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Abstract The photo-physical properties of the strained ring 2,3-diphenylcyclopropenone (DPCP)

containing donor–acceptor moieties in polar and non-polar solvent are reported. The transition

dipole moment (Dl), transition polarizability (Da), oscillator strength (fij) and molar absorptivity

(eð�mÞ) of its different transition bands were determined using solvatochromic shifts theory. The deter-

mined Da is positive, signifying the strong activity of this compound and its excited states being

more polar than ground states. Its Dl follows the trend observed for the fij and Da. This conforms

to the expectations that the more allowed a transition, the higher the probability that the transition

dipole moments will be greater than zero. The transition dipole moment shows gradation of values,

being smallest for the weak and forbidden transitions but increases considerably for the fully

allowed transitions. The solvents perturbation allows the assignment of the transitions in this com-

pound to be both nfip* and pfip* transitions.
ª 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The study of molecular systems in the liquid phase is impor-
tant for understanding a large number of chemical, physical
and biological processes. Solvent–solute interactions can

change the geometry, the electronic structure, and the dipole
moment of a solute. UV/Vis absorption or/and emission (fluo-
rescence) band positions of solvent-sensitive molecules will
vary with the polarity of the medium and can thus be used

judiciously in modelling intermolecular interaction. This phe-
nomenon is called solvatochromism (Thomas et al., 2008;
Praveen and Ojha, 2012).

The electrostatic properties of molecules in their electroni-
cally excited states are of considerable interest since they deter-
mine many observable properties that contain information on
the nature of their excited states. Upon excitation of molecules,

both dipole moment and polarizability of a molecule can
change. Changes in dipole moment alter the electrostatic inter-
action with the solvent in the ground and excited state, with a

shift in the absorption maximum. Also, the changes in polariz-
ability cause changes in the dispersion interaction (van der
Waals attraction) between the molecule and its surroundings

(Denisio et al., 2004). Therefore, the changes in polarizability
and dipole moment upon excitation which contain valuable
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information on the nature of molecules in their electronically
excited state, as well as, the course of any photochemical
transformation are of interest in the research of many p-conju-
gated molecules (Nadaf et al., 2002).

2,3-Diphenylcyclopropenone (2,3-DPCP), a planar
molecule investigated in this work belongs to the class of

intra-molecular electron-donor-acceptor (EDA) systems with
the electron donor and acceptor groups being connected
through the p-electron system and presents mirror symmetry.

2, 3-DPCP, owing to its strained ring, acts as an ambient elec-
trophile with the potential for nucleophilic addition at the car-
bonyl group or conjugate addition. These factors allow
participation in a wide variety of synthetically useful reactions,

and the use of 2,3-DPCP in the preparation of a plethora of
heterocyclic systems has been systematically studied over the
past few decades (Aly et al., 2008; Andrei and Vladimir

2003, 2005; Hemming et al., 2006). Outside the field of syn-
thetic chemistry, it finds utility in medicine as a single agent
in the treatment of cutaneous metastatic melanoma and as

combination chemotherapy with radiotherapy where it is often
referred to as diphencyprone or DCP (Damian and Thomp-
son, 2007; Trefzer and Sterry, 2005). The characteristic fea-

tures of this EDA (electron-donor-acceptor) system are the
low lying charge transfer states which relates to the transfer
of electronic charge from the donor to the acceptor moiety
as introduced and advanced by Milliken in his theory of inter-

molecular complexes (Pearson and Mulliken, 1960). Reported
Ultra-violet absorption spectra of the parent compounds
(cyclopropenone) have shown that, despite its highly strained

ring, it is relatively stable compound (characteristics of aro-
matic system) but fails to give many reactions of ketone.
But, 2,3-DPCP has been said to be highly sensitive to ultravi-

olet light degradation (Firooz et al., 2005).
The assumed configurations of many compounds and their

corresponding derivatives are governed by ranges of factors,

such as: the type, number and position of the substituent
whose effects can be mesomeric (delocalization), inductive
and or steric; solvent preferential stabilization of a particular
configuration or set of configurations and charge transfer

with structural change through the process of absorption of
photon (Natasa et al., 2006; Praveen and Ojha, 2012). The
varying degrees of perturbation of the potential energy sur-

faces of ground and excited state by these factors manifest it-
self by the observed differences in the electronic polarizability
(a) and dipole moment (l) of the excited state relative to

ground state of molecules. Since these two spectral parame-
ters of the excited molecules often aid the revealing of excited
state configuration or structures of molecules and their reac-
tivities (Kawski, 2002; Nadaf et al., 2002). In this work, these

factors are studied qualitatively to determine the extent to
which they have contributed in determining the assumed
molecular configuration by means of solvent and substituent

perturbation of band shapes, transition intensities and fre-
quency of electronic spectra of this molecule. These molecular
properties help in understanding the mode of action and

determine its relative activity in order to help produce more
effective drugs.

