 0.0265 × 10− 6 to 
0.1887 × 10− 6 

331.34 (Shi et al., 2017, Padrela 
et al., 2018) 

Penicillin G (Benzylpenicillin) (C16H18N2O4S) 10–35 313.15–333.35 10 0.420 × 10− 5 to 
6.330 × 10− 5 

334.4 (Gordillo et al., 1999, 
Padrela et al., 2018) 

Lenalidomide (C13H13N3O3) 12–30 308–338 18 0.02 × 10− 4 to 
1.08 × 10− 4 

259.25 (Sajadian et al., 2022a) 

Glibenclamide (C23H28ClN3O5S) 12–30 308–338 21 0.8 × 10− 6 to 8.03 
× 10− 5 

494 Esfandiari and Sajadian, 
2022b 

Montelukast (C35H36ClNO3S) 12–30 308–338 15 0.4 × 10-6 to 6.12 
× 10-5 

586.18 (Sajadian et al., 2022c) 

Minoxidil (C9H15N5O) 12–27 308–338 19 0.24 × 10− 6 to 
3.39 × 10− 6 

209.25 (Sodeifian et al., 2020e) 

Ketoconazole (C26H28Cl2N4O4) 12–30 308–338 13–15 0.20 × 10–6 to 
8.02 × 10–4 

531 (Sodeifian et al., 2021g) 

Sertraline. HCl (C17H17Cl2N. HCl) 12–30 308–338 17–19 0.61 × 10− 4 to 
0.89 × 10− 3 

342.69 (Sodeifian et al., 2019) 

Favipiravir (C5H4FN3O2) 12–30 308–338 18 3.0 × 10-6 to 9.05 
× 10-4 

157.1 (Sajadian et al., 2022b) 

Dasatinib Monohydrate (C22H28ClN7O3S) 12–27 308–338 NO 0.45 × 10− 6 to 
9.08 × 10− 6 

505.16 (Sodeifian et al., 2022h) 

Clemastine Fumarate (C21H26ClNO⋅C4H4O4) 12–27 308–338 NO 1.61 × 10–6 to 
9.41 × 10–6 

460 (Sodeifian et al., 2021b) 

Teriflunomide (C12H9F3N2O2) 12–27 308–338 19.5 8.84 × 10–5 to 
5.43 × 10–4 

270.21 (Sodeifian et al., 2022g) 

Metoclopramide hydrochloride (C14H23Cl2N3O2) 12–27 308–338 22 0.15 × 10–5 to 
5.56 × 10–5 

336.26 (Sodeifian et al., 2022f) 

Pholcodine (C23H30N2O4) 12–27 308–338 16–16.5 2.06 × 10–4 to 
5.93 × 10− 4 

398.55 (Sodeifian et al., 2022a) 

Lacosamide (C13H18N2O3) 12–30 308–338 12–18 1 × 10− 6 to 2.29 ×
10− 4 

250.3 (Esfandiari and Ali 
Sajadian, 2022) 

Febuxostat (C16H16N2O3S) 12–27 308–338 21 0.05 × 10-4 to 
7.42 × 10-4 

316.37 Abourehab et al., 2022b; 
Zabihi et al., 2021b 

Paracetamol (C8H9NO2) 9.5–26.5 311–358 11 0.305 × 10-6 to 
16.358 × 10-6 

151.16 (Bagheri et al., 2022) 

Methylparaben (C8H8O3) 12–35.5 308–348 15.2 1.13 × 10-5 to 
1.213 × 10-3 

152.16 (Mahesh and Garlapati, 
2022) 

Ethylparaben (C9H10O3) 8–21 308–328 8 1.64 × 10-6 to 
1.755 × 10-5 

166.17 (Mahesh and Garlapati, 
2022) 

Propylparaben (C10H12O3) 9.41–22.02 308.15––328.15 14 4.4 × 10-6 to 6.12 
× 10-5 

180.2 (Mahesh and Garlapati, 
2022) 

Empagliflozin (C23H27ClO7) 12–27 308–338 16.5 5.14 × 10–6 to 
25.9 × 10–6 

450.91 (Sodeifian et al., 2022c) 

Pantoprazole sodium sesquihydrate 
(C16H14F2N3NaO4S × 1.5 H2O) 

12–27 308–338 16 0.0301 × 10–4 to 
0.463 × 10–4 

432.4 (Sodeifian et al., 2022d) 

Prazosin hydrochloride (C19H22ClN5O4) 12–27 308–338 NO 1.59 × 10− 5 to 7.2 
× 10− 5 

419.9 (Sodeifian et al., 2022i) 

Temozolomide (C6H6N6O2) 12–40 308–338 20 4.30 × 10− 4 to 
5.28 × 10− 3 

194.1 (Zabihi et al., 2021b) 

Cefuroxime axetil (C20H22N4O10S) 8–25 308–328 Higher than 
25 MPa 

2.2 × 10− 7 to 
11.24 × 10-6 

510.47 (Ongkasin et al., 2019) 

Ethosuximide (C7H11NO2) 9–15 313.15–328.15 NO 3.45 × 10− 3 to 
8.71 × 10− 3 

141.168 (Zha et al., 2019) 

(Octatrimethylsiloxy) Polyhedral oligomeric 
silsesquioxanes (POSS) C24H72OO20Si16 

1–30 308–328 10.6 0.0083 to 2 × 10-3 1146.18 (Demirtas and Dilek, 
2019) 

Chlorothiazide (C7H6ClN3O4S2) 13–29 308–338 17 0.417 × 10− 5 to 
1.012 × 10− 5 

295.73 (Majrashi et al., 2023) 

Pazopanib hydrochloride (C21H24ClN7O2S) 12–27 308–338 NO 1.87 × 10− 6 to 
14.25 × 10− 6 

474 (Sodeifian et al., 2022b) 

Crizotinib (C21H22Cl2FN5O) 12–27 308–338 14.5 0.156 × 10− 5 to 
1.219 × 10− 5 

450.3 (Sodeifian et al., 2022e) 

Alendronate (C4H13NO7P2) 12–30 308–338 18 0.01 × 10− 4 to 1.5 
× 10− 4 

271.08 Abourehab et al., 2022a 

Sildenafil citrate (C22H30N6O4S) 12–30 308–338 15–18 2.40 × 10− 7 to 
6.48 × 10− 6 

474.6 (Honarvar et al., 2023) 

Riluzole (C8H5F3N2OS) 12–27 308–338 22 4.95 × 10− 5 to 
1.49 × 10− 4 

234.2 (Abadian et al., 2022) 

Fludrocortisone acetate (C23H31FO6) 12–30 308–338 18–21 0.211 × 10-6 to 
0.653 × 10-5 

422.5 (Amani et al., 2022) 

Metformin (C4H11N5) 14–29 308–328 NO 0.39 × 10-6 to 
1.23 × 10-6 

129.16 (Venkatesan et al., 2022) 

(continued on next page) 
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Table 1 (continued ) 

Compound Pressure range 
(MPa) 

Temperature range 
(K) 

Cross over 
(MPa) 

Mole fraction (y) MW (g/ 
mol) 

Ref 

Haloperidol (C21H23ClFNO2) 12–22 313.2–323.2 17–19 3.4 × 10-7 to 1.4 ×
10-5 

375.9 (Khudaida et al., 2023a) 

Retinol Vitamin A (C20H3O) 9–23.3 303–323 11 2.18 × 10-5 to 
1.964 × 10-4 

286.45 (Naikoo et al., 2021) 

Famotidine (FAM) (C8H15N7O2S3) 12–30 308–338 18 1.4 × 10-6 to 1.11 
× 10-4 

337.43 (Saadati Ardestani et al., 
2023) 

