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A B S T R A C T

This study aims to improve the accuracy and reliability of gastric cancer grading by creating a computational 
framework that combines radiomic features and deep learning data from pathology images. By merging 
traditional and modern modeling techniques, we seek to overcome current diagnostic challenges and build a 
model that can be used effectively in clinical settings. The dataset included 798 whole-slide images (WSIs) of 
gastric cancer, divided into over 278,000 smaller image patches categorized into four grades. Radiomic features 
were collected using the HistomicsTK tool to ensure standard and consistent data collection. At the same time, 
deep learning features were extracted from fine-tuned CNN models (Xception, InceptionV3, DenseNet169, and 
EfficientNet) designed for image classification. Advanced methods like LASSO, ANOVA, mutual information 
(MI), and recursive feature elimination (RFE) were used to pick the most useful features. Different machine 
learning models, such as XGBoost, LightGBM, CatBoost, Random Forest, Support Vector Machine (SVM), and 
multi-layer perceptron (MLP), were trained and tested using a five-fold cross-validation process. Performance 
was assessed using metrics like AUC, accuracy (ACC), and F1-score, with hyperparameters fine-tuned through 
grid search for the best results. In the analysis using only radiomic features, XGBoost and CatBoost showed 
the best results, especially with RFE feature selection, achieving test AUCs of 91.1% and 91.2%, respectively, 
with F1-scores above 90%. When radiomic features were combined with deep learning features from all CNN 
models, the performance improved significantly. CatBoost with ANOVA reached a training AUC of 97.73% 
and a test AUC of 95.26%, while XGBoost with RFE achieved a test AUC of 96.9%. The top selected features, 
which included morphometric, gradient, intensity-based, and Haralick descriptors, were confirmed for their 
importance through q-value analysis. The combined model showed excellent general performance, with a test 
AUC of 94.22%, ACC of 95.80%, and an F1-score of 93.10%, proving the strength of using combined multimodal 
features. This study shows the advantages of combining radiomic and deep learning features for better grading 
of gastric cancer. In the future, this framework could be expanded to other types of cancer and integrated into 
clinical workflows, potentially reducing diagnostic errors and improving patient outcomes.
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1. Introduction

Gastric cancer is a major cause of cancer-related deaths globally, 
especially in East Asia, where incidence and mortality rates are 
high. Accurate early detection and precise grading of gastric cancer 
are essential for effective treatment planning and improving patient 
survival. Traditionally, the diagnosis and grading of gastric cancer have 
relied on visual assessments by experienced pathologists. However, this 
manual process is subjective, which can lead to variations in diagnosis 
between different experts and reduce reliability [1,2]. This has led 
to growing interest in using computational techniques—specifically 
machine learning (ML) and deep learning (DL)—to make cancer 
grading more precise, consistent, and efficient [3-6].

Radiomics is a cutting-edge technique that extracts a wide range of 
measurable features from medical images to capture detailed patterns in 
pathology. These features, which describe texture, shape, and intensity, 
can reveal biological details that are not visible to the human eye. By 
connecting imaging data with clinical outcomes, radiomics provides 
data-driven insights into cancer grading and prognosis [7-16].

Deep learning, particularly with convolutional neural networks 
(CNNs), has greatly improved the field of medical imaging by allowing 
automated extraction of feature hierarchies, from simple textures to 
complex patterns [17,18]. This provides deep, detailed information 
useful for distinguishing between different cancer grades. CNN models 
like Xception, InceptionV3, DenseNet169, and EfficientNet are known 
for their ability to capture both large-scale structures and intricate local 

Article in Press



Yan et al.� Arabian Journal of Chemistry Article in Press

2

details, making them well-suited for complex classification tasks. These 
deep features enhance the analysis of pathology images, helping to 
differentiate between normal tissue and various tumor grades [19,20].

