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Abstract This study provides a machine learning (ML) modeling method for predicting the produc-

tion of biodiesel from palm oil through transesterification process. The ensemble decision tree-based

algorithms including AdaBoost Regression Tree (ADA+RT), Extra Trees, and Gradient Boosting

Regression Tree (GBRT) were used as a potential tool for modeling biodiesel production. The time of

reaction (h), methanol to oil (palm oil) molar ratio, and catalyst amount (wt.%, zeolite) were selected

as the input variables ofmodels, while the fatty acidmethyl esters (FAME) production yield was set as

the output for modeling as well as optimization tasks. The performance models were compared using

several performance indicators (R2, RMSE, MAE). The obtained MAE standard error rates for

ADA + RT, Extra Trees, and GBRT were 1.2, 1.1, and 0.33, respectively. Comparing the RMSE

measurements showed that ADA+RT and Extra Trees had error value of about 1.5 and this value

for GBRT model was about 0.4. Although all of the models that were generated were robust, the

GBRT model was found to be the most robust and accurate in terms of predicting biodiesel output.

The optimization of results confirmed that 98.73%yield of production can be achieved at optimal val-

ues operating factors (time = 45 h, methanol to oil = 12.0, and catalyst = 2.0 wt%).
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Biodiesel production is a very important issue due to the environmen-

tal advantages, biodegradability, and renewability (Ahmia et al., 2014;

Jamil et al., 2018; Živković and Veljković, 2018). This renewable fuel is

mainly manufactured using biomass sources such as palm oils in chem-

ical esterification reactions (Kumar, 2021; Kumar et al., 2021). In

transesterification reaction triglycerides transform into fatty acid alkyl

esters, in the presence of a catalyst and alcohol. One of fatty acid ester

which is named Fatty acid methyl esters (FAME) are produced from
transesterification of fats with methanol (Inam et al., 2019; Bemani

et al., 2020; Pullen and Saeed, 2014). In this regard, it is very important

to select the correct operating factors to achieve high quality biofuels

with improved physico-chemical properties. Therefore, providing a

correct relation between the input parameters and their desired output

properties is quite difficult and, in some cases, impossible. The com-

plexity of biodiesel production systems makes it a challenging problem

to optimize the production process and prediction of process efficiency

(Kumar et al., 2020). New opportunities may arise as a result of recent

advancements in machine learning (ML) and data science. ML is a

hopeful approach for dealing with the complex, nonlinear, and multi-

variate biofuel production system (Aghbashlo et al., 2021; Liu et al.,

2019; Kumar and Deswal, 2022).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.arabjc.2023.104785&domain=pdf
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Table 1 Data Set used for the optimization task (Zhang et al.,

2020).

No. X1:

Reaction

time (h)

X2: Methanol:

oil (Palm oil)

X3: Catalyst

amount (wt.

%)

Y: Yield of

FAME (%)

1 45 12 2 98.09

2 35 12 2.5 92.73

3 35 9 2 84.76

4 45 12 2 99.38

5 35 15 2 89.49

6 55 15 2 93.37

7 35 12 1.5 92.6

8 45 15 1.5 92.18

9 55 12 1.5 94.99

10 45 15 2.5 92.29

11 45 12 2 98.78

12 55 12 2.5 94.08

13 45 9 2.5 85.77

14 45 9 1.5 83.65

15 45 12 2 98.95

16 55 9 2 83.36

17 45 12 2 98.51
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An ensemble in machine learning is a collection of models whose

combined prediction aims to enhance a single model’s performance (ac-

curacy). Ensembles have resulted in powerful predictive algorithmswith

large generalization capacitywithout relinquishingmore local or special-

ized knowledge due to this mixing of various predictions (Ribeiro and

dos Santos Coelho, 2020). Some ML methods, such as Decision Tree

(DT) and Neural Network (NNs) algorithm are intrinsically unstable,

meaning that any change to the training data points results in a drasti-

cally different predictor (Pandey and Sharma, 2013; Andrade Cruz

et al., 2022; Pérez-Ortiz et al., 2016). Low bias and high variation are

characteristics of unstable estimators. Ensemble techniques have been

proposed to reduce generalization error, i.e., bias, variance, or both.

