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Abstract Green fabrication has become a safe approach for producing nanoparticles. Plant-based

biogenic synthesis of silver nanoparticles (AgNPs) has emerged as a possible alternative to tradi-

tional chemical production. In this paper, we provide a low-cost, green synthesis of AgNPs utilizing

using Kei-apple (Dovyalis caffra) fruit extract. Ultraviolet–visible (UV–Vis) spectroscopy, Fourier

Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), X-Ray Diffraction

(XRD), Scanning-Electron Microscope (SEM), and Dynamic Light Scattering (DLS) analyses were

used to characterize green produced AgNPs. The formation of AgNPs was shown to have a surface

resonance peak of 415 nm in UV–visible spectra, and FTIR spectra verified the participation of bio-

logical molecules in Synthesis of AgNPs. The TEM revealed that the biosynthesized AgNPs were

mostly spherical in form, with size range of 12–53 nm. XRD diffractogram was used to demonstrate

the face cubic centre (fcc) character of AgNPs. Excellent anticancer activity of AgNPs was recorded

where more than 80% of Prostate Cancer (PC-3) cell lines was inhibited by 100–150 mg/mL of

AgNPs, while 38% only was recorded using AgNO3 and 55.62% was recorded D. caffra fruit

extract at 150 mg/mL. Destructions of PC-3 cell was observed as a result of exposed to AgNPs, fol-

lowed by D. caffra fruit extract, while minor alterations were recorded as exposed to AgNO3. The
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2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging using AgNPs was three fold using fruit extract at

100 mg/mL indicating good antioxidant activity. Excellent inhibitory activity of AgNPs was

recorded against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa,

Candida albicans and Aspergillus fumigatus with inhibition diameter zone 28.22 ± 0.25 mm, 23.2

1 ± 0.35 mm, 27.25 ± 0.03 mm, 28.40 ± 0.15 mm, 29.23 ± 0.44 mm, and 9.52 ± 0.5 mm, respec-

tively compared with AgNO3. D. caffra fruits considered a promising and safe source for fabrica-

tion of AgNPs with multi-biological functions.

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The unique properties of nanoparticles (NPs) have attracted the atten-

tion of researchers in various fields (Hashem and Salem, 2021, Salama

et al., 2021, Salem and Fouda, 2021). Nanoparticles’ unique proper-

ties, such as low melting points, optical and magnetic properties, high

surface area to volume ratios, and excellent mechanical strength, have

been documented in numerous scientific reports, making them useful

not only in biological fields like medicine, diagnostics, drug delivery,

agriculture, but also in industrial mechanical applications (Burdușel
et al., 2018, Ganash et al., 2018, Mathur et al., 2018, Alsharif et al.,