Erlotinib hydrochloride (C22H24N3O4Cl) 12–30 308–338 19–22 1.2 × 10-6 to 2.12 
× 10-5 

429.9 (Bazaei et al., 2023) 

Phemytoin (C15H12N2O2) 9.5–25 313–345 11 0.68 × 10-6 to 
15.7 × 10-6 

252.268 (Notej et al., 2023) 

Raloxifene (C28H27NO4S) 9.5–25 313–345 12 0.79 × 10-5 to 
8.09 × 10-5 

473.59 (Notej et al., 2023) 

Clonazepam (C15H10ClN3O3) 12–30 308–338 20 3.9 × 10-6 to 7.26 
× 10-5 

315.71 (Alwi et al., 2023) 

Curcumin (C21H20O6) 8–20 308.15–328.15 13 1.82 × 10-8 to 
1.97 × 10-6 

368.38 (Zhan et al., 2017) 

Dibutylbutyl phosphonate (C12H27O3P) 10–25 313–333 11 0.087 to 0.117 250.31 (Pitchaiah et al., 2017) 
Diamylamyl phosphonate (C15H33O3P) 10–25 313–333 12 0.065 to 0.09 292.4 (Pitchaiah et al., 2017) 
Ipriflavone (C18H16O3) 10–20 308.2–328.2 15 1.4 × 10− 4 to 2.2 

× 10− 4 
280.3 (Wang and Su, 2020) 

Tolbutamide (C12H18N2O3S) 10–30 313.15–353.15 17–20 1.66 × 10–5 to 40.5 270.35 (Manna and Banchero, 
2018) 

Chlorpropamide (C10H13N2O3S) 10–30 313.15–353.15 17–20 2.29 × 10–6 to 
72.2 × 10–6 

276.74 (Manna and Banchero, 
2018) 

1-aminoanthraquinone (C14H9NO2) 12.5–25 323.15–383.15 17 5.5 × 10–7 to 351 
× 10–7 

223.23 (Tamura et al., 2017) 

1-nitroanthraquinone (C14H7NO) 12.5–25 323.15–383.15 18–20 9.8 × 10–7 to 
252.3 × 10–7 

253.21 (Tamura et al., 2017) 

Phthalocyanines green (Pc-G) 10–35 308.15–338.15 22 0.01 × 10-5 to 
12.12 × 10-5 

1127.154 (Sodeifian et al., 2019f) 

Fampridine (pyridin-4-amine, 4-aminopyridine) 
(C5H6N2) 

10–22 308.2–328.2 10.5–12.5 2 × 10-5 to 2 × 10-4 94.11 (Chen et al., 2017) 

Vitamin E acetate (α-tocopheryl acetate) (VEA) 
(C31H52O3) 

8–15 308.15–328.15 NO 2.76 × 10− 4 to 
7.26 × 10− 4 

472.76 (Han et al., 2017) 

Anthraquinone violet 3RN (AV3RN) 
(C28H20N2Na2O8S2) 

10–34 308–338 10 0.047 × 10− 5 to 
0.546 × 10− 5 

622.58 (Saadati Ardestani et al., 
2020) 

Phosphatidylcholine (PC) (C42H80NO8P) 12.4–17.2 313–353 NO 5.082 × 10− 6 to 
11.758 × 10− 6 

758.1 (Jash et al., 2020) 

Coumarin-7 (C20H19N3O2) 9–33 308–338 13–16 0.415 × 10− 5 to 
1.009 × 10− 5 

333.38 (Sodeifian et al., 2019a) 

Vanillin (C8H8O3) 8–28 313–353 16 0.14 × 10− 3 to 13 
× 10− 3 

152.15 (Maqbool et al., 2017) 

Phenol (C6H6O) 10–35 333–363 28 1.14 × 10− 3 to 
9.064 × 10− 2 

94.11 (Maqbool et al., 2017) 

Flufenamic acid (FFA (C14H10F3NO2) 8–21 313.2–333.2 14 0.8 × 10− 6 to 2.13 
× 10− 4 

281.23 (Tsai et al., 2017) 

Nystatin (C47H75NO17) 12–30 308–338 22 0.40 × 10− 6 to 
1.20 × 10− 5 

926.1 (Sajadian et al., 2023) 

Aripiprazole (C23H27CL2N3O2) 12–30 308–338 18 1.83 × 10− 6 to 
1.036 × 10− 5 

448.39 (Ansari et al., 2023) 

Nifedipine (C17H18N2O6) 12.5–27.5 333.15–353.15 18 7.9 × 10− 6 to 53.6 
× 10− 6 

346.3 (Li et al., 2017) 

Quinine (C20H24N2O2) 12.5–27.5 323.15–343.15 15–19 12 × 10− 6 to 50.4 
× 10− 6 

324.4 (Li et al., 2017) 

Nilotinib hydrochloride monohydrate 
(C28H25ClF3N7O2) 

12–27 308–338 12–15 0.1 × 10–5 to 0.59 
× 10–5 

584 (Nateghi et al., 2023) 

Palbociclib (C24H29N7O2) 12–27 308–338 12–15 0.081 × 10–5 to 
2.027 × 10–5 

447.533 (Sodeifian et al., 2023c) 

Oxaprozin (C18H15NO3) 12–40 308–338 NO MEN 3.31 × 10–5 to 
1.24 × 10–3 

293.317 (Alshehri et al., 2022) 

lutein (β,ε-carotene-3,3′-diol) (C40H56O2) 18.7–33.55 313–333 NO 0.82 × 10–6 to 
2.45 × 10–6 

568.89 (Araus et al., 2019) 

Metoprolol (C15H25NO3) 12–30 308–338 18 0.02 × 10− 5to 
8.11 × 10− 5 

267.36 (Alshahrani et al., 2023) 

Chlorpromazine (C17H19ClN2S) 17–41 308–348 20 3.21 × 10-5to 5.25 
× 10-5 

318.9 (Alharby et al., 2023) 

Hyoscine (C17H21NO4) 17–40 308–348 20 0.79 £ 10-4to 2.83 
£ 10-4 

303.3 (Hani et al., 2023) 

Verapamil (C27H38N2O4) 12–30 308–338 12–15 3.6 × 10–6to 7.14 
× 10–5  

(Esfandiari et al., 2023) 

Buprenorphine hydrochloride (C29H42ClNO4) 12–27 308–338 15–18 0.131 × 10-4to 
4.752 × 10-4 

504.1 (Sodeifian et al., 2023a) 

Hydroxychloroquine sulfate (C18H28ClN3O5S) 12–27 308–338 NO 0.0304 × 10–5 to 
0.5515 × 10–5 

434 (Sodeifian et al., 2023b) 

(continued on next page) 
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models are frequently implemented to estimate the solubility of the 
substances in SC-CO2 due to the high cost of experimental measure-
ments. In general, semi-empirical models and equation of state (EoS)- 
based models can be used to correlate the solubility data. EoS-based 
models require complex computational techniques and data for a vari-
ety of physical variables (cubic equations of state (Peng-Robinson (PR) 
(Peng and Robinson, 1976) and Soave-Redlich-Kowng (SRK) (Soave, 
1972)) or perturbation equations (perturbed-chain polar SAFT (PCP- 
SAFT) (Gross, 2005), PC-SAFT (Gross and Sadowski, 2001))). Semi- 
empirical equations, like density-based models, only require easily 
accessible control items i.e., temperature, pressure, and the density of 
CO2 with no need for thermophysical properties such as molar volume, 
acentric factor, and critical point, which cannot be estimated (Sodeifian 
et al., 2019e, Ardestani et al., 2020, Zhan et al., 2020, Zabihi et al., 
2021a). Numerous semi-empirical models have been geared towards 
connecting the solubility data of solids in SC-CO2; among which, Kumar 
and Johnston (KJ) (Kumar and Johnston, 1988), Bartle et al. (Bartle 
et al., 1991), Khansary et al. (Khansary et al., 2015), Jouyban et al. 
(Jouyban et al., 2002b), Chrastil (Chrastil, 1982), Adachi-Lu (Adachi 
and Lu, 1983), Garlapati − Madras (Garlapati and Madras, 2010), 
González et al. (González et al., 2001), Mendez − Santiago − Teja (MST) 
(Sauceau et al., 2003), Li et al. (Li et al., 2003), Soltani − Mazloumi 