These methods modify the training dataset and provide an ensemble of

various base estimators. A single estimator is then created by combining

these estimators (Izenman, 2008). As these results were not sufficiently

generic to be used as the basis for a robust model, it was decided to use

reiterativemodels instead.Baggingandboosting are twoof the bestways

to strengthen the Decision Tree. Breiman’s (Breiman, 1996) Bagging

(Bootstrap Aggregating) is a basic and straightforward ensemble

method, demonstrating excellent performance while reducing variance

andpreventing overfitting. The bootstrap approach,which creates train-

ing data subsets by replicating training data sets, adds diversity to the

Bagging process. The entire data set is split into several subsets, and each

is used to fit a different type of basic estimator; the combined prediction

results are decided upon by the majority.

Boosting is another ensemble technique developed from the

research of Freund and Schapire (Freund and Schapire, 1996;

Ferreira and Figueiredo, 2012). By gradually reweighting the training

data, it produces a variety of fundamental learners, in contrast to Bag-

ging. In the following training step, each sample that was poorly esti-

mated by the previous estimator will be given more weight. As a result,

incorrectly estimated training samples by predecessors are more likely

to appear in the succeeding bootstrap sample, and bias can be success-

fully eradicated. All of the base estimators are combined into one final

model using the Boosting algorithm, and their weights are determined

by how well they predict. The DT algorithm’s basic principle is to

break down big problems into many smaller sub-problems (Divide-

and-conquer), which may result in an easier-to-interpret answer (Xu

et al., 2005). A DT depicts a group of conditional queries that are

ordered hierarchically (tree architecture) and applied progressively

from the tree’s root to the leaf (Breiman et al., 2017). DTs are easy

to use and understand, with a clear structure. DTs generate a trained

predictor that can express rules, which can subsequently be employed

to forecast fresh datasets using the repeating process of splitting

(Ahmad et al., 2017; Dumitrescu et al., 2022).

In this study, for the first time in order to predict the FAME produc-

tion from palm oil different decision tree-based machine learning mod-

eling methods were used. The models employed in this study include

AdaBoost (Boosting of Regression Trees, ADA + RT), Extra Trees

(A bagging method for Regression Trees), and Gradient Boosting (A

boosting method for Regression Trees, GBRT) which are based on

DT Regressors. The obtained results of these models were compared

with different performance indicators (R2, RMSE, MAE) and the opti-

mal conditions for highest FAME production yield were acquired.

2. Data set of biodiesel production

Table 1 shows the dataset that is used in this study for biodie-
sel production optimization, which was collected from a pub-
lished source, and more details about the experimental

methods can be found elsewhere (Zhang et al., 2020). This
issue contains three decimal number input features and one
target output, for a total of 17 rows. Indeed, the target of opti-
mization is the production yield of biodiesel (percentage).

Additionally, Fig. 1 was created to explore the distribution
of inputs and outputs and their relationship.
3. Computational methodology

3.1. CART (Classification and regression tree)

Because the decision tree (DT) estimator of the CART type is
employed as a weak or basic estimator in all of the models in
this study, we will first introduce the concept of this method.

The decision tree method is a learning model often utilized
for both regression and classification tasks. The partitioning
method results in a tree-like architecture so the model is called

decision tree (DT). A DT contains a root node and child (sub)
nodes that include all the cases and non-cases necessary for
training the model (Cheraghlou et al., 2021). Fig. 2 depicts this
process graphically as a binary decision tree.

The splitting criterion is critical in the construction of a DT.
Numerous DT algorithms employing diverse splitting criteria
have been developed over the years, including the C4.5, ID3,

and CART decision tree algorithms. (Quinlan, 1986, 2014).
A sampling technique called CART was developed by Breiman
et al. (Breiman et al., 2017; Saha et al., 2021). Impurity in a

dataset can be quantified using the Gini index (GI). Using
Eq. (1), we can calculate the Gini index of the node’s sample
set S. The GI for a node is more representative of the quality

of its data if it is lower. This means that when using attribute
splitting, the weighted mean of GI on each branch (sub-node)
is optimised, resulting in the maximum possible value of
DGI Sð Þ as defined in Eq. (2) (Liu et al., 2018).

