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Abstract Modification of ZnO by doping with 3d metal has been intensively reported, and many

interesting applications have been proven. This review elaborated the doping effect of the 3d metal

atom (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) on the bandgap of ZnO and their application. The

review involved more than 190 articles on the 3d metal-doped ZnO, introducing some fundamental

theories, including doping types, nanoparticle synthesis methods, nanoparticle morphologies, and

lattice size changes. The preparation methods of 3d metal-doped ZnO and the particle morphology

effect are elaborated before discussing the correlation between dopant characteristics (type, content,

radii) and the bandgap and crystallite size properties. The review ended with the application and

photocatalytic degradation for dye in the visible and ultraviolet irradiation.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction
Zinc oxide (ZnO) is one of the interesting metal oxides because
it has several advantageous properties such as antibacterial

(Lima et al., 2014), cytotoxin (Andrade et al., 2017), sunscreen
material (Smijs and Pavel, 2011), photocatalytic (Salah et al.,
2016), and sensor (Kim et al., 2017). ZnO is a non-toxic mate-

rial, relatively thermodynamically stable (Ashrafi & Jagadish,
2007). It has low solubility in water (Ksp = 6.8 � 10-17), suit-
able for photocatalytic materials of waste treatment in humid

and watery conditions. However, pure ZnO has a wide band-
gap energy (Eg = 3.37 eV) and a large exciton binding energy
(60 meV) that make less photocatalytic efficiency (Ciciliati
et al., 2015). The bandgap energy was the minimum energy

required for moving the electron from the ground state to
the excitation state. The exciton binding energy is related to
the energy involved in chemical bonding rupture to initiate a

chemical reaction. ZnO also has a high rate of recombination
between the electron (e-) and hole (h+), hence the less chance
of electron transferred to other molecules during photoinduced

redox reaction (Bousslama et al., 2017; Ba-abbad et al., 2013;
Yi et al., 2014; Ciciliati et al., 2015).

Ultraviolet (UV) irradiation, which has high photon

energy, is required to activate the ZnO in photodegradation
reactions (Zhang et al., 2017). Pure ZnO has low photocat-
alytic properties with sunlight as the source of photon energy
since sunlight only reaches about 4% of UV light/UV-A

(k = 315–400 nm) (Mahdavi and Talesh, 2017), and domi-
nated by 42–43% of visible light (k = 400–700 nm), which
has lower energy. To overcome this constraint, ZnO is modi-

fied by several approaches, including by controlling the mor-
phology and the size, coupling with other semiconductors to
produce Z-scheme, and by doping with several elements to

induce the electron delocalization, to modify electron path-
ways in the presence of the new band of the doped atom.

Doping is related to the intentional introduction of impuri-

ties into a pure material for modulating the new properties.
The dopant (doping atom) might have features as an electron
donor or an electron-acceptor that generates electron delocal-
ization in the doped material. The dopant produces another

band between the highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO). In the pho-
tocatalyst concept, which is usually using inorganic com-

pounds, the HOMO and LUMO are known as valence band
(VB) and conduction band (CB), respectively (Qi et al.,
2017). The orbital of the modified atom usually occupies

between VB and CB, which acts as an electron bridge to assist
the electron excitation and slows down the recombination rate.
Several dopants used to modify the ZnO are non-metal (N, C,

S, etc.), transition metal (Co, Mn, Fe, etc.), or noble metals
(Au, Ag, Pd, etc.) (Yi et al., 2014). Each individual of the
dopant might give a unique characteristic to the host of photo-
catalyst properties.

The comparative studies of theoretical and experimental
findings related to 3d metal (Sc, Ti, V, Cr, Mn, Fe, Co, Ni,
and Cu)-doped ZnO are rarely found in the publication. The

review on transition metal-doped ZnO was relatively general
and had not focused on 3d metal-doped ZnO (Singh et al.,
2019a,b). Each metal dopant effect on ZnO has not been dis-

cussed comprehensively (Shohany & Zak, 2020). Most of the
existing literature focused on modifying the dopant concentra-
tion, the annealing temperature, and co-doping with more than

one dopant. A theoretical analysis of a band-structure-
corrected theory related to the simultaneously the chemical
trends for electronic properties, carrier doping, and magnetism
of the effect of 3d dopant reported by Raebiger et al. (2009),

but they did not explicitly discuss the ZnO photocatalytic
activity. Bandgap calculation through simulation shows that
the dopant concentration strongly affected the bandgap

(Korir et al., 2021). They predicted blueshift and redshift
affected by each dopant, but it has not been confirmed with
experimental fact. Therefore, the discussion of the theoretical

aspect and the experimental data for 3d metal doped-ZnO
properties is still interesting to explore

Redshift in this paper is terminology to describe the energy
change characteristic to longer wavelength as the dopant

effect. The energy changes to a shorter wavelength is blueshift
(Das, 2015), compared to pure ZnO bandgap. The redshift is a
higher possibility active in visible light where the Blueshift

characteristics tend to be active in UV light.
Zinc (Zn) is an element of the 3d metals, which have rela-

tively similar ionic radii to the dopant discussed in these arti-

cles since they are in the same row at the periodic table. The
ionic radius is such an essential condition because the dopant
will substitute the Zn in the ZnO host atom in the lattices

(Srinivasulu et al., 2017). The dopant ions have different char-
acteristics, such as none d electron (Sc3+), nearly fully occu-
pied d orbital (Cu2+), single, and multiple oxidation states
(Co, Fe, V, Mn), which their effect on the composite properties

are also interesting to compare.
This review elaborates 3d metal properties as the doping

effect. The trend of feature changes focused on the bandgap



Fig. 1 (a). n- and p-type semiconductor of silicon (Si) doped, phosphorous (P) and boron (B), respectively (Cited from Tao, 2016) and

reprinted from ((B. S. Li et al., 2017) Copyright belongs to Chinese Physical Society).

Fig. 2 The ZnO lattice structure of the atoms in (a) the wurtzite

and (b) zinc blende, (reprinted from Aggarwal et al., 2018)

Copyright belongs to Taylor & Francis.
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alteration, the particle morphology, and the applications. It
elaborates on some basic terminologies and the purpose of

doping, the type of doping that originates from semiconductor
preparation. It introduces the trend of several doping methods
that affect particle morphology. Most literature reported that

the 3d metal-doped ZnO is a photocatalyst for degrading dye
pollutants in water. The application of a real-pollution-photo
catalytic-removal, especially in the gas phase (such as volatile
organic compounds, VOCs), is still scarcely discussed. State

of the art is still interesting to explore.

2. Review methodology

We collected the related article from well-known publishers,
including Elsevier, Springer Link, ACS publications, Tailor &
Francis, MDPI, Hindawi, and The Royal Society of Chemistry.

The qualitative (SEM, TEM) and quantitative (DRS, PL,
XRD, UV–VIS) were collected from the primary article and
compared each property base on the dopant (Sc, Ti, V, Cr,

Mn, Fe, Co, Ni, and Cu) variable. Several review articles were
also cited for expanding the data confirmation. The number of
papers cited reached more than 190. The specific keyword used

for Sc searching was ‘‘Sc doped ZnO for photocatalytic; the
preparation and characterization of Sc doped ZnO”. A similar
way was applied for other metals. Other keywords were added,
including ‘‘photodegradation, hydrothermal preparation for
ZnO; sol–gel preparation for ZnO; co-precipitation prepara-
tion for ZnO”. The potential article was collected based on

2010 to 2021.
We analyzed the preparation process (sol–gel, co-

precipitation, and hydrothermal) at different dopants to study

the effect on the particle morphology. The XRD crystallite size
for each dopant was collected. It was correlated to the ionic
radius to determine the shrinking and expanding crystallite size
due to the doping process. The bandgap of each dopant was

compared to search redshift and blueshift trends. The
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photodegradation study on dye is collected from several
different articles to explore UV and visible light use relevance.