(Soltani and Mazloumi, 2017), Reddy − Madras (Reddy and Madras, 
2011), Keshmiri et al. (Keshmiri et al., 2014), Bian et al. (Bian et al., 
2011), Sodeifian et al. (Sodeifian et al., 2019), Sparks et al. (Sparks et al., 
2008), Del Valle and Aguilera (Del Valle and Aguilera, 1988), Tan (Yeoh 
et al., 2013), Gordillo (Gordillo et al., 1999), Yu (Yu et al., 1994), Sung 
and Shim (Sung and Shim, 1999) can be mentioned. 

One of the biggest challenges in the development of the SCF process 
is the limited solubility of polar solutes in SC-CO2. As the majority of 
pharmaceuticals are polar molecules, the interaction of carbon dioxide 
(a nonpolar structure) with medications is limited. Therefore, super-
critical CO2 is employed in combination with other solvents, known as 
“Co-solvent”, to enhance the solubility. Co-solvents can alter the polarity 
of the solvent. Consequently, the use of Co-solvents can enhance the 
solubility in SCFs (polar or non-polar). Moreover, the incorporation of 
small amounts (less than 10 %) of polar solvents, such as acetone, 
dimethyl sulfoxide (DMSO), ethanol, menthol, and methanol can 
significantly increase the solute solubility in SC-CO2 (Hosseini et al., 
2018, Bitencourt et al., 2019, Ardestani et al., 2020, Saadati Ardestani 
et al., 2020, Sodeifian et al., 2021g). These Co-solvents can participate in 
hydrogen bonding with solute molecules and increase the solvation 
power of a specific supercritical fluid in solvents with lower solvation 
ability like water. Additionally, the impact of the Co-solvent is related to 
an improvement in solubility by a rise in solvent density or by inter-
molecular cooperation between the Co-solvent and the solute. Further-
more, an increase in the specific intermolecular interactions between the 
Co-solvent and one or more components of the mixed components can 
enhance the separation selectivity (Knez et al., 2017, Bitencourt et al., 
2019, Saadati Ardestani et al., 2020, Zhan et al., 2020). 

The Co-solvent effect is primarily influenced by heightened inter-
molecular interactions and solvent density. In systems with multiple 
components, solubility can be significantly increased, but selectivity 
remains unaffected if the increase is solely due to higher solvent mixture 
density. The density input to the Co-solvent impact is affected by pres-
sure, temperature, and the addition of a Co-solvent, which can lead to 
the formation of clusters of SCF molecules around it, boosting overall 
density. The greatest density increase is observed near the critical point 
of the solvent mixture. An increase in pressure decreases clustering, 
increases SCF density, and decreases density differences between the 

Table 1 (continued ) 

Compound Pressure range 
(MPa) 

Temperature range 
(K) 

Cross over 
(MPa) 

Mole fraction (y) MW (g/ 
mol) 

Ref 

Probenecid (C13H19NO4S) 15–21 313.2–353.2 15–19 0.13 × 10− 5to 
1.45 × 10− 5 

285.36 (Khudaida et al., 2023b) 

Warfarin (C19H16O4) 10–18 308.2–328.2 18 1.48 × 10− 6 to 
4.32 × 10− 6 

434 (Ciou et al., 2018) 

Ibrutinib (C25H24N6O2) 12–27 308–338 17 3.90 × 10–6 to 
1.30 × 10–5 

440.51 (Sodeifian et al., 2023d) 

Sitagliptin phosphate (C16H18F6N5O5P) 12–30 308–338 15–16.5 3.02 × 10–5 to 
6.98 × 10− 5 

407.31 (Ardestani et al., 2023) 

NO: In the pressure range, the crossover is not exit. 
NO MEN: In the article, the crossover is not calculated. 

Table 2 
The sources and purity of the materials used in this work.  

Material Source Initial mass 
fraction 
(Purity) 

Final mass 
fraction 
Purity 

Analysis 
method 

Rivaroxaban Tofigh Daru 
Research & 
Engineering Co.  

0.99  0.99 HPLCa 

Ethanol Merck Co.  0.999  0.999 GCb 

Carbon 
dioxide 

Novin Oxygen Co.  0.9999  0.9999 GC  

a High-performance liquid chromatography. 
b Gas chromatography. 

Table 3 
Properties of Rivaroxaban (Mw: Molar mass, Tm: melting point, λmax: λ with maximum absorbance).  

Component Formula Mw (g/mol) Tm (K) λmax [nm] Structure CAS number 

Rivaroxaban C19H18ClN3O5S  435.88  503.15 249 366789–02-8  
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Fig. 1. Schematic diagram of experimental apparatus used for measuring solubility.  
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SCF and SCF mixture, ultimately crossing density isotherms. The addi-
tion of a Co-solvent can strengthen the SCF solvent while decreasing the 
molar density of the solvent. Key factors influencing the Co-solvent ef-
fect include various physical interactions like dipole-induced dipole, 
dipole–dipole, and induced dipole-induced dipole (dispersion), as well 
as specific interactions like charge transfer and H-bonding complexes. A 
comprehensive understanding of the Co-solvent effect requires a thor-
ough comprehension of intermolecular interactions between solvents 
and solutes (Prausnitz et al., 1999, Güçlü-Üstündağ and Temelli, 2005, 
Cui et al., 2018, Li et al., 2018, Pitchaiah et al., 2018, Peyrovedin and 
Shariati, 2020, Matin et al., 2022, Sajadian et al., 2023). 

The Hildebrand solubility parameter (δ) and the Hansen solubility 
parameter (HSP) are commonly used to assess suitable solvents for 
specific applications based on similar solubility parameters. HSP cate-
gorizes molecular interactions into dispersion, hydrogen-bond, and 
polar contributions, making it applicable to both polar and non-polar 
mixtures. Kamlet-Taft solvent parameters (KT) like α (H-bond donor) 
(HBD), β (H-bond acceptor) (HBA), and solvent dipolarity/polarizability 
(π^*) help evaluate total solvent polarity. The entertainer effect en-
hances selectivity and solubility through specific intermolecular in-
teractions like H-bonding between Co-solvent and solutes. When 
selecting a binary mixed-solvent, the one with higher KT-acidity is the 
HBD solvent, and the local composition of the HBD-HBA pair influences 
KT-parameters of complex molecules. In SC-CO2, non-aqueous and 
aqueous HBD-HBA solvent pairs act as Co-solvents, interacting with 
polar solutes and CO2. The HBD-HBA complex molecule impacts selec-
tivity by specific interactions with solutes and CO2 affinity (CO2 phi-
licity). Adjusting the HBD-HBA Co-solvent composition can enhance 
basicity, CO2 philicity, and specific interactions for solute dissolution in 
the SC-CO2 phase (Güçlü-Üstündağ and Temelli, 2005, Cui et al., 2018, 
Duereh and Smith, 2018, Li et al., 2018, Pitchaiah et al., 2018). 