GI Sð Þ ¼ 1�
XKs

k¼1

p2k ð1Þ

DGI S; að Þ ¼ GI Sð Þ � WL � GI SLð Þ þWR � GI SRð Þ½ � ð2Þ
In these equations, Ks reflects the count of outputs in the

node and pk denotes the proportion of the kth category in

the node. DGI S; að Þ denotes the change in impurity levels
between the sample set S pre-split and post-split with feature



Fig. 1 Scatter plot for Data Set of biodiesel modeling.
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an as the split attribute (Alobaida and Huwaimel, 2023). Sam-
ple sets of left and right child nodes are denoted by SL and SR,

while WL and WR represent their respective proportions. Like
other DT induction techniques, CART finds the most signifi-
cant variables when choosing the optimum splitting features

for each root or internal node, hence defining independent
variables is unnecessary (Menze et al., 2009; Shang et al.,
2007). As a result, CART seems to be appropriate for learning
situations in which the relationship between inputs and output

is uncertain (Safavian and Landgrebe, 1991).

3.2. AdaBoost algorithm

A model based on ensemble approach is formed by combining
several base (weak) models, and such a model typically outper-
forms a single estimator. Freund and Schapire (Freund and

Schapire, 1997) proposed the AdaBoost algorithm as an
ensemble model for boosting the performance of weak models
by varying the distribution of sample weights. The AdaBoost
main workflow as follows (Hastie et al., 2009):

1. Initialize weight values w 1ð Þ
i ¼ 1

N
where i 2 {1, . . ., N} (N

stands for the quantity of input vectors).

2. construct the predictor h tð Þ xð Þ (the tth predictor) on data

points using the current weights w tð Þ for t = 1 to Tc.

Next, the Eq. (3) is utilized to declare e (t), the h tð Þ xð Þ
error, and calculating the weight of the predictor a (t)

is done with the help of Eq. (4). Finally, Eqs. (5) and

(6) are employed to modify the weights of w tð Þ
i samples

(Gupta et al., 2016).
e tð Þ ¼
XN
i¼1

w
tð Þ
i II ci–h tð Þ

xið Þ
� �

ð3Þ

a tð Þ ¼ ln
1� e tð Þ

e tð Þ þ ln K� 1ð Þ ð4Þ

w
tþ1ð Þ
i ¼ w

tð Þ
i

Zt

� exp a tð ÞII h tð Þ
xið Þ–ci

� �� �
ð5Þ

Zt ¼
XN
i¼1

w
tð Þ
i � exp a tð ÞII h tð Þ

xið Þ–ci

� �� �
ð6Þ

where ci stands for actual output of the i
th sample, K repre-

sents the total count of possible outputs. To get a total of 1

for w tþ1ð Þ
i , the indicator function is II �ð Þ, and Zt is the nor-

malization factor.
3. Compute the final output:

H xð Þ ¼ argmax
k

XTc

t¼1

a tð ÞII h tð Þ
xð Þ ¼ k

� �
ð7Þ

After a training iteration, samples that correctly identified
incorrect results are given higher weights, as shown in Eqs.

(3)–(7). As a result, these examples are given greater consid-
eration as the subsequent base learner is being trained. The
model’s output is a weighted average of all of its base

learners.



Fig. 2 A straightforward binary decision tree structure with a three-level depth.
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3.3. Extremely randomized tree (ET)

Extra tree (Extremely Randomized Tree or ET) is also an
ensemble model for supervised tasks (classification or regres-

sion) that is built on trees. It is a recent technique designed
as a random forest extension. The ET Method builds a collec-
tion of unpruned decision tree estimators from the top down.

This algorithm employs a random subset of input parameters
to build each weak (base) predictor, similar to the RF tech-
nique. For each node, ET selects feature and its corresponding

value at random (Ahmad et al., 2018; John et al., 2015;
Gallicchio et al., 2017).

This guarantees that a sizable portion of the variance in the
trained DT estimator is accounted for by the ideal cut-point.