3. Doping type of semiconductor

Doping is a popular topic in semiconductor technology, where
silicon (Si) is doped with a dopant from two types of materials

containing elements that are 3-valent (B, Al, or other) and 5-
valent (P, As, Sb). The 3-valent dopant involves in p-type dop-
ing, and the 5-valent is categorized as n-type doping. As a typ-

ical dopant, phosphor has five valence electrons, and 4 of
which will combine with 4 electrons of Si, and one is free to
move and serves as a charge carrier, as displayed in Fig. 1

(a). It requires lower energy to move the electron from VB
to CB. This type of dopant is known as an electron donor.
Moving electron (negative charge) generates a positive charge

into the lattice, and subsequently, another electron will move
to a positive charge; thereby, cycle electron flow occurs. A
reversed electron movement occurs in p-type doping. Boron
has three valence electrons that will attract one electron from

silicon, leaving a hole in the valence electron of silicon. The
hole becomes a positive charge that makes another electron
move into it and generates electron movement cycles (Fig. 1a).

ZnO is also a semiconductor material; its modification
nearly similar to silicon. The bandgap alters as the effect of
doping with several elements of metal and non-metal. Natu-

rally, ZnO was an n-type semiconductor that can serve many
electrons to share for other p-type semiconductors (Deng
et al., 2021). However, doping with some elements can regulate
the ZnO into the p-type semiconductor.

Typically, (Li et al., 2017a,b) described how to prepare n-
type and p-type doping in ZnO. ZnO was doped with high
electron density material such as group III (Al, Ga & In) or

group VII elements to have n-type doping. For p-type doping,
the Zn3N2 was prepared by thermal oxidizing (at 300–800 �C
annealing temperature and oxygen atmosphere) to replace

some N atoms with O atoms to form ZnO:N. Alternatively,
conventional chemical doping, which is inserting N atoms
Fig. 3 The comparison of band theory of the pure ZnO, metal (M), a

et al., 2017; Chen et al., 2010; Raebiger et al., 2009 & Aliga et al., 20
from NH3 gas into ZnO lattice in a nitrogen atmosphere, is
illustrated (Chavillon et al., 2012) in Fig. 1 b.

Fig. 1(b). Schematic diagram of p-type ZnO preparation

either by oxidizing Zn3N2 (left arrow) or conventionally chem-
ical doping (right arrow), (reprinted from Li et al., 2017a,b).

Ghahramanifard et al. (2018) and Sahal et al. (2016)

reported the Cu-doped ZnO (p-type) was successfully synthe-
sized through electrochemical deposition, where Cl-doped
ZnO produces n-type ZnO. Also, the N-doped ZnO gave

p-type ZnO (Ng et al., 2018 & Chavillon et al., 2012).
The most common ZnO structure is wurtzite (hexagonal

lattice) and zinc blende (cubic lattice), as shown in Fig. 2.
Wurtzite forms under normal conditions, but the zinc blende

is synthesized at high pressure (Wu et al., 2008) and thin-film
through spray pyrolysis (Muñoz-Aguirre et al., 2019). The lat-
tice parameter of a and b was equal (2.249 Å) and c (5.206 Å)

(Srinivasulu et al., 2017 & Sharma et al., 2020). As a semicon-
ductor material, the ZnO VB is served by oxygen atoms from
the 2p orbital, and the CB comes from the 3d orbital of the zinc

atom (Qi et al., 2017). That condition is probably affected
because the oxygen atom is more electronegative than the zinc,
hence the low energy in the molecular orbital diagram.

Doping impurities of ZnO exhibits different characteristic
bands depending on dopant type. The presence of metal in
the ZnO lattice alters the electronic movement. Electron delo-
calization occurs due to the donor and acceptor electron prop-

erties of metal dopants and a new valence band from the non-
metal dopants as presented in Fig. 3 (Chen et al., 2010 &
Samadi et al., 2016). The presence of a new band in the band-

gap energy level will reduce the bandgap significantly. Samadi
et al., 2016 explained that the reduction potential based on
Normal Hydrogen Electrode (NHE) of ZnO was more nega-

tive than that of the O2/�O2
–. ZnO has the potential to release

electrons to convert O2 to superoxide anion radicals (.�O2
–).

The hole (h+) pulls an electron from H2O and converts it into

hydroxyl radical (�OH) since the NHE potential of �OH/H2O
is less positive than the valence band potential, as illustrated in
Fig. 3.
nd nonmetal (NM) doped ZnO (cited from Samadi et al., 2016; Qi

18).



Fig. 4 The general route of the sol–gel preparation method for the dip and spin coating, (cited from Mahmood & Naeem, 2017 &

Kumari et al., 2021).
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4. Preparation methods of 3d metal-doped ZnO and their

morphological analysis

Before ZnO is recognized as a photocatalyst material, titanium
dioxide (TiO2) was previously popular in many photocatalysis
research. It becomes a photocatalyst preparation material

model. The doping process is carried out with several tech-
niques, including sputtering, plasma, ion-implantation, chemi-
cal vapor deposition, hydrothermal, co-precipitation, and sol–

gel (Wellia et al., 2011; Zhu et al., 2010 & Luo et al., 2012).
The preparation usually has two agendas: inserting dopants

into the semiconductor lattices and attempting to obtain nano-
sized particles with an average size of 1–100 (Zarlaida and

Adlim, 2017). Therefore, nanoparticle preparation is also
involved in the methods. The preparation methods are classi-
fied into two fundamental principles, which are the bottom-

up and top-down mechanisms (Khan et al., 2019). The
bottom-up technique synthesizes nanoparticles from the ions
in a solution using a co-precipitation agent or physical heating

with a chemical stabilizer to control their size since the crystal
growth. The top-down technique involved changing a bulk
material into a nano-size particle by grinding, milling, laser,

and atomic evaporation.
We have reviewed the bottom-up technique and elaborated

several applications of materials representing the nano-size
Table 1 Effect of sol–gel method of preparation on the morpholog

Preparation description D

ethanol (s), ammonia (st), 600 �C-3 h (an) Sc

methanol (s), 500 �C-2 h (an) V

N-dimethylformamide (s), 400 �C-12 h (an) Mn

water-isopropanol (s), 500 �C-4 h (an) Mn

water (s), starch (st), 450 �C-5 h (an) Fe

water (s), PVA (st), 400 �C (an) Fe

2-Methoxyethanol (s), mono-ethanolamine (st), 650 �C-1 h (an) Co

isopropyl alcohol (s), di-ethanolamine (st), 400 �C-2 h (an) Co

ethanol (s), oxalic acid (st), 400 �C-2 h (an) Co

ethanol (s), pH 9, 400 �C-3 h (an) Ni

s = solvent, st = stabilizer, an = annealing description, D = dopant
properties (Zarlaida and Adlim, 2017 & Adlim, 2006). The

sol–gel, solvothermal, hydrothermal, and co-precipitation
methods are the most popular technique applied in ZnO
nanoparticle preparations. Most of the methods used solvent,
then it is known as a wet chemical method (Carofiglio et al.,

2020). These methods involve relatively simple steps and
adaptable for a specific purpose. Such as microwave heaters
and ultrasonication stirrers regulate particle growth and mor-

phology (Kumar et al., 2018).

4.1. Sol-gel methods

The sol–gel method is run at ambient temperature with a rela-
tively simple process. Sol and gel are two different phase con-
ditions, and the particles should be passed both of the states.

Sol is a colloidal suspension containing microscopic particles
and exhibits the Tyndall effect, and it looks like a solution.
A gel is a colloid in the liquid medium, high viscosity, and it
is somewhat a solid appearance. Usually, the sol is coated onto

the support material and dried to form a xerogel by direct dry-
ing, especially in metal oxide preparation (Fig. 4).

The sol solution contains a small suspension in a stabilizer

solution, usually surfactant, amino acid, polymer, polysaccha-
ride, and bio-extracts (Basnet & Chatterjee, 2020; Yusof et al.,
2019). After the polymerization process, the sol matter coats
y of ZnO nanoparticle.