This research is aimed at understanding the solubility of RXN in SC- 
CO2 with or without ethanol as a Co-solvent. The static equilibrium test 
conditions involve the pressure range of 12, 15, 17, 21, 24, 27 and 30 

MPa and temperatures of 308, 318, 328, and 338 K. The solubility of 
RXN in SC-CO2 was experimentally studied to investigate the impacts of 
the operational factors such as temperature, pressure, and the presence 
of a Co-solvent. The density models of Jouyban et al., Soltani-Mazloumi, 
Méndez-Santiago-Teja (MST), Sodeifian-Sajadian, González et al., Gar-
lapati–Madras, Chrastil, Kumar and Johnston (KJ), Bian et al. and Bartle 
et al. were used to correlate the solubility data of RXN in binary and 
ternary procedures. The model parameters were established, and the 
average absolute relative deviation (AARD (%)) was also utilized to 
evaluate the prediction effectiveness of the method. 

2. Experiments 

2.1. Materials 

Rivaroxaban was acquired from Tofigh Darou drug company (Teh-
ran, Iran) with a purity of 99 %. Additionally, further information 
regarding other components including carbon dioxide and ethanol can 
be found in Table 2. The structure of Rivaroxaban is provided in Table 3. 

2.2. Experimental apparatus 

Based on Fig. 1, the experimental pilot plant was equipped with a 
spectrophotometer and included a CO2 tank, an air compressor (Finac, 
China), a high-pressure pump (Haskel pump, Burbank CA 91502, USA), 
a refrigeration machine, a magnetic stirrer with 100 rpm, a filter, flow 
control valves like a needle valve, a back-pressure valve, a metering 
valve, an equilibrium cell, and an oven (Memert, Germany). All the 
components of this high-pressure unit, including the pipeline and fit-
tings, have a diameter of 1/8 in. and are made of 316 stainless steel. The 
impurities in the CO2 flow from the tank were eliminated by passing 
through a molecular filter with a pore size of 1 µm. The flow then 
reached the cooling unit where the CO2 flow liquefied due to the low 
interior temperature of the refrigerator (~-15 ◦C). From the pressure of 

Fig. 2. DSC analysis of Rivaroxaban.  
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Table 4 
A summary of the binary semi-empirical and empirical models used in this work Table 4. b Summary of the Ternary semi-empirical and empirical models used in this 
work.  

Model Formula/ explain constant ref 

Chrastil 
Semi-empirical 

lny2 = a0 + a1lnρ1 +
a2

T 
3 (Chrastil, 1982) 

An equation describes the formation of a solvate complex ABk in a system where one unit of 
solute A combines with k units of solvent B. It highlights a correlation between solubility and 
density in a supercritical fluid, as well as a relationship between solubility and temperature. 
However, Chrastil’s equation has limitations, such as being unsuitable for solubility levels above 
100–200 kg m− 3 and lacking validity across a wide range of temperatures. This model is designed 
for pure fluids and can be applied in mixtures with consistent Co-solvent mole fractions, 
assuming these mixtures behave like pure fluids at constant concentrations. Overall, the model 
provides a macroscopic view of the molecular environment in the fluid phase without requiring 
knowledge of the solute’s properties. 

(Sauceau et al., 2003, Hojjati et al., 2007, 
Sparks et al., 2008, Kostrzewa et al., 2019) 

Bartle et al. 
Semi-empirical ln

(
y2P
Pref

)

= a0 +
a1

T
+ a2

(
ρ1 − ρref

) 3 (Bartle et al., 1991) 

This model illustrates the relationship between solubility and solvent density. The correlation is 
expressed in a linear manner using the enhancement factor of the solute with respect to the 
density of the solvent. By fitting the correlation to experimental data, the coefficients a0, a1, and 
a2 can be determined. The parameter a2 is particularly useful in estimating the heat of 
vaporization of the solute, Hvap (Hvap = − a2R). By utilizing the values of Htotal and Hvap, the heat 
of solvation can be estimated for each solute-CO2 system. The Bartle model, which includes an 
individual pressure term, is expected to provide more reliable correlated results for solubility 
data at different pressures. 

(Hojjati et al., 2007, Sparks et al., 2008) 

Mendez − Santiago 
− Teja (MST) 
Semi-empirical 

Tln(y2P) = a0 + a1ρ1 + a2T 3 (Sodeifian et al., 2018a) 
This model utilizes the principles of dilute solutions and employs the algorithm of the Henry 
constant of solute in a supercritical fluid. Within this theoretical framework, the enhancement 
factor is ascertained by the solvent’s density, leading to straightforward equations for a range of 
thermodynamic properties of dilute near-critical binary mixtures. Additionally, this model 
allows for the normalization of data across varying temperatures. 

(Sauceau et al., 2003, Hojjati et al., 2007, 
Sparks et al., 2008) 

Jouyban et al. 
Empirical 

lny2 = a0 + a1P + a2P2 + a3PT +
a4T
P

+ a5ln(ρ1)
6 (Jouyban et al., 2002a, 2002b) 

The solubilities of organic solids in SC-CO2 can be accurately predicted using the empirical 
model developed by Jouyban et al. This model takes into account the interplay between solute 
mole fraction, linear pressure, and temperature, allowing for the estimation of solubility data 
that has not been measured. Additionally, it can be used to identify any outliers in experimental 
solubility data, providing valuable insights into the behavior of these systems. 

(Jouyban et al., 2002a, Sridar et al., 2013) 

Bian et al. 
Empirical 

y2 = ρ1
a0+a1ρexp

( a2 + a3ρ1
T

+a4
) 5 (Bian et al., 2011) 

The density-based empirical model proposed by Bian et al. offers a comprehensive understanding 
of the solubility of compounds in SC-CO2. It accounts for the intricate interplay between 
solubility and density of the supercritical fluid at varying temperatures and pressures. 
Additionally, it considers the correlation between solubility and temperature under isopycnic 
conditions, as well as the impact of temperature and pressure on the association number. This 
model is derived from Chrastil’s equation. 

(Sridar et al., 2013) 

Kumar and Johnston 
(KJ) 
Semi-empirical 

lny2 = a0 + a1ρ1 +
a2

T 
3 (Kumar and Johnston, 1988) 

In 1988, a thermodynamic formalism was introduced to explain the connection between the 
solubility of a nonvolatile solute in a SCF and the density of the fluid phase. This model suggests 
that the logarithm of the solute’s mole fraction in the fluid phase shows a nearly linear 
relationship with either the logarithm or the density of the SCF phase in the vicinity of the critical 
point, depending on the specific system. The slope of this linear correlation is determined by both 
the partial molar volume of the solute in the SCF phase and the isothermal compressibility of the 
fluid. Through the analysis of solubility data from existing literature, scientists have been able to 
calculate partial molar volumes using this framework, and these calculated values are in good 
agreement with independently measured data. 

(Kumar and Johnston, 1988, Yan et al., 
2022)  

Model Formula constant Ref 

Mendez− Santiago− Teja 
(MST) 
semi-empirical 

Tln
(

y′
2P

Pref

)

= a0 + a1ρ1 + a2T + a3y3 
4 (Méndez-Santiago and 

Teja, 1999) 
A correlation with four adjustable parameters was derived by combining the Mendez-Santiago and Teja 
equation with a Clausius-Clapeyron-type equation and including sublimation pressure. This correlation is 
used to assess the impact of density, temperature, and Co-solvent composition on the solubility of the ternary 
system. 

(Sauceau et al., 2003) 

Sodeifian-Sajadian 
semi-empirical 

ln
(
y′

2
)
= (a0 +

a1ρ1
T

)ln(ρ1) + a2ρ1 + a3ln
(
y3P

) 4 (Sodeifian et al., 2019c) 

Four experimental data points were selected as the minimum requirement from the collected data sets to train 
the proposed model for determining the solubilities of organic solids in SC-CO2 when a Co-solvent is present. 
The development of this model is based on the works of González et al. and Chrastil models. 