2020, Salem et al., 2020, Badawy et al., 2021, Abdelaziz et al., 2022,

Salem, 2022). Among NPs, silver nanoparticles (AgNPs) have received

some attention due to their unique physicochemical and biological

properties (Abdelghany et al., 2018; Salem et al., 2022; Sharaf et al.,

2022). The biological synthesis of NPs has several advantages, includ-

ing reduced production of toxic by-products, increased stability, and

reduced toxicity to healthy cells (Hashem et al., 2021). Furthermore,

biogenic synthesis is low-cost, allowing for the rapid production of

effective NPs (Hammad et al., 2022; Mohamed et al., 2021). Plant

extracts, fungus, bacteria, and algae have all been proposed as safe

sources for the synthesis of NPs in the prior (Ghany et al., 2013,

Mohamed 2013, Shaheen et al., 2021). When compared to chemical

procedures, green approaches allow for the synthesis of NPs in a vari-

ety of sizes and forms, each with its own set of characteristics (Salem

et al., 2023; Salem and Fouda, 2021). Plants are a good and quick

source of various NPs (Mittal et al., 2013). However, the world litera-

ture comprises very little information about the bio-fabrication of NPs

using Dovyalis caffra. D. caffra (Kei-apple) belongs to family Sali-

caceae (Qanash et al., 2022). There is still a need for a cost-effective,

commercially viable, and ecologically friendly method of synthesizing

AgNPs from novel plant sources. Despite the fact that various studies

have confirmed the production of AgNPs from a variety of plants

(Abdelghany et al., 2018). Kei-apple fruit extract was used to investi-

gate the production and cytotoxic effects of Ag, Au, and Au-Ag

bimetallic nanoparticles, which exhibited anticancer potential against

breast cancer MCF7 cell line (Adeyemi et al., 2019a,b). Synthesis of

ZnONPs by D.caffra fruits extract, and its photocatalytic evaluations

was also evaluated (Adeyemi et al., 2019a,b). From previous literature,

it is evident that the formation of NPs by plant extract is enabled by

the presence of phenolic acids, terpenoids, alkaloids, and polysaccha-

rides within the plant extract that can act as reducing and capping

agents for NPs formation (Kuppusamy et al., 2016, Aboyewa et al.,

2021). They exhibited good reservoir of these bioactive ingredients.

Numerous biological activities of NPs stabilized with plant extracts

have been studied. Green AgNPs have been used to combat drug resis-

tance in a variety of applications, including anticancer and antibacte-

rial (Wypij et al., 2021). Among some documents, Abdelghany et al.

(Abdelghany et al., 2018), have recorded good antimicrobial and anti-

tumor effect of AgNPs mediated by green approaches. Zhang et al.

(Zhang et al., 2019) studied the antibacterial activity of AgNPs from -

plants, and showed food-born and human-pathogenic bacteria. The
current research aimed to synthesis of AgNPs using D. caffra fruit

extracts with studding their some biological activities including antitu-

mor, antioxidant and antimicrobial activities.

2. Material and methods

2.1. Material

Silver nitrate (AgNO3) used in this study was purchased from
Sigma-Aldrich, Louis, USA. Other chemicals, culture media

and reagents used in this study were purchased from Modern
Lab Co., India in analytical grade without any purification
required.

2.2. Preparation of D. caffra extract for AgNPs synthesis

During the months of January to August 2021, fresh, healthy

fruits were picked from the D. caffra plant. D. caffra plant was
collected from Menoufia Governorate, Egypt (30� 620801400 N,
116� 310 07033400 E). The fruits were rinsed in a stream of run-

ning tap water to eliminate any dust, then pulped (skin and
meat) in an electric mixer for additional extraction. The pulp
was filtered using a 1 mm mesh to get smooth pulp free of skin
and fibers. The purified extract was used to generate AgNPs.

In a clean Erlenmeyer flask, 1 mL of aqueous D. caffra fruits
extract and 9 mL of 1 mM AgNO3 solution were combined
to make the appropriate reaction mixture. On the other hand,

as a control, the identical experimental setup containing 1 mL
aqueous D. caffra fruits extract with 9 mL distilled water was
used. Both flasks were incubated in the rotary shaker for 2–4 h

at room temperature in the dark. The generated AgNPs were
then separated and purified using pure water and rapid cen-
trifugation (9000 rpm, 20 min at 10 �C) SiGMA 2 k15, Ger-
many. The AgNPs was separated and dried at 80 �C for

48 h. For further analysis and bioactivity evaluation, the dried
AgNPs were stored at 4 �C.

2.3. Characterization of silver nanoparticles

During the incubation time, the formation of AgNPs was visu-
ally monitored by following the changes in suspension colour.

The creation of Ag colloids by D. caffra extract was also fre-
quently examined using UV–Vis spectra (JENWAY 6305
Spectrophotometer) at wavelengths of 200–800 nm to identify

a strong absorption peak linked to surface plasmonic excita-
tion. D. caffra extract without silver nitrate was used to sym-
bolize as blanck. The formation of AgNPs in the absorbance

http://creativecommons.org/licenses/by-nc-nd/4.0/
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range 400–450 nm was suggested by a strong peak in the UV
visible spectrum. To identify functional groups relevant for
reduction, regulating, and encapsulating AgNPs, FT-IR anal-

ysis was done on D. caffra fruit extract and bio generated
AgNPs. Using a FT-IR spectrometer (Agilent system Cary
630 FT-IR model) and the potassium bromide (KBr) pellet

method, the assessment was completed. The frequencies were
recorded at a resolution of 4 cm�1 in the 4000–400 cm�1 range.
TEM (JEOL 1010, Tokyo, Japan) was utilized to characterize

AgNPs in order to identify their size and shape. The sample
was made by dropping the AgNPs solution onto a carbon
coated Cu-grid and placing it into a specimen holder. The
AgNPs were analyzed using an X-ray diffractometer X’Pert

Pro (Philips, Eindhoven, Netherlands), which was fitted with
a ratio detector of Ni-filter/Cu-K radiation (=1.5405) and
maintained at a voltage of 40 kV and a current of 30 mA.