Dispersion Shapes Reference

Aggregated Spherical (Jiang et al., 2019)

Aggregated Spherical (Slama et al., 2016)

Aggregated Hexagonal-spherical (Mote et al., 2016)

Aggregated Spheroid-grain (Kayani et al., 2020)

Aggregated Granular-spherical (Cherifi et al., 2016)

Aggregated Hexagonal-spherical (Ciciliati et al., 2015)

Aggregated Hexagonal-spherical (Caglar, 2013)

Aggregated Nearly spherical (Poongodi et al., 2015)

Aggregated Spherical (Ba-Abbad et al., 2016)

Aggregated Nanorod-spherical (Azfar et al., 2020)



Fig. 5 Comparison of TEM and SEM images of 3d metal-doped ZnO morphology by sol–gel preparation, where the hexagonal-grain

(A), spherical (B), grain-stick spherical (C), spherical (D), irregular grain (E), and hexagonal-spherical (F). (reprinted from Ciciliati et al.,

2015; Slama et al., 2016; Khodadadi et al., 2016 & Alam et al., 2017) (Copyright belongs to Springer).
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the surface of support materials and produces gel. The ZnO is

prepared with a sol–gel process and subsequently heated with
solvothermal or hydrothermal methods (Bai and Wu, 2011).
According to several references as displayed in Table 1, such
procedures seem preferably produce spherical shape particles

immobilized onto the support material surface. Cited literature
for 3d metal-doped ZnO preparation with the sol–gel method
is tabulated in Table 1.

ZnO aerogel was prepared by dehydrating the ZnO sol
solution with the supercritical condition to produce much air
space in their framework (Slama et al., 2016 & Bharat et al.,

2019). Many other gel preparation processes have been dis-
cussed in the literature, including aerogel, xerogel, hydrogel,
organogel, and ambigel. All types of gels are usually from

the wet gel, and the drying steps are adjusted accordingly.
As shown in Table 1, the sol–gel method tends to have aggre-
gated particles. Most of the 3dmetal-doped ZnO nanoparticles
Table 2 Effect of co-preparation method of preparation on the mo

Preparation condition D Dispe

Water (s), NaOH (b), PEG-6000 (st), 80 �C-
overnight (dr)

Mn Aggre

Water-2-mercaptoethanol (s), NaOH (b), 40 �C-
30 min

Mn Aggre

Water (s), NaOH (b), 700 �C-0.5 h (an) Mn Aggre

Water (s), NaOH (b), SDS (st), 300 �C-3 h (an) Fe Aggre

Water (s), NaOH (b), PVP (st), 120 �C-2 h (dr) Fe, Co, and

Ni

Aggre

water (s), KOH-pH 9.4 (b), 600 �C-2 h (an) Ni and Co Aggre

Water (s), NaOH-12 (b), twin-80 (st), 500 �C-2 h

(an)

Ni Slight

Aggre

Water (s), HMTA (b), PVP (st), 100 �C-8 h (dr) Ni Slight

Aggre

water (s), NaOH (b), 450 �C, 8 h (an) Cu Aggre

s = solvent, st = stabilizer, an = annealing description, b = base, dr =
synthesized by sol–gel methods are nearly spherical and rarely

as nano-rod morphology (Yildirim et al., 2016). The TEM
images of metal-doped ZnO particles prepared with sol–gel
methods are displayed in Fig. 5.

4.2. Co-precipitation method

The co-precipitation method is also popular in ZnO nanopar-
ticle preparation. Zn2+ from the precursor salt is precipitated

out by the drop-added hydroxide ions (OH–), and then the Zn
(OH)2 filtered, washed, purified, and dried. During precipita-
tion, the solution is continuously stirring to avoid particle

agglomeration (Margan and Haghighi, 2018). The co-
precipitation process usually produces a unique morphology
of the particles that depend on the synthesis condition. The

particle morphology of ZnO nanoparticles prepared with co-
precipitation methods is presented in Table 2.
rphology of ZnO nanoparticle.

rsion Shape Reference

gated Pyramid-spherical combination (J. Singh et al.,

2019a)

gated Spherical-elongated (Kalita and Kalita,

2019)

gated Spherical-hexagonal (Gao et al., 2016)

gated Sea urchin-nanorod

combination

(Hui et al., 2017)

gated Nano-rod (Mondal et al., 2019)

gated Nano-rod (Pascariu et al., 2018)

ly

gated

Sheet, rod, and spherical

combination

(Fabbiyola et al.,

2017)

ly

gated

Hexagonal-nanorod (Thein et al., 2016)

gated Nanorod-spherical combination (Labhane et al.,

2015)

drying, D = dopant



Fig. 6 The general route of the co-precipitation method (cited from Yuliarto et al., 2015).
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The co-precipitation method is chosen to prepare powder
metal-doped ZnO not. Still, the procedure is inappropriate
for direct coating onto support material because the solution
must be stirred during the precipitation process. In the co-

precipitation method, the precursor solution is titrated with
a precipitating agent, usually a base species, to form sediment
of the zinc hydroxide (Zn(OH)2). The precipitate of Zn(OH)2
was washed and purified before calcinated in a furnace to pro-
duce zinc oxide (ZnO) (Fig. 6). In several conditions using
alcohol as the solvent, base species (OH–) are introduced into

the Zn2+ ions, then ZnO directly formed by force hydrolysis
(without annealing step). Such procedure prevents particle
agglomeration as the heat effects (Rodriguez-Gattorno &
Oskam, 2006; Klett et al., 2014).

From the literature listed in Table 2 and the image in Fig. 7,
it can be inferred that co-precipitation methods tend to give
rod shape ZnO nanoparticles, with a few are spherical and
Fig. 7 3d metal-doped ZnO morphology synthesized by co-precipitat

nanosheet-round (D), nanograin (E), nanopyramide (F) Nano sea-urch

2017; Thein et al., 2016; Rao & Vanaja, 2015; Ma et al., 2016 & J

Publishing).
sea urchin shapes. Rod particles are probably produced during
the formation of Zn(OH)2 due to NaOH or other precipitate
agents (Cao et al., 2019). Dopant atoms might affect the
particle size, as reported by (Mondal et al., 2019). The concen-

tration and rate of OH– also affected the morphology because
they are directed to anisotropic crystal growth. When both the
precursors of OH– and Zn2+ mixed simultaneously, the reac-

tion became faster, but the particle morphology was controlled
into nanosheet formation. When the addition of OH– slows
down, the morphology is becoming hexagonal prism (Ong

et al., 2018).
Stabilizers probably also take a role in regulating particle

morphology, as reported by (Basnet and Chatterjee, 2020).
Sea urchin morphology was prepared using sodium dodecyl

sulfate (SDS) as a stabilizer. SDS regulated the ZnO growth
in one direction to give nanorod (Hui et al., 2017). In addition,
the sea urchin morphology was a group of nanorods that are
ion method, where the nanoflower (A), nanorod (B), nanorod (C),

ine (G, H, and I). (reprinted from Labhane et al., 2015; Hui et al.,

. Singh et al., 2019a) (Copyright belongs to Scientific Research



Fig. 8 Autoclave equipment for hydro/solvothermal reaction

and the general route for the hydrothermal process (cited from

Kominami et al., 2001 &Pimentel et al., 2016.
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joined to the same nucleus so that it will form like a stick
attached to a ball. PVP as a non-ionic polymer, the interaction
during ZnO growth was directing the crystal growth toward

the (0001) plane; hence the result was elongated morphology
(Basnet and Chatterjee, 2020), and this also confirms by
(Mondal et al., 2019), where the nanorod produced from the

preparation process using PVP as capping agent.

4.3. Solvothermal method

Solvothermal is a general term for crystal formation reaction
in solution using various solvents under supercritical or near
supercritical conditions (Byrappa and Yoshimura, 1992). The

specific term for the process depends on the solvent, where
hydrothermal (water), glycothermal (glycol) (Beshkar et al.,
2017), alcothermal (alcohol) (Muthukumar et al., 2020),
ammonothermal (ammonia) (Grabianska et al., 2020), and

so on.
In the laboratory, the solvothermal method usually used an

autoclave to generate elevated temperature and pressure.
Table 3 Effect of solvothermal method of preparation on the morp

Preparation condition D dispe

Water (s), 120 �C, 20 h (ac) Mn Aggr

Water (s), 90 �C-6 h (ac) Mn Aggr

Water (s), 95 �C-6 h (ac) Mn Sligh

aggre

Ethylene glycol (s), microwave 200 �C-25 min

(ac)

Mn Aggr

Water (s), 120 �C-20 h (ac) Ni, Fe, and

Mn*

Aggr

Water (s), 95 �C-4 h (ac) Fe Sligh

aggre

Ethanol (s), 150 �C-24 h (ac), 60 �C-5 h (dr) Co Aggr

Methanol (s), 200 �C-8 h (ac) Ni Aggr

s = solvent, st = stabilizer, ac = autoclave condition, dr = drying, D
* without using substrate/seed
Generally, the chemical reaction in the presence of a solvent
(whether aqueous or non-aqueous) is run above the room tem-
perature and at a pressure greater than 1 atm in a closed sys-

tem (Yoshimura and Byrappa, 2008). The hydrothermal
process is usually combined with another procedure like sol–
gel and spray pyrolysis to spread the ZnO seed onto the

support-materials surface. The metal-doped ZnO particles
grow in high temperature and pressure (in an autoclave) within
a stabilizer to regulate the size (Bai and Wu, 2011) (Fig. 8). The

seeding process propagates a uniform nano-rod structure that
can apply to sensor devices and photocatalysts.