(Rojas et al., 2023) 

González et al. 
semi-empirical 

ln
(
y′

2
)
= a0ln(ρ1) + a1ln

(
y3
)
+

a2

T
+ a3 

4 (González et al., 2001) 

González and colleagues introduced a thermodynamic model based on the Chrastil model, utilizing the mass- 
action law to predict solute solubility in non-entrained supercritical fluids. This model has shown 
effectiveness, especially in systems where the presence of an entrainer boosts solute solubility significantly, 
particularly in cases with strong solute-entrainer interaction. The model incorporates the logarithmic 
dependence of solubility on fluid density along with an exponential relationship between solubility and Co- 
solvent concentration. It is built on the assumption of cluster or solvate complex formation involving the 
solute, entrainer, and solvent, which is consistent with the observed decrease in solute solubility with 

(González et al., 2001) 

(continued on next page) 
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the CO2 tank, the liquid CO2 enters the high-pressure pump at a pressure 
of about 6 MPa. A manometer and transmitter were used to evaluate the 
pressure with an accuracy of 0.1 MPa. 

The drug was homogenized in SC-CO2 using a magnetic stirrer in a 
300-mL cell to achieve a lab balance cell (binary system). In the case of a 
ternary system or a Co-solvent approach, 3000 mg of the RXN was added 
to the cell with a certain amount (3 mol %) of ethanol as a Co-solvent. 
The temperature control was achieved using an oven. A sintered filter 
(1 μm) was placed to keep the RXN in place on either side of the cell. 
Before being fed to the cell, CO2 was compressed to an appropriate 
pressure. Based on the preliminary test, the static time was 120 min. 
Saturated SC-CO2 (600 μL ± 0.6 % μm) was inserted into the injection 
loop using a three-valve two-position device (shown by V1-V3) after 120 
min. Upon rerouting the injection valve, the loop can be depressurized 
into the collecting vial to keep a particular amount of ethanol (solvent). 
This mechanism is summarized in Fig. 1 in four cases. After the static 
time, the loop should be filled. So, the valve (V1) has been opened. After 
filling the loop, V1 is closed. Next, V2 is opened. The loop goes to the 
collection vial, then V3 is opened and all the lines and the loop are rinsed 
with ethanol (1 mL). Also, in the picture, the green and black colors 

show the open and closed positions of the valves, respectively. This 
process was repeated three times for every data point and each system. 

The solution was collected in a container with a final volume of 5 mL 
(±0.2 %). Each test was repeated multiple times. The absorbance was 
measured spectrophotometrically using a Jenway UV-V equipped with a 
quartz cell, at a maximum wavelength (λmax) of 249 nm, to monitor the 
solubility. By utilizing the alignment bend (with a correlation coefficient 
of 0.989) and the UV absorbance, the solubility was calculated based on 
the solute concentration. The calibration curve and the linear relation-
ship of the regression data over a wide concentration range confirmed 
the suitability of the method. Additionally, the melting point was esti-
mated using the DSC test, as shown in Fig. 2. The calculation method for 
pressure fluctuation during sampling was also presented in the supple-
mentary information, Table (S1). 

The equilibrium mole fraction y2 and solubility, S (g/L of RXN in SC- 
CO2 were calculated at various pressure and temperature levels as fol-
lows (Sodeifian et al., 2023e): 

y2 =
nsolute

nsolute + nCO2

(1)  

nsolute =
Cs(

g
L) × Vs(L)
Ms(

g
mol)

(2)  

nCO2 =
Vl(L) × ρ

(
g
L

)

MCO2

(
g
mol

) (3)  

where Cs interprets the RXN concentration (g/L) in the collecting flask 
as determined by the standardized curve. nsolute and nCO2 also depict the 
moles of solute (RXN) and CO2 in the sampling loop, respectively. The 
volumes of collecting vial and sampling loop were Vs (L) and Vl (L), 
respectively. The solute molecular weight is also shown by Ms (g/mol), 
while MCO2 stands for the molecular weight of carbon dioxide Eq. (4) 
was used to determine S (g/L), which is the concentration of RXN in the 
SC-CO2. 

Table 4 (continued ) 

Model Formula constant Ref 

temperature. Therefore, the model may not accurately forecast solubility in systems where the Co-solvent 
only serves as a Co-solvent for CO2, lacking the entrainer effect that enhances both solubility and extraction 
selectivity. 

Soltani-Mazloumi 
Empirical 

ln
(
y′

2
)
= a0 +

a1

T
+

a2

T
ρ1 − a3ln(P) + a4ln

(
y3ρ1T

) 5 (Soltani and Mazloumi, 
2017) 

Soltani Mazloumi is an innovative experimental framework that incorporates five parameters to forecast solid 
solubility in supercritical carbon dioxide with the presence of a Co-solvent. This model considers various 
input data, including temperature, pressure, and density correlations. It is important to highlight that this 
model is derived from Hozhabr et al.’s model, showcasing a linear relationship between ln y′

2 and ln P, a 
nonlinear association between ln y′

2’ and temperature as well as density, a linear correlation between ln y′
2 

and a linear correlation between ln y′
2’ and ln y3 (Co-solvent mole fraction). 

(Soltani and Mazloumi, 
2017) 

Garlapati–Madras 
semi-empirical 

ln
(
y′

2
)
= a0 + a1ln(ρ1) + a2ρ1 +

a3

T
+ a4ln(T) + a5ln

(
y3
)
+ a6 ln

(
y3ρ1T

) 7 (Saadati Ardestani 
et al., 2020) 

In 2010, the Garlapati–Madras equation was developed with seven constants, inspired by the model 
introduced by Jouyban et al. This equation is used to establish a relationship between the solubilities of high 
molecular weight solids in SC-CO2, with or without Co-solvents, considering temperature, the density of SC- 
CO2, and the mole fraction of Co-solvent. 

(Garlapati and Madras, 
2010) 

Jouyban et al. 
Empirical 

ln
(
y′

2
)
= a0 + a1y3 + a2ρ1 + a3P2 + a4PT +

a5T
P

+ a6lnρ1 
7 (Jouyban et al., 2002b) 

The training of the proposed model to predict the solubilities of organic solids in SC-CO2, considering the 
presence of a Co-solvent, utilizes a minimum of six experimental data points from the collected data sets. To 
estimate solubility at various temperatures and pressures, an interpolation technique was employed. This 
correlation provides numerous benefits, such as a simple calculation procedure and higher accuracy in 
comparison to other empirical equations and equations of state. 

(Jouyban et al., 2002b)  

Table 5 
Descriptions of the parameters in empirical and semi-empirical models used in 
this work.  

Parameter Description System 

y2 Mole fraction (RXN + SC-CO2) Binary system 
y′

2 Mole fraction (RXN + SC-CO2 + Ethanol) Ternary system 
y3 The mole fraction of Co-solvent Ternary system 
a0 − a5 Adjustable parameters Binary system 
a0 − a6 Ternary system 
ρ1 Density of SC-CO2 (kg m− 3) Binary & Ternary system 
ρref Reference density (700 kg m− 3) Binary system 
Pref Reference Pressure (0.1 MPa) Binary & Ternary system 
P System Pressure (MPa) Binary & Ternary system 
T System Temperature (K)  
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S
(g
L

)
=
Cs

(
g
L

)
× Vs(L)

Vl(L)
(4)  

As a result, Eq. (5) is produced by combining Eq. (2) and (3) with Eq. (1): 

y2 =
Cs(

g
L) × Vs(L) ×MCO2 (

g
mol)

Cs

(
g
L

)
× Vs(L) ×MCO2

(
g
mol

)
+ Vl(L) × ρ(gL) ×Ms(

g
mol)

(5)  

2.3. Empirical and semi-empirical density-based models 

Several empirical and semi empirical models can be used to deter-
mine the solubility of solids (drugs) in SC-CO2. For the binary system in 
this study, the density-based models of Chrastil, Bian et al., Jouyban et 
al., Bartle et al., Mendez − Santiago − Teja (MST), and Kumar-Johnston 
(KJ) were adopted. Concerning the ternary approach with ethanol (Co- 
solvent), the Garlapati–Madras, Sodeifian-Sajadian, MST, González et 
al., Soltani-Mazloumi, and Jouyban et al. models were used. Empirical 
and semi-empirical models were employed to establish the connection 
between RXN solubility. Tables 4.a and 4.b provide a summary of the 
equations applied in binary and ternary approaches respectively and 

Table 5 outlines the parameters employed in the models. 
Empirical and semi-empirical models’ constants were assessed using 

experimental information. Variable parameters were also fine-tuned 
using the simulated annealing (SA) algorithm in MATLAB software. 
The AARD% was also applied to evaluate the accuracy of the model. 