This concept is beneficial in the context of various problems
with many numerical features that change over time: it fre-
quently leads to enhanced accuracy because of the smoothing

of the numerical features and a massive reduction in computa-
tional burdens associated with determining optimized cut-
points in standard decision trees. As a consequence of this,

in the worst-case scenario, it generates completely random
trees with topologies that are unaffected by the output values
of the learning sample. By selecting the proper parameter,

the degree to which the randomization is applied can also be
modified to correspond with the specifics of the scenario
(Geurts et al., 2006).

The Extra Tree method creates a series of weak regression

trees using the conventional top-down procedure. The signifi-
cant dissimilarities between ET and other DT-based tech-
niques are that it separates nodes randomly and builds the

tree using the entire learning sample. The final prediction is
made by combining the tree (base estimators) predictions,
either by the majority of votes in classification tasks or by

numerical average or weighted average in numerical regression
tasks. Extra tree trains each base estimator using random sub-

set features (John et al., 2015).
The Extremely Randomized Trees approach is predicated

on the idea that explicit randomization of cut-points and fea-

tures, in conjunction with ensemble averaging, efficiently elim-
inates contrasts and similarities. From a computational
standpoint, the computational complexity of the tree growth
technique (for a balanced tree) is proportional to the learning

sample size in the N log N time complexity (Geurts et al., 2006;
Okoro et al., 2022).

3.4. Gradient boosting regression tree (GBRT)

Valiant came up with the idea of boosting (Valiant, 1984).
When we combine many weak models, we can make a strong

model. This is the main concept underlying this algorithm.
Friedman proposed the gradient boosting algorithm in
(Friedman, 2001) with the idea that it could be employed to

fit non-parametric prediction model. It is called Gradient
Boosting Regression Tree (GBRT), and it uses regression tree
as the base estimator. The steps of GBRT are as follows
(Ikeagwuani, 2021):

1. M samples are taken from N datasets.
2. The residuals (negative gradient) for each sample are

calculated.
3. Residuals are employed in training instances, and the best

partition point from M-dimensional features is found by

minimizing the loss function.
4. Changes occur when a new partition node generates leaf

nodes with sample split.
5. If the minimum MSE is not attained, return to step 2.

The flow of each tree is as follows (Wei et al., 2019):
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f xð Þ ¼
XM
m¼1

bCmI x 2 Rmð Þ ð8Þ

bCm ¼ 1

N

X
xi2Rm j;sð Þ

yi ð9Þ

minj;s minc1
X

xi2R1 j;sð Þ
yi � c1ð Þ2 þminc2

X
xi2R2 j;sð Þ

yi � c2ð Þ2
" #

ð10Þ

where xi, yi represent data sets with I = 1, . . ., N, xj is the jth

variable x; and Rm j; sð Þ stands for the area bounded by the
splitting variable xj and the splitting point s. the optimal value

for every region is denoted by bCm. Similarly, c1 and c2 are the

values for the first and second regions after being split at the
best possible location, j, for the slitting vector.

4. Results and discussions

In this step, after looking at the tuned hyper-parameters, the
final models will be created and compared using tree metrics

to evaluate and analyze the results of the suggested models:
With the help of Eq. (11), the Mean Absolute Error metric

(MAE) (Botchkarev, 2018), that is the horizontal distance
between two continuous variables, namely the arrays of mea-

sured and model projected Yield of FAME, is calculated.

MAE ¼ 1

n

Xn

i¼1

byi � yij j ð11Þ

Here, n reflects the count of input samples and yi is the

observed value. Also, byi denotes model predicted values
(Wang and Lu, 2018; Kumar et al., 2020).

The Root Mean Squared Error (RMSE) is the second indi-

cator that was employed in the comparison (RMSE). In Eq.
(12), it is stated as the standard deviation of model estimated
outputs from observed values on a dataset (Kumar et al.,

2020; Fajar and Sugiarto, 2012):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

byi � yið Þ2
n

s
ð12Þ
Table 2 Top combinations of ADA + RT.

Criterion Splitter Max

depth

Min samples

split

Min samples

leaf

Absolute error random 5 2 2

Friedman mse best 14 6 2

Friedman

mse

random 12 3 2

Friedman mse random 20 2 2

Friedman mse best 6 4 2

Squared error best 8 4 2

Squared error random 18 2 2

Friedman mse best 3 5 2

Friedman mse random 11 2 2

Absolute error random 2 2 2

Friedman mse best 12 3 2

Friedman mse best 15 4 2

Friedman mse random 13 6 2

Absolute error random 5 2 3
R2-Score, is the last metric. In regression tasks, the R2-
Score (Botchkarev, 2018) is utilized to gauge how closely the
model’s predictions match the actual values. Equation (13)

provides a relationship that can be used to compute it.