The crystalline-nature of AgNPs was studied at temperatures
ranging from 10� to 80 �C. The collected peaks were allocated
and compared to the Joint Committee on Powder-Diffraction

Standards database (JCPDS). The surface morphology of Ag
particles were confirmed by scanning-electron microscope
(SEM) (JEOL- JSM.6360LA, Japan). DLS was used to study

the dispersion of AgNPs in colloidal solution utilizing Zeta-
sizer Nano equipment (Malvern Instruments, Worcestershire,
UK). The AgNPs sample was re-suspended in purified water
at 25 ppm and vortex-mixed to obtain a homogenous solution.

Colloidal solution (1.5 mL) of AgNPs was then transferred to
a square cuvette for detection. The measurements were done in
the range of 0.1–1000 nm. Zetasizer software was used to

examine the data of AgNPs sample.

2.4. Inhibitory activity of AgNPs against some bacteria and
fungi

The inhibitory activity of AgNPs against bacteria and fungi
was achieved using a disc-diffusion test as described previously

[16] with some minor modifications. Four bacteria including
Bacillus Subtilis (ATCC 6633), Staphylococcus aureus (ATCC
6538), Escherichia coli (ATCC 8739), Pseudomonas aeruginosa
(ATCC 90274), one unicellular fungus Candida albicans

(ATCC 10221) and one filamentous fungus Aspergillus fumiga-
tus (ATCC 10845), that provided from Regional center for
mycology and biotechnology (RCMB), Al-Azhar University,

Egypt. Sterile petri dishes containing 20 mL of Mueller–Hin-
ton agar medium were inoculated by test bacteria (0.1 mL bac-
terial suspensions, 108 cfu mL�1) via streaking method. Sterile

petri dishes containing also 20 mL of Yeast Extract Peptone
Dextrose agar were used as medium of fungi growth, streaked
by 0.1 mL bacterial suspensions, 104 cfu mL�1. Two dilutions
including 15 and 30 mg/mL of AgNPs were prepared from the

stock solution of 30 mg/mL of AgNPs using DMSO. Filter
paper (Whatman filter paper-3) discs with diameter 6 mm
radius under aseptic conditions were immersed in each dilu-

tion, then dried, placed on the surface of the inoculated growth
media. The inoculated plates were kept in refrigerator for
40 min. for proper diffusion of AgNPs, followed by incubation

at 30 �C for 2–3 days for fungi and 37 �C for 1 day for bacteria.
The visualized inhibition zone around each disc was measured.
Discs loaded with Gentamycin (0.1 mg/mL) as antibiotic,

Ketoconazole (0.1 mg/mL) as antifungal, were used as a posi-
tive control. Discs loaded with DMSO and AgNO3 (30 mg/
mL) was used as a negative control in separate streaked plates
with tested organisms giving no any activity.

2.5. Antioxidant activity of AgNPs

To detect the antioxidant activity of AgNPs using DPPH free
radical scavenging assay, 1 mL of AgNPs at different dilutions

up to 800 mg/ml dissolved in 10 % DMSO was added to 1 mL
of 0.3 mM DPPH (Abdelghany et al., 2021). The reaction mix-
ture was kept in the dark for 30 min. At 540 nm, the absor-

bance was recorded as a result of reduction in color intensity
of DPPH using UV–Vis spectrophotometer, model (UV-1800
Shimadzu). Ascorbic acid at different concentrations up to

40 mg/mL of was applied as reference. The following formula
was used to calculate inhibition %.