Several studies on 3d metal-doped ZnO nanoparticles syn-
thesized by using hydrothermal are presented in Table 3.

Solvothermal methods tend to grow the nanoparticles with a
hexagonal-nanowire morphology, although some other shapes
are also observed. Nanowire and nano-rods are relatively sim-

ilar in shape, but nanowire has a longer length than nano-rods.
The nano-rod and nanowire are usually produced when ZnO
seed and Zn2+ ions are introduced into the autoclave. The seed

will grow into a nano-rod or nanowire form (Fig. 9). The
spherical particles existed when the synthesis was conducted
without using ZnO seed, as reported by (Wojnarowicz et al.,

2016). Nanoplate and nano-rod formed after Zn2+ ion precip-
itation and before heating into an autoclave, and such
sequence will trigger ununiform morphology (Turkyilmaz
et al., 2017; Yin et al., 2015).

5. Characteristic of 3d metal-doped ZnO for crystallite size/

structural analysis

The 3d metals were scandium (Sc), titanium (Ti), vanadium
(V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co),
nickel (Ni), copper (Cu), and zinc (Zn). Several of them have

been reported as active dopants for ZnO. They are grouped
as a transition metal, which partially filled the d sub-shell,
except the Sc and Zn. The dopant precursors used in the syn-

thesis process are usually the ionic high solubility salt. The
dopant precursor usually has the same type of anion as the zinc
precursor to minimize the impurity, and the anion shall be

easily removed by heating or washing. Metal with nitrate
(NO3

–), sulfate (SO4
2-), chloride (Cl-), and acetate (CH3COO–)
hology of ZnO nanoparticle.

rsion Shapes Reference

egated Nanoplate-

nanorod*

(Toufiq et al., 2021)

egated Nanorod (Raskar et al., 2019)

tly

gated

Nano-rod (Putri et al., 2018)

egated Spherical* (Wojnarowicz et al., 2016)

egated Nanoplate-

nanorod*

(Turkyilmaz et al., 2017)

NaOH

tly

gated

Nanowire (Habba et al., 2017)

egated Nanowire-nanorod (Šutka et al., 2016)

egated Hollow sphere* (Yin et al., 2015)

= dopant



Fig. 9 3d metal-doped ZnO morphology synthesized by hydrothermal method, where the hexagonal nanowire (A), nanowire (B),

nanorod (C), nanorod-nanoplate (D), hexagonal prismatic (E), spherical (F). (Reprinted from Šutka et al., 2016 ; W. Li et al., 2017

(Copyright belongs to MDPI); Turkyilmaz et al., 2017; Yin et al., 2015; Putri et al., 2018 & Wojnarowicz et al., 2016) (Copyright belongs

to Beilstein).

Fig. 10 Atomic and the ionic radius of the 3d metal,(Cited from Miao et al., 2010; Bidier and Bououdina, 2017; Ghoul, 2016; Safa et al.,

2018; Putri et al., 2018; Hui et al., 2017; Yildirim et al., 2016; Fabbiyola et al., 2017 & Kadam et al., 2017).
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as anion usually are chosen as the precursor due to the ions are

easily removed by heating. Titanium precursor is titanium
tetra-isopropoxide (TTIP), titanyl acetylacetonate, or titanium
(IV) butoxide.

The metals of 3d block have moderate reactivity and possi-
bly delocalize electrons. Atomic radii decrease along with the
increasing atomic number, but the ionic radii are nearly similar

in size to each other and much smaller than the atomic radii
(Fig. 10). The ionic radii are crucial for the doping process
of ZnO. The dopant ionic radii must be smaller or at least
equivalent to the radius of the Zn2+. The oxidation state for

each dopant doped to ZnO usually confirmed using X-ray
Photoelectron Spectroscopy (XPS), as reported for Cr3+

(Nguyen et al., 2019), Mn2+ (Nithya et al., 2020), Fe3+

(Khan et al., 2020), Co2+ (Poornaprakash et al., 2020), Ni2+

(Xu et al., 2020), and Cu2+ (Jellal et al., 2021). Several other
reports also stated that Sc3+ (Jiang et al., 2019), Ti4+

(Bidier et al., 2017), and V5+ (Fan et al., 2020).
Shrinking and expanding the lattice size is strongly affected

by the presence of impurities in the lattice structure. The
heterogeneous lattice strain broadens the peak and increases
the Full Width at Half Maximum (FWHM) of the diffrac-

togram. The FWHM enhancement affects the lattice size
(Debye-Scherrer calculation). Lattice size expands significantly
with the presence of the Mn2+ in the lattice, which causes the

crystalline size enhancement, as tabulated in Table 4. Since
Mn2+ ionic radii are bigger than that of Zn2+, it probably
expands the lattice size (Wang et al., 2020). The reversed trend
is reported for smaller radii of 3d dopants, especially Ni2+. A

phenomenon on lattice size compression due to smaller dopant
radii is known as compression stress by different ionic radii
(Zhao et al., 2016). However, shrinking and expanding lattice

size is not obvious if the size enlargement did not significantly
different from ZnO nature lattice size. Fig. 11 shows the ZnO
diffractogram before and after doped with the smallest and

biggest ionic radii dopant.



Table 4 Effect of 3d metal-doped ZnO on the crystallite size (0% doping belongs to ZnO crystal size).

Dopant Synthesis method Concentration (%wt) The crystallite size (nm) Reference

Sc Sol-gel 0

1

2

21.50

20.34

16.47

(Yumak et al., 2015)

Ti Hydrothermal 0

7.5

21.3

18.2

(Rahman et al., 2019)

V Sol-gel combustion 0

1

2

3

4

56

34

25

26

28

(Gazzali et al., 2018)

Cr Hydrothermal 0

3

5

57

44

35

(Debnath et al., 2019)

Mn Sol-gel 0

1

3

21.8

26.7

35.3

(Khan et al., 2018)

Fe Sol-gel 0

2

4

6

30

30

27

23

(Khan et al., 2020)

Co Co-precipitation 0

4

6

8

42.90

23.17

22.11

18.71

(Pan et al., 2020)

Ni Co-precipitation 0

1

3

45

42

27

Fabbiyola et al., 2017

Cu Sol-gel 0

1

2

24.62

21.62

19.61

(Sajjad et al., 2018)
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6. Characteristic of 3d metal-doped ZnO for bandgap/ optical

analysis

The bandgap is the crucial property for the semiconductor,
and the bandgap is affected by the dopant. A theoretical study
describes the effects of 3d metal-doped ZnO on the properties

of donor and acceptor electron representing the energy level.
Such properties tend to be specific for each type of 3d metal
Fig. 11 Diffractogram of ZnO which doped by Co2+ (0.58 Å) and M

2020 & Wang et al., 2020) (Copyright belongs to The Royal Society o
dopant, as illustrated in Fig. 12a. The effect of dopant (from
Sc to Fe dopant) induces electron donor (blue line), but Co

and Ni possibly caused electron acceptor (red line). The phe-
nomenon is related to the charge transition properties. The
splitting process also correlates to the charge transfer of

metal-to-ligand charge transfer (MLCBCT) and ligand-to-
metal charge transfer (LVBMCT), in which the host ZnO as
a ligand and dopant as the metal (d-d transition) during pho-
n2+ (0.82 Å) compare to Zn2+(0.74 Å) (reprinted from Sahu et al.,

f Chemistry).