But, the life time of the excited states of molecules is short

(�10�8 s), the generation of qualitative and quantitative
acceptable description of their excited state properties directly
is a much challenging task. Therefore, the photo-physical
properties which qualitatively describe the nature of excited
states of molecules (i.e. transition dipole moment and transi-
tion polarizability of molecules) are estimated indirectly using
various approaches to the theoretical and experimental

treatments of solvent and substituent effects. These include
solvent frequency shift of electronic spectra method (solvato-
chromism), Electro-optical methods of absorption and the ef-

fect of external electric field on the fluorescence anisotropy
(i.e. Labhart–Liptay molecular electrochromism) and theoret-
ical treatment/computational technique. However, none of

these methods have gained general acceptance and applicabil-
ity, as most of them suffer various difficulties in the operation
of their theories or experiment or their applicability to larger
molecules (Helgerker et al., 2000; Schrimer and Trifimov,

2004). These setbacks pave ways to the development of
cheaper and more acceptable models for determining these
parameters by different researchers, which eventually led to

the development of the equations which consistency and
validity are being tested in this work.

Hence, in this investigation, a quantum–mechanical per-

turbation theory that accommodates intensity parameters
such as solvent molecular polarizability (a), the molar refrac-
tion (R), stark term (l/r3), Einstein coefficient (k) and oscilla-

tor intensity (f), using the scope of Abe (AbdulRaheem et al.,
2010) and adopting partly, the Louguett-Higgins and Salem
(1961) mode of intermolecular forces, which is effective in
revealing the factors governing intensity enhancement was

employed. These were used in developing a linear regression
model which was then applied in determining the transition
polarizabilities (Da) and transition dipole moment (Dl) of

2,3-DPCP with the principle of absorption spectrophotome-
try. This research also correlates the properties of the sol-
vated solutes of interest to those of the vapour and in part

identifies the key terms that contribute to oscillator parame-
ter in solution. The effect of solvents on the transition ener-
gies of the compounds is also investigated. The choice of this

compound is based on the available literature data on the
parameters to be used in the application of scope of modified
Longuett–Higgin and Salem model.

2. Experimental section

2.1. Materials and method

The selected solvents used, n-heptane, methanol, and dichlo-
romethane, were obtained from British drug House Limited

(BDH). These were further purified by re-distillation twice
under reduced pressure before use. The compound studied,
2,3-DPCP, was of a spectroscopic grade, a product of British

drug house Limited (BDH), and was used without further
purification. Diluted solutions of the compound being studied
were prepared in the concentration range of 10�6–10�5 M. Its

spectral analysis was carried out using a computerized Shima-
dzu UV-1650 double beam spectrophotometer coupled with
UV-probed 2.31 version (software) and operated in the wave
length range of 190–400 nm. A pair of matched quartz cuv-

ettes, each of 1 cm path length was in the sample compart-
ment, one containing the pure reference solvent of choice
and the other the sample solution in the solvent. The sample

compartment was thermo-stated at 20 �C. The spectra were
recorded with the instrumental band set at 0.2–1.0 nm and
ran with the scan speed of 2 nm per second. At first, the spec-

tra scan over the required wavelength was taken for the pair



Table 1 Summary of the transition energies �mmax ðcm�1Þ, molar absorptivities, emax (M
�1 cm�1) and other transition properties for the

observed absorption bands of the 2,3-diphenylcyclopropenone studied in polar and non-polar solvents.