R2 ¼ 1�
P

i byi � yið Þ2P
i l� yið Þ2 ð13Þ

In this equation, l stands for the average of the observed

data.
For the ADA-RT model, we need to decide on nine essen-

tial hyper-parameters. Although other parameters can affect

the output of our model, we have optimized these nine more
essential parameters.

Table 2 lists some of the best combinations. The final opti-
mized values for the parameters are:

� Criterion: The function’s quality is determined by this
parameter. As an alternative to using mean squared error,

Friedman MSE takes into account both the error and the
improvement made by the split, and is therefore used for
future partitions.

� Splitter method: The mechanism used to find the split at
each node. The chosen strategy is ‘‘best” for choosing the
best split for identifying the appropriate random split.

� Max depth: The maximum tree depth has been determined

to be 14.
� Minimum samples split: 6
� Minimum samples leaf: 2

� Maximum features: 3
� Learning rate: 1.0
� Number of estimators: 170

� Loss Function: Linear

Based on all combinations tests (top results are presented in

Table 3), the final hyper-parameters for the Extra tree regres-
sor are as follows:

� Number of estimators: 126

� Criterion: Absolute error was chosen as the function to
improve the impact of a split.
Max

features

Learning

rate

Number of

trees

Loss MAE

2 1.059882353 119 square 1.216

3 0.993823529 177 linear 1.187

2 0.255 175 square 1.370

3 0.104058824 64 exponential 1.530

2 0.767705882 138 square 1.406

3 1.629647059 163 square 1.437

3 2.425470588 82 linear 1.621

2 1.952176471 114 exponential 1.741

2 0.112823529 159 exponential 1.705

2 0.203588235 67 linear 1.656

1 2.063882353 7 linear 1.624

2 2.396 121 exponential 1.729

3 1.048823529 57 exponential 2.280

2 1.909941176 72 linear 2.39
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� Max Depth: 8

� Max Features: 3

Finally, the top results for Gradient Tree Boosting may be

found in Table 4. Based on these experiments, we chose the fol-
lowing hype-parameters:

� Learning Rate: 1.25

� Number of Estimators: 30
� Tolerance for the early stopping: 2.25E�4
� Criterion: This is the function that determines the quality of

a split is set to squared error for gradient boosting.
� Loss Function: We used the Huber Loss function to opti-
mize the gradient tree boosting.

The observed and predicted FAME yield production
according to the ADA + RT model are presented in Figs. 3
and 4 for train and test values, respectively. As can be seen a

good accuracy was obtained from this model in the training
phase. However, according to Fig. 4, in ADA + RT model
testing phase the distance between the actual and predicted

values was increased in some values.
Table 4 Top combinations of Gradient Boosting.

Learning rate Number of estimators Loss

1.208118 197 huber

1.261 30 huber

1.255647 147 huber

1.264235 9 huber

1.264647 12 huber

1.255471 90 huber

1.258235 200 huber

1.199235 192 huber

1.269765 6 huber

1.160647 115 huber

1.195706 43 huber

1.165059 188 huber

1.233176 41 huber

1.156412 127 huber

1.251706 67 huber

1.205118 90 huber

Table 3 Top combinations of Extra Tree.

Number of estimators Criterion

126 Absolute error

127 Absolute error

129 Absolute error

129 Absolute error

133 Absolute error

102 Absolute error

131 Absolute error

121 Absolute error

130 Absolute error

124 Absolute error

124 Absolute error

184 Absolute error

96 Absolute error

96 Absolute error
The result of Extra Tree model for the train and test data
are presented in Figs. 5 and 6, respectively. By comparing
Fig. 3 and Fig. 5 it can be said that both models had a large

extent in the training phase. Same as ADA + RT model,
the Extra Tree model had better performance and more accu-
racy in learning step however, the ADA + RT Extra Tree

model (Fig. 6) performance in test phase was better than
ADA + RT model in the same phase (Fig. 4).