Fig. 12 (a) Donor and acceptor transition energies for 3d metal-doped ZnO, where the blue and red lines denoted for donor and

acceptor respectively (E = energy; EVBM = energy of valence band minimum; eV = electron volt), (b) and 3d metal-doped ZnO single-

particle level configuration where the blue and red lines were high spin and low spin-orbital respectively (GGA = generalized gradient

approximation; CBM = conduction band minimum; VBM = valence band minimum). (Reprinted from Raebiger et al., 2009) Copyright

belongs to American Physical Society.
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toexcitation occur(Samadi et al., 2016). The additional energy

level of dopant is originated from the 3d orbital splitting since
it introduces to the ZnO crystal, which has the tetrahedral
geometry (orbital energy of t2g > eg) (Raebiger et al., 2009)
& (Venkatesan et al., 2004), as shown in Fig. 12b. Fig. 12b

shows that from Sc to Fe, the high spin-orbital (lower energy
orbital) was dominated (blue line). Co and Ni dopant behave
inversely (red line) or higher energy orbital, which is similar

to the characteristic of p-acceptor ligand. It also relates to
the increasing of the splitting gap gradually—this consistent
with the Co and Ni acceptor level properties.

The comparison between 3d metal-doped ZnO theoretical
energy level and the experimental bandgap properties seems
consistent (blue and redshift) as tabulated in Table 5. The
trend correlates to the Fermi level and acceptor band of the

theoretical studies. The presence of the donor band inside
the conduction band shifts the Fermi level to the band, subse-
quently narrowing the bandgap through the Burstein-Moss

effect. This theory likely occurs in Sc and Ti-doped ZnO
(Table 5) (Yumak et al., 2015); (Chen et al., 2009); (Ye
et al., 2013) & (Zhong and Zhang, 2013).

Sc-doped ZnO tends to widen the bandgap, as shown in
Table 5, which might represent the Burstein-Moss effect. The
Burstein-Moss effect occurs when the Fermi level lifts into

the conduction band, which leads to the energy band broaden-
ing (Chen et al., 2009). This condition seems to confirm the
theoretical analysis (Fig. 13a), where the donor level merges
into the conduction band and subsequently affects the Fermi

level. Dixon et al. (2017) recorded that Sc (less than 2%)
caused widens the bandgap and gave a blueshift, but at higher
Sc dopant (5%), it gave a redshift (Yumak et al., 2015). Since

the bandgap narrowing correlates to the crystal defects, adding
more dopant increases the defect and subsequently decreases
the bandgap. Fig. 13 shows the effect of the Sc on the bandgap

representing several reports. Since the dopant in low concen-
tration, the bandgap was increased but decreased after 5%,
probably related to the Urbach energy crystal disorder
(Yumak et al., 2015 & Nurfani et al. 2021). Urbach energy is

a parameter that is often associated with disordered, low, poor
crystalline materials because of the localized states extended in
the band gap (Anyaegbunam and Augustine, 2018).
Sc and Ti dopant (Table 5) show a blueshift effect consis-

tent with the theoretical study that the donor level is merged
into the CB, as the Burstein-Moss effects phenomena. The
crystal defect, which is usually detected in the Raman spectra
mode of E1(LO) around 576 cm, then disappeared after ZnO is

doped with Ti (Tseng et al., 2012). Naeem et al. (2010)
explained that the oxygen vacancies significantly increase with
enhancing the Ti concentration. They also reported that band-

gap widening occurs under low dopant concentration, but it
decreases gradually due to dopant concentration enhancement.
Ramadan et al. (2019) studied the Ti dopant effect on bandgap

enhancement of Ti-doped ZnO at different annealing condi-
tions, as presented in Fig. 14.

Research data show V-doped ZnO a redshift effect, as pre-
sented in Table 5. However, in the theoretical study, the V-

doped ZnO still has a donor level that merges to the conduc-
tion band; the second donor level was close to the valence
band, which can narrow the bandgap to assist electron excita-

tion. The bandgap narrowing usually is affected by a crystal
defect as a consequence of doping. Salah et al. (2016) recorded
the Raman peak shifted at around 438.1 to 462,21 cm�1, which

indicates the rigidity in the ZnO lattices in V5+ ion, as crystal
defect tendency. The FT-IR spectra, where the stretching fre-
quency of Zn-O bond at 485 cm�1 shifted significantly to

435 cm�1 due to 2% V dopant (Zhao et al., 2016). A few
reports on the blueshift effect were also recorded, but the
bandgap widening is not much significant difference. After
2% V-doped ZnO the bandgap changed from 3.23 to

3.24 eV (Tahir et al., 2009). A recent study also recorded the
bandgap narrowed, as presented in Fig. 15.

Cr-doped ZnO characteristic is similar to that of V-doping,

which is the redshift effect shown in Table 5. They are both
reveal the position of donor level between the CB and VB
(Raebiger et al., 2009). Density Functional Theory (DFT, a

computerized quantitative calculation of the atomic electronic
structure (Mazurek et al., 2020) shows substituting several Zn
in ZnO lattices with Cr caused narrowing of the bandgap ZnO
significantly from 3.39 into 2.71 eV (Meng et al., 2019).

The most common reason for restricting the bandgap was
crystal defect enhancement due to introducing the impurities.
The Gaussian fit of XPS analysis around 531 eV increased sig-



Table 5 Effect of 3d metal-doped ZnO for the bandgap properties.

Metal Dopant Bandgap Application Reference

Sc

Sol-gel Blueshift Solar cell windows (Sharma et al., 2009)

Sol-gel Blueshift Transparent semiconductor (Chen et al., 2009)

Sol-gel Blueshift Transparent semiconductor (Yumak et al., 2015)

Sol-gel Redshift Antibacterial (Jiang et al., 2019)

Chemical vapor deposition Blueshift – (Dixon et al., 2017)

Ti

Hydrothermal Blueshift Optoelectronic (Liu et al., 2013)

Hydrothermal Blueshift – (Bidier and Bououdina, 2017)

Hydrothermal Redshift Electrode material (Rahman et al., 2019)

Sol-gel Blueshift Biomedical devices (Tseng et al., 2012)

Sol-gel Blueshift Electronic devices (Ramadan et al., 2019)

Spray pyrolysis Redshift Photodegradation (Rajasekaran et al., 2020)

V

Hydrothermal Redshift Electronic devices (Ramany et al., 2019)

Sol-gel Redshift Photodegradation (Slama et al., 2016)

Sol-gel Redshift Photodegradation (Ghoul, 2016)

Sol-gel Redshift – (Bhardwaj et al., 2018)

Co-precipitation Redshift Photodegradation (Djaja et al., 2020)

Microemulsion Redshift Optoelectronic devices (Ali et al., 2019)

Solution combustion Redshift Spintronic, gas sensor (Gazzali et al., 2018)

Cr

Solvothermal Redshift Sensor, optoelectronic (Iqbal et al., 2020)

Co-precipitation Redshift Photodegradation (Djaja et al., 2016)

Co-precipitation Redshift Photodegradation (Naz and Saeed, 2021)

Co-precipitation Redshift Antibacterial (Rajivgandhi et al., 2021)

Sol-gel Redshift Photodegradation (Hassan et al., 2015)

Sol-gel Redshift Photodegradation (Nguyen et al., 2019)

Sol-gel Redshift Photodegradation (Truong et al., 2019)

Auto combustion Redshift Spintronic (Haq et al., 2018)

Mn

Hydrothermal Redshift Photodegradation (Putri et al., 2018)

Hydrothermal Redshift Photodegradation (Raskar et al., 2019)

Hydrothermal Blueshift – (Toufiq et al., 2021)

Sol-gel Redshift Photodegradation (Kayani et al., 2020)

Sol-gel Redshift Photodegradation (Khan et al., 2018)

Sol-gel Redshift Photodegradation (Srinet et al., 2018)

Co-precipitation Redshift Photodegradation (Das et al., 2020)

Co-precipitation Blueshift – (Wu et al., 2019)

Co-precipitation Blueshift – (Kalita and Kalita, 2019)

Co-precipitation Blueshift Photodegradation (J. Singh et al., 2019a)

Co-precipitation Blueshift – (Anju Chanu et al., 2019)

Electrospinning Redshift Photodegradation (Wang et al., 2020)

Fe

Hydrothermal Redshift Photodegradation (Habba et al., 2017)

Co-precipitation Redshift Optoelectronic (Saadi et al., 2020)

Co-precipitation Redshift Photodegradation, sensor (Hui et al., 2017)