Although radiomics and deep learning features are powerful when 
used alone [17,18,21], combining them into a unified framework for 
grading gastric cancer has not been thoroughly studied. Most past 
research has focused on either radiomics or deep learning features 
without examining how their integration might boost diagnostic 
accuracy [22,23]. Additionally, while some CNN models have been 
used for end-to-end classification, few studies have explored their 
use alongside traditional ML classifiers or in ensemble approaches. 
Integrating these methods could capture a wider range of image 
characteristics and improve diagnostic precision in cancer grading. 
Traditional pathology often suffers from subjectivity and inter-observer 
variability, where pathologists’ interpretations of histopathological 
images can differ. By combining radiomic features, which provide 
quantitative and reproducible measures, with deep learning models 
[21,24-27], which can automatically learn complex patterns and subtle 
features from large datasets, our approach reduces subjectivity. This 
integration leads to more objective, consistent, and accurate analyses, 
ultimately supporting pathologists in making more reliable diagnostic 
decisions.

Several recent studies have explored the integration of radiomic 
and deep learning features for cancer grading, particularly in the 
context of pathomics. For instance, Tan et al. [28] developed AI-based 
pathomics models combining hematoxylin-eosin (HE) and Ki67 image 
features with clinical variables for predicting the pathological staging 
of colorectal cancer. Their combined model demonstrated superior 
performance, achieving an AUC of 0.907 in the training cohort, and 
showed high clinical utility in decision-making. Similarly, Chen et al. 
[29] proposed Pathomic Fusion, a novel approach for fusing histology 
and genomic features, utilizing deep learning to predict cancer 
prognosis. By integrating whole-slide images (WSIs) with genomic data 
such as mutations, copy number variations (CNVs), and RNA-Seq, they 
demonstrated that multimodal data fusion improved survival outcome 
prediction in glioma and renal cell carcinoma datasets. Additionally, 
Zhang et al. [30] focused on gastric cancer, developing a model that 
integrated histopathological features with transcriptomic data. Their 
approach, using multi-instance learning and a Lasso-Cox regression 
model, achieved promising results in prognostic stratification, 
identifying SLITRK4 as a potential biomarker for gastric cancer. These 
studies underscore the growing importance of combining multimodal 
data, such as radiomics and genomic features, for improving cancer 
grading and prognosis.

This study presents an innovative framework that combines ML, DL, 
and radiomics to improve the accuracy of gastric cancer grading in 
pathology images. To our knowledge, this is the first comprehensive 
approach of its kind for gastric cancer grading. The main contributions 
include:

1.	 Comprehensive feature configurations: We evaluate different 
feature configurations: (i) radiomic features alone, (ii) DL features 
from individual CNN models, and (iii) a combined approach that 
integrates radiomic and DL features from multiple CNN models 
(Xception, InceptionV3, DenseNet169, EfficientNet). This analysis 
helps us understand the individual and combined effects of these 
features in cancer grading.

2.	 Direct and ensemble DL models: We test the direct application 
of CNN models for end-to-end grading and assess an ensemble 
approach that combines multiple CNNs. This ensemble approach 
takes advantage of the strengths of each model, improving the 
robustness and accuracy of cancer grading.

3.	 Advanced feature selection and optimization: To manage the high 
number of radiomic and DL features, we use advanced feature 
selection methods like LASSO, ANOVA, mutual information 
(MI), and recursive feature elimination (RFE) to reduce feature 
redundancy and enhance model performance.

4.	 Enhanced model interpretability: We incorporate attention 
mechanisms in CNN models to focus on the most important regions 
in pathology images, ensuring that the model's decisions align 
with clinically relevant areas. We also use interpretability tools 

like SHapley Additive exPlanations (SHAP) values to show feature 
importance, making the models more transparent and clinically 
useful.

5.	 Rigorous validation with key metrics: We validate model 
performance using five-fold cross-validation and evaluate it with 
metrics such as accuracy, AUC, and F1-score. Hyperparameter 
tuning is done with grid search to optimize model configurations, 
ensuring reliable and generalizable results.

By combining radiomics, DL, and ensemble modeling into one 
framework, this study sets a new standard for computational pathology 
in gastric cancer. The proposed approach serves as a robust and scalable 
tool to support pathologists, offering a data-driven foundation for more 
accurate diagnoses and evidence-based cancer management. This 
research not only advances gastric cancer pathology but also paves the 
way for future studies that integrate multimodal imaging features for 
better cancer diagnostics.