Inhibition% ¼ Blank absorbance �AgNPs absorbance

Blank absorbance

� 100
2.6. Antitumor assay

PC-3 cell lines were obtained from Nawah Scientific Inc.,
Cairo, Egypt. Antibiotics (Penicillin 100 units/mL and strepto-

mycin100 mg/mL) were added to the Dulbecco’s Modified
Eagle Medium and 10% of heat- inactivated fetal bovine
serum was used for cancer cell preservation at 37 �C in humid-

ified containing 5% (v/v) of CO2 atmosphere. Viability of cell
was detected via Sulforhodamine B (SRB) assay, briefly the
cells suspension (100 lL) containing 5 � 103 cells was poured
96-well plates containing treated medium by different levels of

samples, then incubated for 24 h. After exposure of cells to
treatments, it fixed via substituting media by 150 lL of 10 %
Trichloroacetic acid (TCA) and preserved for 1 h at 4 �C, fol-
lowed by TCA desiccant and washing the cells for 5 times by
distilled water. Solution of TCA was detached, and the cells
were washed 5 times using distilled water. The cells were

immersed by 70 lL SRB solution (0.4% w/v) for 10 m in a
dark at 25 �C, then the plates were washed by 1% of acetic acid
for 3 times, the dried in air for 12 h. Dissolve protein bound

SRB stain was performed using 150 lL TRIS base solution
(10 mM, pH 10.5), using a BMG LABTECH�- FLUOstar
Omega microplate reader (Ortenberg, Germany) the absor-
bance was reading at 540 nm.

3. Result and discussion

3.1. Synthesis and characterization of AgNPs

Plants are widely available and may be used to manufacture

metal nanoparticles (M�NPs), particularly AgNPs. Plants
convert metal ions to M�NPs at a far quicker pace than
microbes (Vanlalveni et al., 2021). The crude extract of ripe

fruit Kei-apple (Fig. 1) was evaluated for synthesis of AgNPs.
The dissolving of the D. caffra extract resulted in a quick shift
in colour from yellow to dark brown after 4 h, demonstrating

the rapid reduction of Ag+ to Ag0 in AgNO3 solution
(Fig. 2A), whereas the control samples showed no change.
The primary and most visible confirmation for the creation
of Ag NPs is the colour change in the solution caused by sur-



Fig. 1 Ripe fruit Kei-apple (orang arrows) and extract (E).

Fig. 2 Biosynthesis of AgNPs confirmed. (A) Color changes in

D. caffra extract after adding 1 mM aqueous AgNO3 solution for

AgNP production; (B) UV–visible spectrum of AgNPs generated

by D. caffra extract (Orange curve) and UV–visible spectrum of D.

caffra extract.
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face plasmonic excitement of AgNPs (Pirtarighat et al., 2019).
Furthermore, UV–Visible optical findings validated the pro-

duction of AgNPs in the mixture, with a surface plasmon-
resonance (SRP) spectra at 415 nm of maximum absorption
(Fig. 2B). The obtained results are analogous to those pub-

lished in the literature, in which a Datura stramonium extract
was employed to produce silver nanoparticles, and UV–Visible
absorbance spectra indicated that the SPR band for Ag parti-
cles was in the 400–450 nm range (Gomathi et al., 2017). The

aqueous extract of a previously collected batch of plant was
utilized to validate the repeatability of AgNPs synthesis, which
produced AgNPs when the optimal ratio of plant extract to

Ag+ (1–9 mL) was applied (Gomathi et al., 2017, Aslam
et al., 2021).

Fig. 3 also depicts the FTIR spectra of biogenic AgNPs

produced from D. caffra extract following interaction with
Ag+, as well as a D. caffra extract control without Ag+. As
seen in Fig. 3, the FTIR data shows a slight change in the peak
location of spectra. The amount of functional biological

groups responsible for NPs stabilization, which serve as cap-
ping or stabilizing agents, is revealed by spectral analysis. Dif-
ferent absorption peaks were found in FTIR measurements

based on AgNPs mediated by D. caffra extract at
3659 cm�1, 3335 cm�1, 3098 cm�1, 2355 cm�1, 2068 cm�1,
1623 cm�1, 669 cm�1, 566 cm�1, and 482 cm�1. In the presence

of phenols and alcohols with free AOH and ANH groups,
absorption bands at 3659 cm�1, 3335 cm�1, and 3098 cm�1

emerge (Akinfenwa et al., 2021). The presence of symmetric

stretching of ACOO and alkanes, ACAN groups, is repre-
sented by the bands at 2355 cm�1 and 2068 cm�1. The absorp-
tion band at 1629 cm�1 is corresponded to the ANH (amide
group) and AC‚CA in aromatic materials (Aref and Salem,