Sol-gel Redshift Photodegradation (Khan et al., 2020)

Sol-gel Redshift Photodegradation (Ong et al., 2019)

Sol-gel Redshift Photodegradation (Han et al., 2019)

Sol-gel Redshift Photodegradation (Bousslama et al., 2017)

Sol-gel Redshift Photodegradation (Cherifi et al., 2016)

Pyrolysis Redshift Photodegradation (Nurfani et al., 2021)

Co

Solvothermal Redshift Photodegradation (Šutka et al., 2016)

hydrothermal Redshift Photodegradation (Poornaprakash et al., 2020)

Chemical bath deposition Redshift Optoelectronic (Kaphle et al., 2019)

Sol-gel Redshift Photodegradation (Yildirim et al., 2016)

Sol-gel Redshift Photodegradation, antibacterial (Lima et al., 2014)

Sol-gel Redshift Photodegradation, antibacterial (Poongodi et al., 2015)

Co-precipitation Redshift Photodegradation (Pan et al., 2020)

Co-precipitation Blueshift – (Sahu et al., 2020)
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Table 5 (continued)

Metal Dopant Bandgap Application Reference

Co-precipitation Redshift Photodegradation (Devi and Velu, 2016)

Co-precipitation Redshift – (Chithra et al., 2014)

Ni

Sol-gel Redshift Photodegradation, solar cell (Prerna et al., 2020)

Sol-gel Blueshift – (Azfar et al., 2020)

Hydrothermal Redshift Photodegradation (Xu et al., 2016)

Hydrothermal Redshift – (Ma et al., 2020)

Hydrothermal Redshift Photodegradation (Xu et al., 2020)

Chemical bath deposition Redshift Photodegradation (Loyola Poul Raj et al., 2020)

Co-precipitation Redshift LED (Kaur et al., 2019)

Co-precipitation Redshift Photodegradation, antibacterial (Gnanamozhi et al., 2020)

Co-precipitation Redshift Photodegradation (Thein et al., 2016)

Co-precipitation Blueshift Antibacterial (Rana and Singh, 2016)

Co-precipitation Redshift Photodegradation (Fabbiyola et al., 2017)

SILAR Redshift Sensor (Amalraj et al., 2020)

Cu

Hydrothermal Redshift Photodegradation (Shah et al., 2020)

Hydrothermal Redshift Solar cell and photocatalyst (Ben Saad et al., 2019)

Hydrothermal Redshift Photodegradation (Hanh et al., 2019)

Hydrothermal Redshift Solar cell (Ge et al., 2021)

Co-precipitation Redshift Photodegradation (Sajjad et al., 2018)

Co-precipitation Redshift Optoelectronic (Aneesiya and Louis, 2020)

Sol-gel Redshift Photodegradation (Modwi et al., 2016)

Sol-gel Redshift Photodegradation (Liau and Huang, 2017)

Spray pyrolysis Redshift Sensor (Roguai and Djelloul, 2020)

Facile solution route Redshift Photodegradation (Ma et al., 2019)

SILAR Redshift Photodegradation (Jellal et al., 2021)

Fig. 13 Kubelka-Munk analysis for Sc-doped ZnO (reprinted

from Yumak et al., 2015).
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nificantly from 30.7 to 39.9 for 5%V-doped ZnO (Truong
et al., 2019). Nguyen et al. (2019) also recorded the increasing
Gaussian analysis of the XPS at around 531 corresponds to the

oxygen vacancy after ZnO was doped by 1.38% Cr. The band-
gap narrowed was also confirmed by a recent study as pre-
sented in Fig. 16.

Table 5 shows that Mn-doped ZnO exhibits mostly redshift
properties, the crystal defect due to Mn present in the host lat-
tices related to the bandgap properties. The photolumines-
cence (PL) data shows the defect of Zn interstitial (402 nm/
violet), oxygen vacancies (448–463 nm/ blue), deep interstitial

oxygen states (482 and 525 nm/ green), and the oxygen inter-
stitial (619 nm)/ orange) (Ma et al., 2016; Putri et al., 2018).
Most of the crystal defects, especially oxygen vacancies, lead

to decreased bandgap (Putri et al., 2018). (Samadi et al.,
2016) also explained that the d-d transition in the crystal field
by the presence of Mn-doped ZnO could induce visible-light
irradiation. Although several publications also reported

widening the bandgap due to the presence of MnO. The band-
gap widens up to 4.2 eV responding to the excess Mn during
the doping process (Gao et al., 2016; Ton-that et al., 2012).

In a nominally doped semiconductor, the Fermi level (the
highest filled state) lies between the valence conduction band
and valence band. As the doping concentration is increased,

then electron populates states within the conduction band push
the Fermi level to higher energy, which caused the bandgap to
higher. This phenomenon is known as the Moss-Burstein effect
or the Burstein-Moss shift (Gahlawat et al., 2019).

The Burstein Moss effect was a significant explanation since
the MnO was not observed in the diffractogram. The phe-
nomenon was explained through increasing electronic concen-

tration in the conduction band after Mn substitution, hence
pushing the Fermi level toward higher energy (Toufiq et al.,
2021). The bandgap narrowing was also confirmed by a recent

study, as like in Fig. 17.
Doping ZnO with Fe, which has a donor level, gives the

redshift properties. Like most dopant effects, the Fe insertion

into the ZnO lattice causes crystal defect, which affected the
bandgap. Kanchana et al. (2016) reported from their photolu-
minescence (PL) spectra show the sharp peak at 412 nm related
to zinc vacancies and at 522 nm related to oxygen vacancy.



Fig. 14 Kubelka-Munk analysis for Ti-doped ZnO (reprinted from Ramadan et al., 2019) Copyright belongs to American Chemical

Society.

Fig. 15 Kubelka-Munk analysis for V-doped ZnO (reprinted

from Ali et al., 2019) Copyright belongs to MDPI.

Fig. 16 Kubelka-Munk analysis for Cr-doped ZnO (reprinted

from Iqbal et al., 2020).
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Raman scattering shows the Fe-doped ZnO has many crystal
defects, where the vibration mode around 656 cm�1 only

appears due to Fe as the dopant (Yi et al., 2014). Mishra
and Das (2010) recorded that the Fe-doped ZnO bandgap
increased along with the dopant concentration. However,

some literature shows the bandgap narrowing, as shown in
Fig. 18. Additional defects occur, including the degenerate
semiconductor due to too much dopant, and it leads to
Burstein-Moss effects.
Theoretically, unlike other 3d dopants, both Co and Ni
have both donor and acceptor level properties, as discussed

in Fig. 11. Table 5 experimental data show Co and Ni-doped
ZnO mostly the redshift of the optical properties. There has
not much explanation of the acceptor level effect on the exper-

imental data. Lima et al. (2014) recorded the Urbach energy
increased significantly follow the dopant concentration
enhancement, which corresponds to the atomic structural dis-
order (Saadi et al., 2020). It was confirmed by the Raman spec-



Fig. 17 Kubelka-Munk analysis for Mn-doped ZnO (reprinted

from Wang et al., 2020).

Fig. 18 Kubelka-Munk analysis for Fe-doped ZnO (reprinted

from Hui et al., 2017).