Similarly, the observed and predicted FAME yield pro-

duction by GBRT model in the train and test phase are pre-
sented in Figs. 7 and 8, respectively. Compared to
ADA + RT and Extra Tree models, the GBRT model per-
formance was better in both train and test phase. As can be

seen in Figs. 7 and 8, the observed and the predicted values
in the GBRT model were more accurate. model in this phase
can be observed compared to the previous two models

(Figs. 3 and 5).
For evaluation of models MAE, R-square, and RMSE were

calculated for each model. These coefficients represent how

well the model fits compared to the real values. The obtained
results are illustrated in Table 5. As is obvious in this Table,
the R2 values of 0.979, 0.997, and 0.997 were obtained for
Criterion Tol MAE

mse 0.000243 0.221

Squared error 0.000225 0.197

Friedman mse 1.49E-05 0.215

Friedman mse 7.04E-05 0.230

Friedman mse 9.05E-05 0.229

Squared error 0.000102 0.243

Squared error 0.000137 0.236

Friedman mse 0.00026 0.294

Friedman mse 2.80E-05 0.277

Mse 9.26E-05 0.304

Squared error 8.02E-05 0.289

Friedman mse 0.000221 0.351

Friedman mse 6.65E-05 0.343

Friedman mse 4.83E-05 0.374

Mse 2.03E-05 0.351

Squared error 9.29E-05 0.329

Max depth Max features MAE

8 3 1.186

9 3 1.192

19 3 1.199

15 3 1.199

6 3 1.201

17 3 1.226

20 3 1.206

11 3 1.199

12 3 1.209

12 3 1.204

15 3 1.204

15 3 1.247

20 3 1.249

8 3 1.249



Fig. 4 Test results of ADA + RT.

Fig. 3 Train results of ADA + RT.
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ADA + RT, Extra Tree, and GBRT models, respectively. The
higher R2 value specifies a better fit in model results, therefore,

it can be concluded that the Extra Tree, and GBRT models can
fit the data better than ADA + RT model. The RMSE error
rates for the ADA + RT, Extra Tree, and GBRT models were

obtained as 1.549, 1.524, and 0.396, respectively. Also, lower
MAE value was attained for GBRT model (0.333) while
ADA + RT and Extra Tree models had higher MAE values
(1.224 and 1.186, respectively). According to the obtained

results it can be said that the GBRT model had more accurate
prediction and more properly model the FAME production
yield data compared to the ADA + RT and Extra Tree mod-

els. As a result, the following section will delve deeper into this



Fig. 6 Test results of Extra Tree.

Fig. 5 Train results of Extra Tree.
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particular model. This can also be confirmed by Fig. 9, which
shows the residuals of this model.

Further information in the form of 3D diagrams about the
impact of operational factors on the FAME production yield
is provided in Figs. 10–12. These two-way relationships
between operating factors and FAME yield are visualized here

with the help of GBRT model output. Fig. 10 represents the
dual effect of reaction time and methanol to oil ratio on the



Fig. 8 Test results of GBRT.

Fig. 7 Train results of GBRT.
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biodiesel production yield while the third factor (catalyst
amount) was fixed at the value of 2 wt%. Increasing the molar
ratio increases the content of methanol in the reaction media

and leads to higher production of biodiesel (Abdelbasset
et al., 2022). However, as can be seen when the amount of
methanol increased too much in the reaction media the pro-
duction yield decreased. The higher amount of methanol lead
to fact consumption of oil content in the system which

decrease the FAME production (Yang et al., 2009). Therefore,



Table 5 Final Model Results and Comparisons.

Models MAE R2 RMSE

AdaBoosted Regression Tree 1.224 0.979 1.549

Extra Trees 1.186 0.997 1.524

Gradient boosting regression tree 0.333 0.997 0.396

Fig. 10 Projection of X1 and X2 in final GBRT model. X3 = 2

kept Constant. Optimum value is y = 98.72 for x1 = 45, x2 = 12.
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the optimum amount of methanol to oil molar ration should
be obtained.