2020). The AOH and ACAN stretching vibrations of amines
are attributed to bands at 1407 cm�1, 1228 cm�1, and
1054 cm�1 (Krithiga et al., 2015). In the spectrum of AgNPs,

additional bands at 669 cm�1, 566 cm�1, and 482 cm�1 were
discovered, which might allude to the binding of hydroxyl of
a plant’s organic metabolite with AgNPs (Masum et al.,

2019). Proteins that contain free carboxylate sites can interact
to AgNPs and stabilize them. The location of emission spectra
in the FTIR spectrum of D. caffra extract and biosynthesized

Ag NPs differed only little. The presence of D. caffra extract
components in AgNP biosynthesis was verified by shifting
peaks (Taher et al., 2018). As a result, D. caffra extract sub-
stances such as NH, CO, and OH groups play an important

role in the reduction and stability of AgNPs (Pirtarighat
et al., 2019, Eid et al., 2020).

The TEM image (Fig. 4A) clearly demonstrated that most

AgNPs were significantly the spherical shape seems to be pre-
dominant, which was consistent with the SEM image
(Fig. 4A). AgNPs were observed to have an average size of

12 nm to 53 nm. The brilliant circular spots in the area selected
electron diffraction (SAED) pattern (Fig. 4B) indicated the
(311), (220), (200), and (111) planes, as well as the crystalline
structure of D. caffra’s Ag particles. The XRD pattern of

AgNPs is seen in Fig. 4C. In the first stage, the indexing was
completed, and miller indices were allocated to each peak
(Vishwasrao et al., 2019). AgNPs with face-centered cubic

symmetry accounted for the whole of the reflection peaks
(Shah et al., 2021). The AgNPs were extremely crystalline, as
evidenced by the high intensity of peaks. Peaks at 38.2�,
45.66�, 64.42�, and 77.74� in the diffraction pattern of AgNPs
were attributed to 111, 200, 220, and 311, respectively, of face-
centered cubic pure AgNPs (JCPDS 87–0720). It confirmed

that Ag metal was the main ingredient of AgNPs. The peaks’
line widening is mostly owing to the tiny particle size (Jain
and Mehata 2017). The AgNPs generated by the reduction
of Ag+ ions by the D. caffra extract are crystalline in nature,



Fig. 3 Fourier-transform infrared spectrum of biosynthesized AgNPs and extract of D. caffra.

Fig. 4 TEM image (A); SAED pattern (B); and XRD (C) of the

synthesized AgNPs by D. caffra extract.
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according to the X-ray diffraction observations. The results
showed that the phyto-synthesized AgNPs were made up of
high-purity crystalline Ag particles.

The AgNPs morphology was examined using a scanning
electron microscope (SEM) image (Fig. 5A). The bulk of Ag
particles were spherical in form, with a few oval AgNPs

thrown in for good measure. The biosynthesized AgNPs had
been evenly distributed throughout the solution. The findings
of this study are consistent with prior research that found
spherical AgNPs when synthesis was facilitated by plant
extract (Ansari and Alzohairy 2018, Pirtarighat et al., 2019).
Dynamic light scattering (DLS) analysis was used to determine

the average diameter of total Ag particles. The bulk of the
AgNPs had a diameter of 90 nm with average diameter
170 nm (Fig. 5B). However, the size derived via DLS is mod-

ified by metabolites of D. caffra deposited on NP surface, such
as organic molecules attached as stabilizers, as well as the
metal core of Ag particles (Aref and Salem 2020). In the

SEM image, the biomolecule coating of the biosynthesized
Ag NPs can be seen. The function of D. caffra extract metabo-
lites in the production and stabilization of biosynthesized
AgNPs is confirmed by this layer. They are molecules found

in plant extracts that attach to the edge of AgNPs and function
as chelating agents, according to published data (Taruna et al.,
2016).