Fig. 19 Kubelka-Munk analysis for (a) Co-doped ZnO, and (b) Ni-do

2020).
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tra that the vibration centered at 540 cm�1 correspondings to
the donor defect bound on the Co site, which is related to the
oxygen vacancy. Diffuse Reflectance Spectroscopy (DRS)

analysis showed the photon absorption around the visible
light, as represented by the addition peak of Co-doped ZnO
around 569, 612, and 654 nm (Šutka et al., 2016). Most of

the literature shows the Ni was present as Ni2+ instead of
Ni0 (Xu et al., 2016). In this condition, it is possibly Ni2+ sub-
stituted some Zn2+ during the doping process, which enhances

the formation of oxygen vacancies and additional energy levels
and subsequently causes bandgap narrowing as predicted by
Fabbiyola et al. (2017), and other factors might influence it.
Although the NiO formed at excess Ni concentration, Ni-

doped ZnO bandgap continuously decreased (Elilarassi &
Chandrasekaran, 2011; Fabbiyola et al., 2017). One recent
study also confirmed the bandgap narrowing due to the Co

and Ni-doped, as in Fig. 19.
Table 5 shows Cu dopant properties follow the other 3d

metal that dominated with redshift properties. (Rooydell

et al., 2017) already recorded that many crystal defects in the
ZnO structure as exposed by the PL spectroscopy, but both
of the doped and undoped ZnO exhibit two dominant peaks

around the 372 nm as the near-band edge (NBE) and 425–
650, which has green emission as the oxygen vacancies and zinc
vacancies. They have also recorded the oxygen interstitial oxy-
gen anti-sites, doped more than 8% of the Cu. The Raman

spectrum also confirmed lattice distortion in the crystal that
in the presence of Cu, it shifted the non-polar E2H mode from
431 to 422 cm-1 and decreased in the peak intensity (Iqbal

et al., 2015). The Cu2+ and Zn2+ have similar ionic radii
due to the neighboring atoms and enhance the substitution,
which increases the oxygen vacancies to increase the crystal

defects (Narayanan and Deepak, 2018). The bandgap nar-
rowed of ZnO, which doped by Cu also confirmed in the recent
study as in Fig. 20.

The comparison bandgap data of 3d metal-doped ZnO at a
given low concentration of various dopants are presented in
Fig. 22. As shown, the bandgap tends to decrease from the
Sc to Cu dopant. Increasing the dopant content tends to

reduce bandgap, especially for Sc and Ti dopants due to the
crystal disorder. The average bandgap of pure ZnO was about
3.27, which is smaller compared to the reported data bulk ZnO

was 3.37 eV (Saadi et al., 2020). This condition is affected by
ped ZnO (reprinted from Pan et al., 2020 & Loyola Poul Raj et al.,



Fig. 20 Kubelka-Munk analysis for Cu-doped ZnO (Reprinted

from Aneesiya & Louis, 2020).

Fig. 21 Photoluminescence Spectrogram of pure ZnO with

defect level of ultraviolet (381 nm) referred to Near Band Emission

(NBE) and visible (465, 482, 509 nm) referred to the Deep Level

Emission (DLE) (reprinted from Motelica et al., 2020b) Copyright

belongs to MDPI.

Fig. 22 The effect of dopant content on the bandgap of ZnO.

Cited from: (Ciciliati et al., 2015; Bousslama et al., 2017; Cherifi

et al., 2016; Poongodi et al., 2015; Ba-Abbad et al., 2016; Slama

et al., 2016; Yildirim et al., 2016; Labhane et al., 2015; Ali et al.,

2019; Bhardwaj et al., 2018; Bidier and Bououdina, 2017; Chen

et al., 2009; Djaja et al., 2016; Fabbiyola et al., 2017; Ghoul, 2016;

Habba et al., 2017; Hassan et al., 2015; Hui et al., 2017; Jiang

et al., 2019; Kayani et al., 2018; Khan et al., 2018; Narayanan and
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the defect crystal during preparation, as observed by Motelica

et al. (2020b), and they found a much smaller bandgap of
3.19 V. The crystal defect observed by using Photolumines-
cence instrument where the Near Band Emission (NBE) usu-

ally appear in the UV region with a sharp peak, and DLE in
the visible region with broad peak (Sharma et al., 2020) as
reported in Fig. 21.

A comparison of pure ZnO to the composite bandgap at a
uniform concentration of dopant (�1%) is presented in
Fig. 23. Sc has a significant blueshift effect, and Ti moderately

behaves blueshift properties. The Sc and Ti dopant caused the
composite to actively UV light. According to dopant type,
starting from V to Cu, the impurities tend to give a redshift
with various bandgaps. Except for Cr, Mn, and Ni, the other
dopants have bandgap closely to be active in visible light. V,

Co, and Cu dopants have the closest bandgap to be active in
visible light, known as redshift effects. These data seem consis-
tent with the experimental data (Qi et al., 2017) for Mn, Fe,
Co, Ni, and Cu-doped ZnO. The data show the Mn, and Ni

doping causes a slightly high bandgap, among others. The
shifting bandgap relates to the energy required during pho-
toexcitation. The redshift represents the lower energy require-

ment, and the blueshift the reverses condition.
Comparing to the computational data measured by (Korir

et al., 2021) (Fig. 24), several dopants show a similar trend,

especially for V, Mn, and Fe. But for Sc and Ti, most of the
experimental studies show the bandgap widening (blueshift);
however, there is a lack of research about the dopant, hence
still need more confirmation. Also, several earliest study for

Sc (Jiang et al., 2019) and Ti (Rahman et al., 2019;
Rajasekaran et al., 2020) shows redshift effect. The Co, Ni,
and Co dopant show inversely in the experimental study, even

the earliest study report the redshift effect was observed by the
Diffuse Reflectance Spectroscopy (DRS) and PL spectroscopy.



Fig. 24 Computational result the ZnO bandgap with varying the

dopant concentration for 3d metal-doped ZnO (reprinted from

Korir et al., 2021).

Fig. 23 The effect of dopant photocatalytic activity of 3d metal-doped ZnO at 1%(wt) of dopant content, Cited from: (Abdel-wahab

et al., 2016; Ba-Abbad et al., 2016; Bousslama et al., 2017; Cherifi et al., 2016; Ciciliati et al., 2015; Poongodi et al., 2015; Slama et al.,

2016; Yildirim et al., 2016; Labhane et al., 2015; Ali et al., 2019; Ansari et al., 2012a,b; Bhardwaj et al., 2018; Bidier and Bououdina, 2017;

Chen et al., 2009; Djaja et al., 2016; Fabbiyola et al., 2017; Ghoul, 2016; Habba et al., 2017; Hassan et al., 2015; Hui et al., 2017; Jiang

et al., 2019; Kayani et al., 2018; Khan et al., 2018; Narayanan and Deepak, 2018; Putri et al., 2018; Ramadan et al., 2019; Ramany et al.,

2019; Ray et al., 2016; Singh et al., 2019a; Slama et al., 2011; Tahir et al., 2009; Thein et al., 2016; Yumak et al., 2015; Ali et al., 2019;

Ansari et al., 2012a,b; Arshad et al., 2011; Aydın et al., 2013; Basith et al., 2014; Devi and Velu, 2016; Dixon et al., 2017; Djaja et al., 2020;

El-Ghoul et al., 2015; Haq et al., 2018; Iqbal et al., 2020; Jongnavakit et al., 2012; Kanchana et al., 2016; Raja et al., 2014; Rajasekaran

et al., 2020; Sajjad et al., 2018; Srinet et al., 2018; Thennarasu and Sivasamy, 2016; Truong et al., 2019; Wu et al., 2019; Xu et al., 2016; Yu

et al., 2014; Singh et al., 2019a; Wang et al., 2020; Raskar et al., 2019) (Kayani et al., 2020; Saadi et al., 2020; Ong et al., 2019; Sahu et al.,

2020; Pan et al., 2020; Xu et al., 2020; Ma et al., 2020; Amalraj et al., 2020; Aneesiya and Louis, 2020; Jellal et al., 2021; Hanh et al., 2019;

Ge et al., 2021; Ben Saad et al., 2019; Roguai and Djelloul, 2020).
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Fig. 25 compares the photoluminescence study on Ti-doped

ZnO, which usually has blueshift effects and Cu-doped ZnO as
the redshift representation. There are two significant peaks
around ultraviolet wavelength (lower than 400 nm) as Near

Band Emission (NBE) and visible wavelength (upper than
400 nm) as Deep Level Emission (DLE). The NBE peak of
Ti-doped ZnO increased following the dopant concentration,

which gives a blueshift effect. However, the DLE peak also
rises due to the increasing the ZnO defect with introducing
the dopant. Cu-doped ZnO shows the contras different prop-

erties, where the DLE band increased with more dopant and
the NBE band decreased.
7. Application of zinc oxide modification for photodegradation

Photodegradation is one of the several applications of the ZnO
as a semiconductor material. Photodegradation occurs involv-

ing radical molecules emitted from the redox photocatalytic
reaction. The redox photocatalytic reaction extracted the elec-
tron (e-) and hole (h+) (Saharan et al., 2015). The e- and h+

react with the molecule in the environment (e.g., H2O and
O2) to produce intermediate molecule (e.g., hydroxyl radical
(�OH) and oxygen radical (�O2) (Labhane et al., 2015). A pos-
sible reaction of the photocatalytic process is summarized in

Table 6. The radical molecule is unstable because it loses an
electron and attracts another electron from a nearby molecule.