AARD% =
100

Ni − Z

∑Ni

i=1

⃒
⃒ycalc2 − yexp2

⃒
⃒

yexp2
(6)  

Z and Ni represent the number of modifiable parameters for any 
demonstration and the number of information focuses in any set or 
model, respectively (Sajadian et al., 2022b). Radj was also considered to 
compare different models (Jouyban et al., 2002a, Garlapati and Madras, 
2010): 

Radj =

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒
⃒
⃒R2 −

(
Q
(
1 − R2

)

N − Q − 1

) ⃒
⃒
⃒
⃒

√

(7)  

Each set of data contained N data points. Moreover, Q denotes the 
number of self-determining 

parameters of each equation. The R2 correlation coefficient was also 

Table 6 
The experimental data of RXN solubility in SC-CO2 based on distinct conditions.  

Temperaturea 

(K) 
Pressurea 

(MPa) 
Densityb (kg/ 
m3) 

Binary 
y2 £ 105 (Mole 
Fraction) 

Experimental standard 
deviation, S(y) £ (105)c 

S £ 10 (Solubility 
(g/l)) 

Expanded uncertainty of mole 
fraction (105), Ucd 

308 12  768.42  0.405  0.007  0.031  0.011  
15  816.06  0.564  0.011  0.046  0.014 
18  848.87  0.745  0.018  0.063  0.020 
21  874.4  1.102  0.031  0.095  0.032 
24  895.54  1.248  0.041  0.111  0.043 
27  913.69  1.677  0.063  0.152  0.064 
30  929.68  1.924  0.080  0.177  0.081 

318 12  659.73  0.256  0.006  0.017  0.011  
15  743.17  0.458  0.013  0.034  0.016 
18  790.18  0.676  0.022  0.053  0.023 
21  823.7  1.042  0.038  0.085  0.039 
24  850.1  1.389  0.059  0.117  0.060 
27  872.04  1.81  0.065  0.156  0.066 
30  890.92  2.163  0.087  0.191  0.088 

328 12  506.85  0.171  0.003  0.009  0.012  
15  654.94  0.359  0.007  0.023  0.012 
18  724.13  0.593  0.014  0.043  0.017 
21  768.74  0.971  0.027  0.074  0.029 
24  801.92  1.57  0.054  0.125  0.056 
27  828.51  1.991  0.048  0.163  0.050 
30  850.83  2.396  0.069  0.202  0.071 

338 12  384.17  0.102  0.003  0.004  0.016  
15  555.23  0.239  0.009  0.013  0.014 
18  651.18  0.48  0.019  0.031  0.021 
21  709.69  0.836  0.023  0.059  0.025 
24  751.17  1.71  0.055  0.127  0.056 
27  783.29  2.164  0.078  0.168  0.079 
30  809.58  2.572  0.007  0.206  0.019  

a Standard uncertainty u are u(T) = 0.1 K; u(P) = 0.1 MPa. 
b Data from the Span–Wagner equation of state. 

c The experimental standard deviation and the experimental standard deviation of the mean (SD) were calculated by S
(
yk
)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1(yi − y)2

n − 1

√

and SD(y) =
S(yk)

̅̅̅
n

√

respectively. 
d The relative combined standard uncertainty was obtained by Ucombined/y =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(PiU(xi)/xi )
2

√

. The expanded uncertainty (0.95 level of confidence) U is k×
Ucombined.  
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Table 7 
The experimental data of RXN solubility in SC-CO2 – Ethanol based on distinct conditions. (3 mol % ethanol){, 2008 #1058}.  

Temperaturea 

(K) 
Pressurea 

(MPa) 
Density 
(kg/m3) 

Ternary 
y’

2 £ 104 

(Mole 
Fraction) 

Experimental standard 
deviation, S (y ’) £ 105b 

Expanded uncertainty of mole 
fraction (105), Uc c 

Mass 
ethanol (gr) 

e 
(Co-solvent 
effect) 

308 12  769.05  0.439  0.0755  0.080  7.463  10.84  
15  815.18  0.582  0.1164  0.122  7.926  10.32 
18  846.85  0.753  0.1807  0.187  8.244  10.11 
21  871.44  0.999  0.2797  0.286  8.492  9.07 
24  891.764  1.087  0.3594  0.365  8.698  8.71 
27  909.18  1.208  0.451  0.457  8.874  7.20 
30  924.51  1.34  0.5539  0.56  9.029  6.96 

318 12  663.14  0.328  0.0787  0.082  6.407  12.81  
15  744.53  0.528  0.1542  0.158  7.218  11.53 
18  790.14  0.763  0.2442  0.249  7.674  11.29 
21  822.57  1.031  0.3712  0.377  8.000  9.89 
24  848.04  1.208  0.5154  0.251  8.256  8.70 
27  869.17  1.441  0.5188  0.527  8.469  7.96 
30  887.32  1.603  0.6412  0.649  8.653  7.41 

328 12  512.60  0.26  0.0458  0.050  4.923  15.20  
15  658.45  0.442  0.0884  0.093  6.361  12.31 
18  726.00  0.708  0.1699  0.176  7.033  11.94 
21  769.36  1.004  0.2811  0.288  7.466  10.34 
24  801.51  1.45  0.5027  0.510  7.788  9.24 
27  827.21  1.566  0.3758  0.388  8.047  7.87 
30  848.74  1.794  0.5191  0.531  8.263  7.49 

338 12  390.45  0.191  0.0611  0.065  3.731  18.73  
15  560.44  0.387  0.1393  0.142  5.393  16.19 
18  654.77  0.652  0.2608  0.264  6.324  13.58 
21  711.93  1.079  0.3021  0.310  6.893  12.91 
24  752.30  1.635  0.5232  0.533  7.296  9.56 
27  783.47  1.846  0.6646  0.674  7.607  8.53 
30  808.92  2.022  0.8088  0.819  7.863  7.86 

b The experimental standard deviation and the experimental standard deviation of the mean (SD) were calculated by S
(
yk
)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1(yi − y)2

n − 1

√

and SD(y) =
S(yk)

̅̅̅
n

√

respectively. 
a Standard uncertainty u are u(T) = 0.1 K; u(P) = 0.1 MPa. 
c The relative combined standard uncertainty was obtained by Ucombined/y =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(PiU(xi)/xi )
2

√

. The expanded uncertainty (0.95 level of confidence) U is k×
Ucombined.  

Fig. 3. The RXN solubility in the binary system.  
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used to compare different models: 

R2 = 1 −
SSE
SST

= 1 −
∑

(y2exp − y2)
2

∑
(y2exp)

2
−

(Σy)2

N

(8)  

Where SSE represents the sum square error and SST denotes the total 
sum of squares (Sodeifian et al., 2019e). 