2. Materials and Methods

2.1. Dataset preparation and preprocessing

The dataset for this study consisted of 798 WSIs stained with HE 
and scanned at a magnification of 20x. The data used in this study were 
obtained from a multi-center source, ensuring diversity and enhancing 
the generalizability of the model. This level of magnification provided 
the detail needed to observe cellular structures crucial for the accurate 
grading of gastric cancer. Each WSI was divided into smaller image 
patches and classified into four categories: normal, grade II, grade III, 
and grade IV. The study established specific criteria for including and 
excluding data to ensure consistency and reliability in the analysis. Only 
WSIs of good quality, showing clear cellular structures and standard 
HE staining, were included. These images needed to come from 
patients with confirmed gastric cancer diagnoses, covering different 
histological grades (e.g., normal tissue, grades II, III, and IV) to allow 
for a comprehensive classification. Clinical data such as age, gender, 
and tumor grading were also necessary to strengthen the analysis. 
Preference was given to images collected within a set timeframe to 
maintain consistency in sample collection. Only cases with ethical 
approval and informed patient consent were eligible.

On the other hand, WSIs that were of poor quality, had significant 
artifacts, or low resolution were excluded because they could interfere 
with feature extraction and accurate analysis. Pathology images stained 
using non-standard or inconsistent methods were also not considered. 
Cases missing essential clinical information, involving metastatic or 
recurrent gastric cancer, or with unclear histopathological diagnoses 
were excluded to keep the focus on primary tumor analysis. Additionally, 
any images that were not from histopathological sources or were from 
patients who had undergone prior treatment (e.g., chemotherapy or 
radiation) were excluded, as these could change tissue structures and 
introduce bias.

The final dataset included a total of 278,126 image patches 
distributed as follows:

-	 Normal: 72,126 patches
-	 Grade II: 71,146 patches
-	 Grade III: 68,258 patches
-	 Grade IV: 66,596 patches

Each category had patches of two sizes- 180 × 180 pixels and 140 × 
140 pixels—split evenly:

-	 Normal: 36,063 patches of each size
-	 Grade II: 35,573 patches of each size
-	 Grade III: 34,129 patches of each size
-	 Grade IV: 33,298 patches of each size

The dataset was divided into training, validation, and test sets in a 
4:4:2 ratio. The distribution was as follows:

Training Set (40%):

-	 Normal: 28,850 patches (14,425 of each size)
-	 Grade II: 28,458 patches (14,229 of each size)
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-	 Grade III: 27,303 patches (13,652 of each size)
-	 Grade IV: 26,638 patches (13,319 of each size)
-	 Total: 111,249 patches

Validation Set (40%):

-	 Normal: 28,850 patches (14,425 of each size)
-	 Grade II: 28,458 patches (14,229 of each size)
-	 Grade III: 27,303 patches (13,652 of each size)
-	 Grade IV: 26,638 patches (13,319 of each size)
-	 Total: 111,249 patches

Test Set (20%):

-	 Normal: 14,426 patches (7,213 of each size)
-	 Grade II: 14,230 patches (7,115 of each size)
-	 Grade III: 13,652 patches (6,826 of each size)
-	 Grade IV: 13,320 patches (6,660 of each size)
-	 Total: 55,628 patches

Data augmentation was used on the training set only to 
increase diversity and improve the model’s learning. This included 
transformations such as random 90° rotations and horizontal/vertical 
flipping. These techniques effectively doubled the number of training 
patches, leading to:

-	 Normal: 57,700 augmented patches
-	 Grade II: 56,916 augmented patches
-	 Grade III: 54,606 augmented patches

-	 Grade IV: 53,276 augmented patches

The total number of patches in the augmented training set increased 
to 222,498. This augmentation helped the model learn from a varied 
dataset, better preparing it to handle real-world variations in pathology 
images. By maintaining balanced training, validation, and test sets, this 
preparation ensures a solid foundation for developing a reliable model 
for classifying gastric cancer across different grades and patch sizes. 
An illustration of the AI-driven classification framework is shown in 
Figure 1.

2.2. Comprehensive feature configurations (radiomic and deep feature 
extraction)

This study uses a comprehensive approach to develop a strong 
framework for grading gastric cancer by incorporating both radiomic 
and DL features. Each part of this methodology contributes to improving 
the accuracy and interpretability of cancer classification, providing a 
solid basis for data-driven decisions in pathology.