Keeping the molar ratio of methanol to oil at 12 and vary-
ing the reaction time and amount of catalyst, Fig. 11 displays
the combined effect on FAME production yield. As can be

seen, the production of FAME went up as the amount of cat-
alyst went up. However, biodiesel production is hampered
after a certain threshold of catalyst higher increment. There
can be a transesterification reaction if enough basic sites are

provided when the catalyst amount is increased to a certain
value. However, the biodiesel production yield is reduced when
the catalyst amount is increased to a point where there is too

much resistance in the reaction flow (Zhang et al., 2020; Li
et al., 2013). Transesterification is a reversible reaction and
at the equilibrium point the maximum yield of biodiesel could

be obtained. In long period of reaction times the transesterifi-
cation can be performed in the reverse direction and reduce the
production yield.

Fig. 12 describes the dual influence of methanol to oil molar

ratio and catalyst amount on the FAME generation rate while
the reaction time was kept constant at 45 h. As can be seen at
lower amount of catalyst and methanol to oil molar ratio the

FAME production yields were low. This can be because of fast
consumption of methanol and catalyst during the reaction. By
increasing the amount of catalyst and the methanol-to-oil

molar ratio, FAME production yields can be increased; how-
Fig. 9 Residuals of predict
ever, biodiesel production reaches a maximum and then
declines. This can be explained by the possibility of side reac-
tions that consume methanol and catalyst (Abdelbasset et al.,

2022; Chopade et al., 2012; Vicente et al., 2007). In order to
obtain the maximum quantity of biodiesel production, it is evi-
dent that the ideal amount of catalyst and methanol to oil

molar ratio should be calculated.
The impact of each variable on the yield of FAME was

shown in Figs. 13–15. By keeping the other factors constant,
the one unique impact of each variable on biodiesel production

can be obtained as 2D diagrams. These findings are consistent
with those found in Figs. 10–12.

In general, these results suggest an increase in reaction to

values that are near to those shown in Table 6 for each of
ion using GBRT model.



Fig. 12 Projection of X2 and X3 in final GBRT model. X1 = 45

kept Constant. Optimum value is y = 98.73 for x2 = 12,

x3 = 1.95.

Fig. 13 Response tendency for x1.

Fig. 11 Projection of X1 and X3 in final GBRT model. X2 = 12

kept Constant. Optimum value is y = 98.72 for x1 = 45, x3 = 2.

Fig. 14 Response tendency for x2.

Fig. 15 Response tendency for x3.
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the input variables. Thus, the pattern in these three data sup-
ports the validity of the optimizations in Table 6 as a whole.
As can be seen, the maximum biodiesel production yield of
99.729% is achievable under the following optimized condi-

tions: reaction time of 45 h, methanol to oil molar ratio of
12.0, and catalyst amount of 2.0 wt%.

5. Conclusion

Biodiesel production from oil was optimized in this work using a num-

ber of machine learning models. The models for the optimization

included AdaBoost (DT base), Extra Trees, and Gradient boosting



Table 6 Optimal parameters values for maximum response.

X1: Reaction

time (h)

X2:

Methanol:

oil

X3: Catalyst

amount (wt.%)

Y: Yield of

FAME (%)

45 12.0 2.0 98.729

12 P. Liu, Y. Zhang
regression tree (GBRT). The R2, RMSE, and MAE are metrics used to

evaluate the developed regression models. According to the R-square

criterion, all three models selected for this study had R2 value greater

than 0.9, which demonstrate the accuracy of assembled models. How-

ever, in terms of MAE and RMSE the GBRT had the lowest values

(0.333 and 0.396, respectively) compared to ADA + RT (1.224 and

1.549, respectively) and Extra Trees (1.186 and 1.524, respectively)

models. Although the three developed models were accurate and prop-

erly predict biodiesel production, the GBRT model was determined as

the most appropriate model for further investigations. The results indi-

cated that a maximum biodiesel production yield of 99.729% may be

achieved under the ideal conditions of 45 h of reaction time, a metha-

nol to oil molar ratio of 12.0, and a catalyst quantity of 2.0 wt%. The

promising results of this study confirmed that ML techniques can pro-

vide new opportunities to enhance biodiesel production efficiency and

reduce the overall time and cost of processes.
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