3. Results and discussion 

3.1. Solubility data systems- role of Co-solvent 

The experimental solubilities of RXN in SC-CO2 with and without 
ethanol Co-solvent (ternary and binary) were explored experimentally 
at 308–338 K and 12–30 MPa, as reported in Tables 6 and 7. The Span- 
Wanger EoS was used to determine the SC-CO2 density (Span and 
Wagner, 1996). Additionally, each test was reassessed three times to 
enhance the precision, and the relative standard uncertainties fell below 
5 %. The uncertainty of solubility was determined according to the guide 
of uncertainty measurement (GUM) proposed by the joint committee for 
guides in metrology (2008). Figs. 3 and 4 present the RXN mole fraction 
solubility vs. pressure and density at various temperatures for binary 
and ternary systems, respectively. In 2022, Sodeifian et al. studied RXN 
in binary mode. According to Table 6, the data difference is lower than 9 
% (Sodeifian et al., 2023e). The supplementary information data con-
sists of Tables S2 and S3, containing the tabulated information necessary 
for the calculation and analysis of ethanol (Co-solvent) content, mixture 
density, and CO2 mass within the mixture. 

In general, an increase in pressure enhances the density of SC-CO2 
and its solvation power. Consequently, the solubility of RXN in SC-CO2 
increases with pressure increment at constant temperature in both sys-
tems. Analysis of RXN solubility in binary and ternary systems indicates 
a significant increase in the solubility of RXN in the presence of a Co- 
solvent (ethanol). According to the generally recognized as safe 
(GRAS) designation, ethanol is an ideal Co-solvent for food applications 
(Güçlü-Üstündağ and Temelli, 2005). The maximum and minimum ef-
fects of the Co-solvent are 18.73 (338 K and 12 MPa) and 6.96 (308 K 
and 30 MPa), respectively, as determined by comparing the data and 
calculating the solubility enhancement (e) due to the efficacy of ethanol 
Co-solvent on the RXN solubility in SC-CO2 (Eq. (9) (Araus et al., 2019, 

Sodeifian et al., 2021). 

e =
y′

2

y2
*100 =

molefractionofTernary(CO2 + Ethanol)
molefractionofbinary(CO2)

*100 (9)  

In addition, as illustrated in Fig. 5, the impact of ethanol on solubility is 
identified. The addition of a Co-solvent results in a solubility increase 
ranging from 7 to 19 % in the ternary system when compared to the 
binary system. 

CO2 cannot be employed as a suitable solvent for most medicinal 
chemicals due to its low polarity. Moreover, hydrophobic and polar 
molecules are insoluble in SC-CO2. Therefore, 

variant Co-solvents have been introduced to enhance the solubility of 
drugs in SC-CO2. Ethanol is miscible with SC-CO2 and has shown a high 
dissolving capacity for numerous chemicals. Thus, ethanol can be 
employed as a Co-solvent in SC-CO2 systems to improve the dissolving 
capability (Knez et al., 2017, Cheng et al., 2018). 

Small concentrations of Co-solvents can be used to increase the sol-
vation power of SC-CO2. The effect of the Co-solvent was determined 
based on its concentration in the supercritical phase, which can be 
influenced by the phase and the treatment of the combination. To 
determine the influence of the Co-solvent, solvent-co-solvent combina-
tions in a supercritical state (completely miscible) should be used 
(Güçlü-Üstündağ and Temelli, 2005, Pitchaiah et al., 2018). The key 
factor in the effect of the Co-solvent involves an increase in solvent 
density and intermolecular interactions. In multi-component systems, 
solubility can be improved either selectively or non-selectively. Selec-
tivity does not increase in situations where the rise in insolubility is the 
result of an increment in the density of the solvent mixture. An increase 
is expected in both solubility and selectivity in the case of a specific 
intermolecular interaction between the Co-solvent and one of the solutes 
(such as H-bonding) (Güçlü-Üstündağ and Temelli, 2005, Cui et al., 
2018, Li et al., 2018). 

The impact of Co-solvent on solvent density, and therefore its 
contribution to the Co-solvent effect, varies depending on temperature 
and the specific Co-solvent. The inclusion of a Co-solvent increases the 
overall density of the supercritical fluid (SCF) by raising the density of 
the Co-solvent and causing SCF molecules to cluster around it. These 
density variations are particularly noticeable near the critical point of 
the solvent mixture, where the densities of both the Co-solvent and the 

Fig. 4. The RXN solubility in the ternary system.  
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Fig. 5. The influence of Co-solvent (ethanol) on solubility of RXN in SC-CO2. a. pressure, b. density.  

M. Askarizadeh et al.                                                                                                                                                                                                                          



Arabian Journal of Chemistry 17 (2024) 105707

15

SCF fluctuate the most, resulting in the highest degree of clustering. As 
the pressure increases, the density of the SCF mixture increases while the 
clustering decreases, causing the density isotherms to intersect. It should 
be noted that the addition of a Co-solvent, such as a hydrocarbon with a 
large molar volume, can enhance the solvation power of the SCF while 
reducing its molar density (Güçlü-Üstündağ and Temelli, 2005, Li et al., 
2018). 

A proper understanding of the Co-solvent outcome demands suffi-
cient cognition of the intermolecular interactions between the solutes 
and solvents. The Co-solvent effect is mostly influenced by solute-co- 
solvent physical interactions such as dipole–dipole, dipole-induced 
dipole, and induced dipole-induced dipole (dispersion) interactions, as 
well as more specialized interactions such as H-bonding and charge 
transfer complexes (Prausnitz et al., 1999, Güçlü-Üstündağ and Temelli, 
2005, Cui et al., 2018, Peyrovedin and Shariati, 2020, Matin et al., 
2022). 

H-bonding could be a donor–acceptor action and reaction, including 
H-bond- donating and accepting atoms. H-bonds are formed when the 
electronegativity of the H-bond donor is sufficiently high to draw elec-
trons, partially exposing the protons. The acceptor atom has to possess 
lone-pairs or polarizable electrons to form a bond with the donor spe-
cies. Functional groups could serve as acceptors (e.g., C = O), donors, or 
both (e.g., OH). As the most prevalent cases in essence and chemistry, 
moderate H-bonds are generated between neutral donors and acceptors 
like –OH and O = C (Jeffrey and Jeffrey, 1997). In the mixture of SC-CO2 
and ethanol, ethanol forms H-bonds for weak binding to CO2 as a result 
of quadrupole-dipole interaction. Furthermore, the hydrogen bonding 
between RXN and this Co-solvent declined chemical potential, offering 
additional solute molecules to the supercritical phase (Güçlü-Üstündağ 
and Temelli, 2005, Araus et al., 2019, Ardestani et al., 2020). 