3.2. Antimicrobial activity of AgNPs

To overcome the problems of antibiotic resistance bacteria and

microbial infection development, discover or development safe
antimicrobial compounds are necessary in the current todays.
The green synthesized AgNPs at two concentrations (15 mg/

mL and 30 mg/mL) were tested against some bacteria and
fungi using agar disc diffusion protocol compared with AgNO3

and positive control. Good inhibitory activity of AgNPs was
observed against tested microorganisms with inhibition

diameter zone was 28.22 ± 0.25 mm, 23.21 ± 0.35 mm,
27.25 ± 0.03 mm, 28.40 ± 0.15 mm, 29.23 ± 0.44 mm, and
9.52 ± 0.5 mm against B. Subtilis, S. aureus, E. coli,

P. aeruginosa, C. albicans and A. fumigatus, respectively
(Fig. 6). Via disc diffusion assay, the antibacterial activity of
AgNPs was confirmed against S. aureus, B. cereus and

P. aeruginosa, E. coli (Chandrasekharan et al., 2022). In
another recent study, different diameter of inhibition zones
13 mm, 17 mm, 18 mm and 14 mm were recorded against

Listeria monocytogenes, E. coli, Shigella dysenteriae and
Salmonella typhi, respectively as a result of AgNPs activity
(Sharma et al., 2022). The obtained results indicated that
AgNPs showed weak antifungal activity against filamentous



Fig. 5 SEM image (A) and DLS analysis (B) of AgNPs synthesized by D. caffra extract.
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Fig. 6 Antimicrobial activity of AgNPs synthesized by D. caffra extract against some pathogenic strains.

Fig. 7 DPPH Scavenging (%) of AgNPs, plant extract (A) and

ascorbic acid (B).
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fungus A. fumigatus unlike unicellular fungus C. albicans, but

what supports the unique properties of AgNPs is that the
AgNO3 did not give any inhibition at the same used
concentration of AgNPs (Fig. 6). These observations were par-

tially agreement with the results Ahmad et al. (Ahmad et al.,
2022), where who mentioned that AgNPs showed excellent
antibacterial activity, moderate antifungal potential against

Alternaria alternate and minor antifungal potential
against Fusarium gramium. The exact of the action mechanism
of AgNPs against microorganisms still under researchers stud-
ies day up to day. Although some mechanisms were reported

such as interference with microbial DNA, disruption of pro-
teins (Abdel-Ghany et al., 2018, Sharma et al., 2022).

3.3. Antioxidant activity

Research for biological antioxidant compounds increase day
by day, therefore the antioxidant characteristic of AgNPs

was studied in some scientific papers. The obtained experiment
reflected excellent antioxidant activity AgNPs followed by D.
caffra fruit extract at the same utilized concentrations where

the DPPH scavenging was 52.68 and 52.68 at 800 mg/ml.
DPPH scavenging using AgNPs was three fold using fruit
extract at 100 mg/ml (Fig. 7A). These results were compared
to ascorbic acid as a potent antioxidant. Recently, Gecer

et al. (Gecer et al., 2021) documented the antioxidant activity
of AgNPs synthesized by Echinacea purpurea extract and rec-
ommended the application of AgNPs as additives in drugs

and food. Antioxidant of D. caffra fruit was recorded in some
studies due to the presence of phenolic and flavonoid com-
pounds (Taher et al., 2018), and amino acids (Augustyn

et al., 2018). DPPH scavenging % increment with increasing
concentration AgNPs and fruit extract in dose depending man-
ner. From the obtained results AgNPs displayed a promising
antioxidant activity as compared to the standard, ascorbic acid

(Fig. 7B). Good radical scavenging capability of AgNPs can be
attributed to bioactive secondary metabolites present in the
fungal cell filtrate which acts as a capping agent in

nanoparticles.
3.4. Anticancer activity

Results of anticancer activity was documented against PC-3

cell lines at different concentrations of AgNPs compared with
AgNO3 and D. caffra fruit extract (Fig. 8). Inhibition of cell
viability % was concentration dependent manner from 25 up
to 150 mg/mL. AgNPs was more effective at all applied concen-