Transitions �mmax ðcm�1Þ emax (M
�1 cm�1) f(s) f(m) X1 X2 (10

�1Ccm2) K · 1019

Methanol

S0fiS1 – – – – –

S0fiS2 33,557 2,154 0.038 0.037 0.038

S0fiS3 45,455 1,305 0.023 0.022 1.51 4.1 0.023

S0fiS4 49,505 1,396 0.018 0.017 0.018

Dichloromethane

S0fiS1 32,051 4,814 0.034 0.033 0.42

S0fiS2 – – – – 0.92 7.38 –

S0fiS3 35,461 20,355 0.37 0.36 4.19

S0fiS4 43,234 10,895 0.13 0.12 1.16

Heptane

S0fiS1 – – – – –

S0fiS2 33,784 6,615 0.16 0.58 1.91

S0fiS3 44,248 8,641 0.15 0.14 1.97 0 1.31

S0fiS4 50,000 8,462 0.013 0.013 0.1

Figure 1 Electronic absorption spectra of 2,3-diphenylcyclopropenone in methanol ( ), dichloromethane ( ) and heptane (——).
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of cuvette containing pure solvent only to obtain the solvent
baseline. Then, the content of the cuvette in the sample com-

partment was replaced with an appropriate solution of
known concentration of a particular compound. The spectra
scan process was repeated to obtain the absorption spectra of
the compounds. This process was repeated for the compound
in different solvents. Under this condition, it was observed

that 0.02 absorbance, corresponding to a 20 cm graphical full
scale recording yielded spectra of satisfactory sensitivity and
resolution.



Table 2 Summary of the calculated ground state electric dipole polarizabilities a (Å3), transition polarizabilities Da (Å3) and

transition dipole moments Dl (D) for 2,3-diphenylcyclopropenone in polar and non-polar solvents by the use of Eqs. (2.5b) and (2.6).

Compounds 2,3-diphenylcyclopropenone a Da (Å3) a* Dl (D) DEsolute

DEsolution
¼ xð10�3Þ

Methanol

S0fiS1 – – – –

S0fiS2 0.10 0.18 0.28 0.13 2.1

S0fiS3 0.061 0.23 0.29 0.15 2.00

S0fiS4 0.047 0.39 0.44 0.2 1.56

Dichloromethane

S0fiS1 0.008 0.20 0.21 0.18 2.39

S0fiS2 – – – – –

S0fiS3 0.089 0.013 0.1 0.61 1.39

S0fiS4 0.03 0.14 0.17 0.35 4.60

Figure 2 Plots of data on intensity perturbation of the bands of 2,3-diphenylcyclopropenone in methanol.
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2.2. Data analysis

2.2.1. Computation of oscillator strength

The experimental oscillator strength in solution f(s) and the
molar extinction coefficient (e(m)) for each absorption band in

the spectra of the molecules studied were calculated as a mea-
sure of the intensity of absorption of the molecules by means
of Eq. (2.1). The integral

R
e�m@m were calculated using the
assumptions of symmetrical bands in conformity with Gauss-
ian distribution (Ahmed et al., 2011). The vapour phase oscil-
lator strength f(m) values were also computed using the reaction

field model of Eq. (2.2), the Shuyer’s expression for the classi-
cal extension of Lorentz field effect (Oscar and Weigang,
1963).

fðsÞ ¼
2:303mec

2e0
Noe2n

Z mj

mi
em@mj ¼

4:321� 10�9

n

Z mj

mi
em@mj ð2:1Þ



Figure 3 Plots of data on intensity perturbation of the bands of 2,3-diphenylcyclopropenone in dichloromethane.
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fðsÞ

fðmÞ
¼ / ð2:2Þ

where / ¼ 9n3

ð2n2þ1Þ2, the correction factor on changing from solu-
tion phase to vapour phase and n, the refractive index of the

solvent of choice.

2.2.2. Determination of transition polarizability and transition

moments

Using Clausuis–Mossotti expression (Weast et al., 1985–1986)
of Eqs. (2.3) and (2.4) below, the theoretical ground state electric
polarizability (ag) for the solutes was calculated from the molar

refraction (R) of bond atoms in a molecule of compound in dif-
ferent solvents in accordance with Schuyer, Blom andVan krev-
elen (Choingwain and Iweibo, 1991) while the theoretical

ground state electric dipole moment (lg) of the selected solvents
used was computed where necessary from the measurement of
stark effect in the microwave spectroscopy of gas.

R ¼ n2 � 1

n2 þ 2

� �
M

d
ð2:3Þ

a ¼ 3

4pN0

ðRÞ ð2:4Þ

N0 the Avogadro’s number (mol�1), M being the molecular
weight of the molecule under investigation and d, the density

of solvent in which the molecule is dissolved.
2.2.3. Determination of transition dipole moment (Dl) and
transition polarizability (Da)

f
1
2

ðsÞ ¼ f
1
2

ðmÞ þ
3x

1� x2
f
1
2

ðmÞ
ab

r3ab

" #
þ DaK

lb

r3ab

 !
ð2:5aÞ

f
1
2

ðsÞ � f
1
2

ðmÞ

X1

¼
3xf

1
2

ðmÞ

1� x2
þ DaK

X2

X1

: ð2:5bÞ

f
1
2

ðsÞ ¼ Dlþ 3

2
Daþ lb

r3ab

 !
þ 3x

1� x2
f
1
2

ðvÞk
�1

� �
ab

r3ab

ð2:6Þ

The expressions in 2.5a, its rearranged form of 2.5b and Eq.