Several articles have investigated crossover pressure and proposed 
some methods to predict the crossover pressure region (Adachi and Lu, 
1983, Chimowitz et al., 1988, Del Valle and Aguilera, 1988, de Melo 
et al., 2009, Tabernero et al., 2010, Budkov et al., 2019, Kalikin et al., 
2020, Kalikin et al., 2021). Correlation of the crossover pressure for the 
ternary system has been presented by Johnston et al.(Adachi and Lu, 
1983) and Chimowitz et al.(Chimowitz et al., 1988). The crossover 
pressure was related to the enthalpy of sublimation and the partial molar 
enthalpy of the solute in the supercritical phase. The locations of the 

lower and upper crossover pressures were determined at the point where 
the partial molar enthalpy equals the negative of the enthalpy of subli-
mation. Johnston et al. (1987) applied the Peng-Robinson EoS with a 
binary interaction parameter regressed from a single experimental point 
to evaluate the partial molar enthalpy of the solute for determining the 
crossover points. Chimowitz et al. (1988) used a perturbed hard-sphere 
model EoS to correlate the crossover pressure for binary and ternary 
systems. Both of these methods require the P-y-T data to allow the 
prediction of the crossover point. Kalikin et al. (Kalikin et al., 2021) 
investigated the solubility of a set of poorly soluble drugs, which have 
been computed in a wide area of the phase diagram, based on the 
classical density functional theory. They found that the wider the tem-
perature region of the experimental study, the more pronounced the 
effect of the crossover points drift. They also estimated solubility values 
using in situ IR spectroscopy and molecular dynamics simulations along 
the mentioned isochores and isotherms, respectively. Furthermore, they 
believed that the critical parameters, sublimation pressure, and molar 
volume of the compound play a crucial role in the determination of the 
crossover pressure (Tabernero et al., 2010). De Melo et al. investigated 
the Peng-Robinson-LCVM-UNIFAC equation and the effect of any un-
certainty of some solid pure component properties on the upper cross-
over pressure. It is shown that the slope of the sublimation pressure 
curve plays a major role in the accuracy of the upper crossover pressure. 
To sum up, the crossover region depends on the critical properties of 
solutes, sublimation pressure, enthalpy of sublimation, partial molar 
enthalpy, and molar volume of the solute. 

As suggested by the chemical structure of RXN (Table 3), its OH, NH, 
and C = O groups increase its polarity. Accordingly, the solubility of 
RXN in a high-density solvent will be higher than in a low-density sol-
vent for both binary and ternary systems. At high pressures, SCF behaves 
like a liquid. Regarding the higher solvation power of liquids compared 
to gases, RXN is more soluble in solvents with higher density (see Fig. 4). 
Temperature is another key factor in the solubility of RXN. Based on 
Figs. 3 and 4, the solubility of RXN in both binary and ternary systems 
increased with constant pressure, due to temperature elevation. The 
binary and ternary systems showed crossover pressures. Concerning the 
solubility of solid materials in supercritical fluids, there is a well-known 
phenomenon called “retrograde vaporization” (RV), in which a rise in 
temperature at steady pressure causes a decline in solubility (Kalikin 

Table 8 
The correlation results of the RXN-CO2 system provided by semi-empirical models.  

Model a0 a1 a2 a3 a4 a5 AARD% Radj 

Chrastil  8.794  − 5323.289  − 43.942 – – –  16.75  0.989 
KJ  − 2.449  0.009  − 5352.72 – – –  12.42  0.989 
Bian et al.  − 4.736  0.003  − 2324.664 − 3.713 17.185 –  8.05  0.986 
Bartle et al.  16.928  − 7878.695  0.014 – – –  16.79  0.986 
MST  4.797  − 1.182 × 10-4  18.672 – – –  15.93  0.990 
Jouyban et al.  –33.695  0.002  − 0.004 9.689 × 10-5 0.100 2.062  7.40  0.993  

Table 9 
The correlation results of the RXN-Ethanol-CO2 system provided by the semi-empirical models.  

Model a0 a1 a2 a3 a4 a5 a6 AARD% Radj 

MST  − 1920.282  3.510  16.855 − 2.517 × 10-5 – – –  12.37  0.986 
González et al.  5.450  − 2.867  − 4.498 × 104 − 41.694 – – –  12.17  0.985 
Sodeifian-Sajadian  − 2.360  − 0.482  0.018 0.695 – – –  6.13  0.979 
Soltani-Mazloumi  4.608  − 5194.273  1.885 − 0.386 − 0.495 – –  6.89  0.987 
Garlapati–Madras  − 93.651  − 6.345  0.011 − 26.658 10.571 − 8.462 3.027  6.16  0.991 
Jouyban et al.  − 50.732  − 1.899  − 0.007 − 0.002 5.083 × 10-4 0.008 6.70  9.39  0.989  
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Fig. 6. Comparison of experimental (points) and calculated (line) solubilities of RXN in the binary system: (a) Chrastil, (b) KJ., (c) Bian et al (d) Bartle et al, (e) MST 
(f) Jouyban et al. models at various temperatures. 
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et al., 2021). The limits of this area are illustrated by two positions 
where all isotherms intersect and the plot of solubility vs. temperature 
shows extrema; the pressure values corresponding to these extrema are 
known as the lower and upper crossover pressures. In the case of binary 
and ternary systems, the crossover pressures roughly reside at 24 MPa 
and 21 MPa, respectively. The temperature of the system shows different 
impacts on RXN solubility at pressures higher and lower than the 
crossover pressure. The effects of temperature enhancement on solubi-
lity may vary due to the temperature dependence of the density of the 
solvent and the vapor pressure of the solute. 

3.2. Analyzed solubility data correlation of two system 

RXN solubility data were compared in two systems using ten 
empirical density-based models (Bian et al., Jouyban et al., Chrastil, 
Bartle et al., Mendez − Santiago − Teja (MST), González et al., Kumar, 
and Johnston (KJ), Sodeifian–Sajadian, Soltani-Mazloumi and 
Garlapati-Madras). The RXN solubility in SCF was correctly correlated 
by all correlations, as shown by the AARD% and Radj values. Using the 
calculated customizable parameters, the offered models may be 
employed to predict RXN solubility in binary and ternary modes at 
definite pressures and temperatures. The solubility data were correlated 
with high precision using the acquired adjustable parameters. Tables 8 
and 9 list the parameters of the empirical and semi empirical model in 
the binary RXN-CO2 system and the ternary RXN-Ethanol-CO2 system, 
respectively. The correlation outcomes of each approach are displayed 
in Figs. 6 and 7. The AARD% of each model in both systems is shown in 
Fig. 8. Additionally, Jouyban et al. (AARD%=7.40 and Radj = 0.993) is 

the most accurate model in the binary system. As seen, all models pro-
vide proper accuracy in ternary models, while the Garlapati-Madras 
(AARD%=6.16 and Radj = 0.991) and Sodeifian-Sajadian (AARD%=

6.13 and Radj = 0.979) and Soltani-Mazloumi (AARD%=6.89 and Radj =

0.987) models for the ternary system are the most accurate models. 

4. Conclusion 

The current research explored the RXN solubility in two systems 
(binary: SC-CO2 and ternary: SC-CO2 with Co-solvent (ethanol) at 
different pressures (12–30 MPa) temperatures (308–338 K). The RXN 
solubility in the binary and ternary systems ranged based on mole 
fraction from 1.0 × 10− 6 to 2.57 × 10− 5 and from 1.9 × 10− 5 to 2.02×

10− 4, respectively. The solubility values of RXN were correlated by 
various semi-empirical equations based on the corresponding equilib-
rium. Accordingly, the incorporation of ethanol Co-solvent considerably 
improved the RXN solubility due to dipole–dipole and dipole-induced 
dipole interactions between the Co-solvent and RXN. The highest Co- 
solvent effect (18.73) was identified at 12 MPa and 338 K, further 
confirming this hypothesis. The highest RXN solubility (y’2 = 2.02 × 10- 

4) at 30 MPa and 338 K, was recorded in a system with ethanol Co- 
solvent. Furthermore, according to the AARD% and Radj values of the 
empirical and semi-empirical approaches, Jouyban et al. model for bi-
nary system and Garlapati-Madras, Sodeifian-Sajadian and Soltani- 
Mazloumi models can properly correlate the ternary system at exam-
ined temperatures and pressures. 

Fig. 6. (continued). 
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Fig. 7. Comparison of experimental (points) and calculated (line) solubilities of RXN in the ternary system (3 mol % ethanol): (a) MST, (b) González et al., (c) 
Sodeifian-Sajadian, (d) Soltani-Mazloumi. (e) Garlapati–Madras and (f) Jouyban et al. models at various temperatures. 
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