Most photodegradation is carried out in the solution con-

taining pollutants such as organic dye, microorganisms, etc.
Photodegradation in the liquid phase usually involves water
as the solvent since most of the research focuses on water treat-

ment. Several parameters should be considered for maintain-
ing the photodegradation for water treatment, such as the
amount of catalyst, pH, light intensity, the concentration of

pollutant, and so on. Also, the photodegradation rate depends
on the degree of complexity of the pollutant molecule
(Motelica et al., 2020a). The photodegradation activity of



Table 6 The propose of the possible photocatalytic reaction of ZnO and 3d metal-doped ZnO involving radical molecule process.

(Undoped) ZnO + hm ! h+ + e-

Reaction with h+ Reaction with e-

h+ + H2O ! H+ + �OH O2 + e- ! �O2
–

h+ + OH– ! �OH �O2
– + 2H+ + e- ! H2O2

H2O2 + 2 h+ ! O2 + 2H+ H2O2 + H+ + e- ! �OH + H2O

H2O2 + �OH/h+ ! HO2� + H2O/H+

HO2� + �OH/h+ ! O2 + H2O/H+

Other reaction

�OH + �OH ! H2O2 H2O2+ �OH ! HO2� + H2O

(doped) 3d metal-doped ZnO + hm ! h
+

+ e
-

Reaction with h+ Reaction with e-

h+ + H2O ! H+ + �OH O2 + e- ! �O2
–

h+ + OH– ! �OH �O2
– + 2H+ + e- ! H2O2

H2O2 + 2 h+ ! O2 + 2H+ H2O2 + H+ + e- ! �OH + H2O

H2O2 + �OH/h+ ! HO2�+ H2O/H+ Mp+ + e- !Mr+

HO2
. + �OH/h+ ! O2 + H2O/H+

Mp+ + h+ ! Mq+

Other reaction

�OH + �OH ! H2O2 H2O2 + �OH ! HO2� + H2O

Mp+ + O2 ! Ms+ + �O2
– Mp+ + OH– !Mt+ + �OH

Fig. 25 Photoluminescence spectra of (a) Ti-doped ZnO (blueshift) and (b) Cu-doped ZnO (redshift) (reprinted from Bidier et al., 2017

& Rooydell et al., 2017).

18 O. Muktaridha et al.
methyl orange (MO) was eight-time higher than methylene
blue (MB). The photodegradation also could break volatile

organic compounds (VOCs) bond and decomposes them into
smaller molecules such as CO2 and H2O (Kumar et al.,
2014). The factor that affected photodegradation in the gas

phase and within the solvent might be similar. Still, the humid-
ity and abundant oxygen (airflow) will significantly influence
(Shayegan et al., 2018). Also, the direct VOC degradation

might not easily occur if the VOCs’ reduction potential (V ver-
sus NHE) is outside range of ZnO reduction potential. The
radical molecule/ reaction oxygen (ROS) species like �OH

and �O2
– behave antibacterial activity because of the ability

to degrade the microorganism cell’s organic molecule.
Photodegradation correlates with energy involvement and

the catalyst bandgap. The Sc doped-ZnO was rarely used as
photocatalyst material because it has a wide bandgap. Mn-
doped ZnO was usually used ultraviolet light because it has

a low redshift effect. Other 3d metal-doped ZnO seem favor-
able to harvest the sunlight or other visible light sources
(Table 7). Cu and Fe usually have good performance in visible

light. Experts refer the Cu and Fe properties to their redshift
effect (Table 5) and the UV and Visible catalytic degradation.
Briefly, there is a tendency for 3d metal series dopants. The

metals on the right side (the periodic table) are more receptive
to visible light due to their relatively smaller bandgap than the
left side metal. The blueshift dopant (Sc, Ti, and Mn) shall

more compatible for fabric containing ZnO application to
ovoid fabric decomposition. Their low activity in visible light
and wide bandgap still absorbs UV light but less degrading
properties.



Table 7 Summary of 3d metal-doped ZnO and their application for photodegradation.

Dopants,

concentration

(wt%)

Catalyst

concentrations

Pollutants Initial

concentration

(ppm); volume

(mL)

Photon

source

Efficiency (%); time

(minutes)

Reference

Ti (7) Powder, 3 g/L MB 20 ; 100 UV 80; 120 (Darmadi et al., 2020)

V (3) Powder, 0.5 g/L MB 30; 150 Vis 100; 237 (Slama et al., 2016)

V(5) Film, 4 � 25 cm 2-CP 20; NA Sun 100; 240 (Salah et al., 2016)

Cr(4.5) Powder, 1 g/L MB 20; 50 UV 98; 150 (Chen et al., 2020)

Cr (3) Powder, NA MO 9.6; 200 Vis 40; 140 (Wu et al., 2011)

Mn (3) Powder, 2g/L O-II 10; 30 Sun 100; 270 (Achouri et al., 2016)

Mn (7) Thin film, NA MB 10; 20 UV 75; 40 (Putri et al., 2018)

Fe (5) Powder, 0.1 g/ L RhB 20; 50 UV 99; 100 (Hui et al., 2017)

Fe (1) Powder, 0.1 g/L MO 10; 60 UV 99; 120 (Yu et al., 2014)

Co (5) Powder, 1 g/L MO 10; 20 Vis 72; 300 (Šutka et al., 2016)

Co (3) Thin film, NA MB 12; NA Vis 100; 120 (Yildirim et al., 2016)

Ni (7) Thin film, NA MG 3.64; 100 Vis 100; 240 (Abdel-wahab et al., 2016)

Cu (3) Powder, 0.01 g/L MO 9.8; 200 Vis 40; 140 (Wu et al., 2012)

Cu (1) Powder, 3g/L DB-71 10; 100 Vis 100; 120 (Thennarasu & Sivasamy,

2016)

Cu (0.5) Thin film, NA MB 3.2; 3 Vis 100; 360 (Jongnavakit et al., 2012)

UV = ultraviolet, Vis = visible lamp, Sun = sunlight, MB = methylene blue, DB = direct blue, MO = methyl orange, RhB = rhodamine B,

AR = acid red, MG = methylene green, O = orange, CP = chlorophenol
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8. Conclusions and outlook

Doping ZnO by 3d metals has been reviewed to find out the
trends of the properties and applications. Preparation methods
of themetal-dopedZnOaffect particlemorphology. Sol-gel pro-

cesses involving various dopants usually give spherical shape
particles. Rod-like particles and nanowires are highly possible
to obtain in co-precipitation procedures and hydrothermal

methods, respectively. However, in the co-precipitation process,
many particle morphologies were reported. The particle shapes
were affected by many factors, including stabilizer, NaOH con-
centration, etc. The force hydrolysis method gave high disper-

sion particles without annealing.
The dopant ionic size is crucial for ZnO doping process

because the suitable size dopant will substitute the host atom.

The dopant atom radius usually induces the ZnO lattice size.
Most of the 3d metal have smaller ionic radii comparing to
the Zn, except for Mn. This condition seems to affect the crys-

tallite size as reported that the expanding for Mn cases and
shrinking for others but the doping processes are accomplished.

Sc and Ti doping on ZnO usually generate blueshift prop-
erties (short wavelength, wider bandgap). V, Fe, Ni, and Cu

dopants have redshift characteristics (long wavelength, nar-
rower bandgap). The 3d metal-doped ZnO with redshift prop-
erties shall have better photocatalytic activity than the

blueshift one. The redshift tends to be more active in visible
light, where blueshift is preferably applied in UV light.
Dopants with many oxidation states (Cr, Mn, Co) lead to acti-

vation in both blue and redshift.
Most of 3d metals-doped ZnO are active in the photocat-

alytic due to the dopant effect. Decreasing the bandgap is fol-

lowed by lowering photocatalytic reaction energy. In the
photocatalytic process, 3d metal-doped ZnO causes the emit-
ting of unpair electrons that attack molecule water to generate
free radical species. The free radicals degrade the pollutant
molecules into smaller fragments and finally converted them

into CO2. Most of the photocatalytic studies reported are in
liquid and few in the gas phase.
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