(2.6), developed from the intensity perturbation approximation

relate the square root of oscillator strength in solution f
1
2

ðsÞ to

that of the vapour f
1
2

ðvÞ to the stark terms (lb=rab3 ), the integral

Einstein co-efficient (K), electric polarizability of the solvent
(ab), (Dl), (Da) as well as, the ratio of the change in the transi-
tion energies of the solute to that of the solvent (DEsolute/DEsol-

vent) where ab
r3
ab
¼ X1; lb=rab3 ¼ X2 and rab, the inter-nuclear

distance between the solute and the solvent molecule. These

show that a number of data on the solvent and the solute were
required to enable one to use these equations reliably in deter-
mining the change in the transition dipole moment and polar-
izability of molecules, from where the excited state dipole
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moment (l*), the excited state polarizability (a*) and ratio of

the change in transition energies of the solute to that of the sol-
vent (x) may be computed. Table 1 summarizes the data used in
this way.

3. Results and discussion

The representative electronic absorption spectra of 2,3-DPCP

depicting the effects of polar and non-polar solvents on its
spectra properties are as shown in Fig. 1. The summarized data
of the average transition frequencies (energies) and the corre-
sponding molar absorptivities of this compound in the protic

polar, aprotic polar and non-polar solvents (i.e. methanol,
dichloromethane and heptane respectively) are as shown in
Tables 1 and 2, while the regression plots from where the

transition dipole moment and transition polarizability for the
compound are obtained are as shown in Figs. 2 and 3.

3.1. Absorption spectra, transition energies, maximum molar
absorptivity [eðlmaxÞ] solution and vapour phase oscillator

strength, transition dipole moments (Dl) and transition
polarizabilities (Da)

The absorption spectra of this compound in the representative
solvents showed three prominent bands. Band I (SofiS1), a low
intensity shoulder around 33,557 cm�1 in dichloromethane is

absent in the spectra of the compound in the methanol and
heptane. This band is both quantum–mechanically and overlap
forbidden as reflected by its low intensity. Red shifts are ob-

served for spectra of the compound with increasing solvent
polarity for Band II while for Bands III and IV, blue shifts
were observed. The slight shifts to longer wavelength (red

shift) with increasing solvent polarity for Band II show that
the first singlet state of the compound is a p -p* transition.
Band II (SofiS2) and Band 1(SofiS1) are fused together and
are not decomposable in dichloromethane due to intensity bor-

rowing phenomena and the special nature of the chloro-substi-
tuted solvent which are slightly transparent to the compound
in the spectra region of interest. Dichloromethane acts as filters

and shields the molecule from UV-light thereby reducing the
level of its interaction with this compound. This leads to mix-
ing of the excited states of this compound which is manifested

by overlap of bands.
Band III (SofiS3) is more sensitive to solvent perturbation

than Band II (SofiS2). Its increase in intensity indicates that

the transition is allowed by symmetry. Bands III (SofiS3) and
IV (SofiS4) are blue-shifted in polar solvent relative to non-
polar solvent, showing that the ground state of this compound
is more stable than its excited states in polar solvent. This indi-

cates an n–p* transition in the spectra of 2,3-DPCP as a result
of protonation of carbonyl oxygen by methanol (probably,
hydrogen bonding). Little diffused vibrational structures which

manifest itself in the spectra of the 2, 3-DPCP in heptane, as
well as the band III of the compound in dichloromethane show
that the compound is a rigid molecule. The level of its interac-

tion, which can be ascribed to dipole–Van-der Waal forces
interaction with these solvents is low. On the other hand, the
spectrum of 2,3-DPCP in methanol do not show any diffused

vibrational fine structure, showing that there is a specific inter-
action (dipole–dipole) of the compound with methanol. The
intensities of absorption, as indicated by the calculated molar
absorptivities values (Tables 1 and 2) therefore allow Band I
to be assigned 1Afi1La, Band II as 1Afi1Lb, Band 111 as
1Afi1Bb while Band IV is assigned 1Afi1Ba transitions.