trations than D. caffra fruit extract followed by AgNO3 and,
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for example the inhibition of cell viability at 25 mg/mL was
21.03, 12.21 and 11.06 %, respectively. Sharply cell viability
inhibition more than 80 % was observed at 100–150 mg/mL

of AgNPs, while at the same concentration of AgNO3, viability
inhibition not reached to 38%. At 150 mg/mL of D. caffra fruit
extract viability inhibition reached to 55.62%. Previous inves-

tigations have shown that biosynthesized AgNPs have a cyto-
toxic impact in vitro against PC-3, lung cancer cell lines, MCF-
7, Hep-2 and HeLa cell lines (Raman et al., 2015, Al-Sheddi
et al., 2018, Sangour et al., 2021, Chen et al., 2022). Although

the anticancer potential of AgNPs was reported in numerous
studies but the activity varies regarding size of AgNPs and
source of synthesis. Rajawat et al. (Rajawat et al., 2016)

observed that the proliferation of MCF-7 cancer cell lines were
completely inhibited by 9 nm of AgNPs compared to 15 nm of
AgNPs. Ovais et al. (Ovais et al., 2016) and Erdogan et al.

(Erdogan et al., 2019) mentioned that the inhibitory mecha-
nisms of AgNPs to cancer cells via mitochondria-mediated cas-
pase apoptosis. The AgNPs showed cytotoxicity with IC50 of

40 lg/mL against A549 cells (Akther et al., 2019). The differ-
ences of AgNPs toxicity dependent on its size and morphology
beside cancer cell type. Morphological changes were observed
on cells exposed to AgNPs, followed by D. caffra fruit extract,

while negligible changes were recorded on AgNO3 exposed
Fig. 9 Morphological alteration of treated PC-3. Control (A

without treatment), 100 lg/mL (B) and 150 lg/ mL (C) of AgNO3;

100 lg/ mL (D) and 150 lg/ mL (E) of D. caffra fruit extract;

100 lg/ mL (F) and 150 lg/ mL (G) of AgNPs.
cells (Fig. 7). In the same line Firdhouse and Lalitha
(Firdhouse and Lalitha 2013) noted that the apoptosis rate
was highly of PC-3 treated by biosynthesized AgNPs than

exposed to silver ions. There is no clear differentiation among
control cells (Fig. 9A) and treated by 100 lg/mL (Fig. 9B) and
150 lg/mL (Fig. 9C) of AgNO3. While relatively changes in the

treated cells were observed including irregular clusters and
floating cells using D. caffra fruit extract (Fig. 9D&E). On
the other hand, membrane shrinkage, failure of cell adhesion,

blebbing of cell membrane, lyses of cell membrane, appearance
of unusual cellular crinkle and cell destruction were microscop-
ically recorded at 100 lg/mL (Fig. 9F) and more observed at
150 lg/mL of AgNPs (Fig. 9G). The changes in the cells

may be due to the interface of AgNPs with the functioning
of PC-3 proteins. Most recognizable alterations in treated cells
were consistent with recent report (Morais et al., 2021) viewing

on efficacy of AgNPs against PC-3. Another mechanism reflect
the efficacy of AgNPs through its induction to Fragmentation
of PC-3 DNA that cause apoptosis in the cells (Zhang et al.,

2019). The obtained finding demonstrated that the antiprolif-
erative action of AgNPs mainly depends on the concentration,
therefore, D. caffra fruit extract mediated AgNPs may offer as

promising source for cancer treatment. Current finding sug-
gested that the anticancer potential may be due to AgNPs
may perhaps penetrate into the cell membrane of cancer cell
leading to DNA damage as demonstrated by the DNA frag-

mentation (Kovács et al., 2022).

4. Conclusion

The created AgNPs were characterized using UV–Vis spectra, FT-IR

analysis, TEM, XRD, SEM and DLS. All these characterization con-

firmed the synthesis of AgNPs. Through TEM analysis, the average

size of AgNPs was 12 nm to 53 nm in spherical forms. The results of

the FTIR spectra showed that the functional groups present in D. caf-

fra extract play a major role in the formation of AgNPs. D. caffra fruit

extract is a well-known producer of AgNPs, which have antioxidant,

antibacterial, and anticancer properties, and may be used to solve a

variety of medicinal, nutritional, and industrial problems.
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