3.2. Electronic transition dipole moments and transition

polarizabilities

As observed in Tables 1 and 2, the Da, a measure of sensitivity
of different transitions to applied electric field for the com-
pound in chloro substituted solvent follows the order of oscil-

lator strengths (fij) of each transition. This trend conforms to
the expectations as submitted by Iweibo et al. (1990) and sup-
ported by the approximate theory which relates the polariz-

ability a of any state i, j to the transition frequency xij

between the state i and j, and the fij by:

aij ¼
e2

me

X
j

fij
xij

ð3:1Þ

where e and me denote the electronic charge and mass respec-

tively, and xij = 2ptij denotes the circular frequency. These
trends are reflective of the oscillator strength values for these
transitions, and also confirm the positive correlation between
Da and the integral Einstein coefficient k (a measure of the

probability of electronic transition per unit time, per unit radi-
ation density) as seen in Eqs. (3.2) and (3.3).

k ¼ D2

6e0�h
2

ð3:2Þ

f ¼ 4Mepm
3e2�h

D2 ð3:3Þ

where D ¼
R

wilwj is the electric dipole moment operator

which determines the strength of transitions, and �h ¼ h=2p.
e0, m, and h are the vacuum permeability, frequency in wave
number and Planck’s constant respectively.

The deviation from the order of increasing Da with fij for

the different transitions of 2,3-DPCP in methanol is due to
the mixing of its allowed states with its forbidden states; the
latter thus acquiring the characters of the allowed states

(Itamer et al., 2005). The extent of mixing of the states by
the substituents reflects the extent of the deviations. Also, in
this compound, there is intra-molecular donor–acceptor

charge transfer in which there is shift of electron from the phe-
nyl ring through the cyclopropenyl ring to the oxygen atom of
the carbonyl carbon (CO) or the second phenyl ring of the
compound.

The determined Da is positive and very small (<1) for
the compound. It small values indicate a little change in
the potential energy surface of the ground and the excited

state, which is in agreement with the conclusion that the
equilibrium nuclear position (from the consideration of
shape of Franck–Condon envelop) of the excited states is

only a little shifted relative to the ground states. This shows
that there is only a slight reorientation of the solvent mole-
cule to produce a reaction field which in turn results in a

shift between the energies of ground and the excited states.
These results are consistent with the reaction field formula-
tion of Liptay (Thomas et al., 2008). Moreover, the ob-
served positive values for Da show the strong activity of

the compound and its excited states being more polar than
its corresponding ground states.



S140 M.D. Adeoye et al.
The transition moment (measure of the amount of charge
transfer associated with transitions) of the compounds in this
study follows similar trend observed for the fij and Da. This or-
der conforms to the expectation as it agrees perfectly with the
expression that relates the intensity I, of a transition to the
square of integral of transition moment, M i.e.

IajMijj2 ¼< lijeirijlj>
2 ð3:4Þ

This implies that the more allowed a transition, the higher the
probability that Dl will be greater than zero. Hence, the tran-
sition moment integral shows a gradation of values, being
smallest for the weak and forbidden transitions but increases

considerably for the fully allowed transitions. The small values
of Dl observed for all the transitions in this compound, as seen
in Table 2 also point to the conclusion that the equilibrium nu-

clear position of the excited state is a little shifted relative to
the ground state. This result confirms the selection rule which
states that for electronic transition to occur, transition moment

integral must not be zero.

4. Conclusion

This work has successfully used solvatochromic shift theory
that accommodates intensity parameters to determine the Dl
and Da simultaneously for the compound studied in polar sol-

vent. This provides insight into the nature of electrostatic
interactions between these solvents and 2,3-DPCP and its
activity. The values of oscillator strength in vapour (fm) and
solution phase (fs) have also verified the facts on intensity bor-

rowing phenomena from solvents. The method gave results
that showed minimal dispersion in the values of Dl and Da.
It can therefore serve as a supplementary method for the deter-

mination of photo-physical parameters in polar solvents.
Moreover, the observed positive values of Dl and Da attest
to its high relative activity and its usefulness as starting mate-

rial for many novel drug preparations.
In addition, the Dl and Da determined for this compound

in this research are expected to form a database for compari-

son with the results of their future determinations by electro-
optical or molecular orbital calculation methods. The molecule
exhibits both nfip* and pfip* transitions in the UV range.
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