We tested different input feature configurations to understand the 
separate and combined effects of radiomic and DL features on gastric 
cancer classification. The main configurations are outlined below:

Radiomic features: Radiomic feature extraction was used to 
quantitatively analyze tissue characteristics in pathology images with 
the HistomicsTK package (Figure 2), an open-source tool available on 
its GitHub repository. This package adheres to the Image Biomarker 
Standardization Initiative (IBSI) guidelines to ensure a standardized 

Figure 1. Step-by-step workflow. WSI: Whole-slide image, LASSO: Least absolute shrinkage and selection operator, ANOVA: Analysis of variance, MI: Mutual information, RFE: 
Recursive feature elimination, SHAP: SHapley Additive exPlanations, CNN: convolutional neural networks, AUC: Area under the curve.
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and repeatable process for feature extraction. Radiomic features are 
vital for identifying variations at the nuclear and tissue levels, which 
often signal cancer progression and the degree of differentiation.

By focusing on detailed properties such as shape, texture, and 
intensity, radiomic analysis helps to boost the predictive accuracy of 
ML models used for cancer classification. These feature groups provide 
comprehensive descriptors that measure shape, texture, and intensity 
differences within pathology images. The extracted features serve as a 
rich dataset for training ML models, aiding in distinguishing between 
different cancer grades by examining the fine details of tissue samples.

Deep learning features alone: To effectively classify gastric cancer 
grades (normal and grades II to IV), we fine-tuned several CNN models, 
including Xception, InceptionV3, DenseNet169, and EfficientNet. We 
started with these pre-trained models, excluding their top classification 
layers, and initialized them with ImageNet weights. To adapt the 
models for our dataset, we froze all layers except the last 30, allowing 
these layers to be fine-tuned while preserving the useful, generalized 
features learned from ImageNet.

We selected Xception, DenseNet169, and EfficientNet based on their 
demonstrated success in image classification tasks and their suitability 
for extracting high-level features from pathological images. Xception 
was chosen for its efficient use of depthwise separable convolutions, 
while DenseNet169 was selected for its feature reuse architecture, 
which improves gradient flow and mitigates the vanishing gradient 
problem. EfficientNet was included for its ability to balance model 
size and accuracy, offering state-of-the-art performance with fewer 
parameters.

We added custom layers to the modified base models to better 
capture patterns specific to gastric cancer. These custom layers 
included a Global Average Pooling layer to reduce the spatial size of 
the feature maps, followed by a Dropout layer (rate of 0.5) to prevent 
overfitting. We also added a Dense layer with 256 neurons and ReLU 
activation to introduce non-linearity and enhance the learning of 
complex patterns, followed by another Dropout layer (rate of 0.3) for 
further regularization. This setup created a modified model called the 
features_model, designed to extract deep features tailored for gastric 
cancer classification.

Our dataset, divided into training and test sets with images labeled 
across four classes, was processed through the features_model to 
extract deep features up to the final custom layer. These deep features 
captured high-level information, emphasizing characteristics essential 
for distinguishing different cancer grades.

By fine-tuning instead of freezing the entire network and simply 
adding layers, we allowed the models to adjust their internal 
representations to better match the specific traits of gastric tissue 
images. This method provided a more refined and accurate performance 
compared to using the networks as fixed feature extractors. These 
extracted features were individually tested with ML classifiers to assess 
their effectiveness in classification, ensuring that each CNN's capability 

in recognizing meaningful patterns was thoroughly evaluated for 
improved cancer grading accuracy.

Integrated radiomic and deep features from all CNN models: In the 
final step, we combined radiomic features with deep features extracted 
from all CNN models. This created a comprehensive feature set that 
included a wide range of imaging information, capturing detailed 
characteristics from both radiomic and DL perspectives. By integrating 
these diverse features, we aimed to explore how combining multiple 
DL architectures with radiomic data could enhance classification 
performance through a fuller representation of image characteristics.

2.3. Direct and ensemble deep learning models

In addition to using extracted features with ML models, we also 
evaluated the performance of direct, end-to-end CNN models and 
ensemble strategies for grading gastric cancer:

Direct CNN models: Each CNN model was fine-tuned and directly 
applied to classify pathology images into different cancer grades. 
These models performed classification end-to-end, without relying 
on additional ML layers. This approach helped us understand the 
capabilities of each individual CNN architecture in handling the 
complete task of grading cancer from input to output.

Ensemble strategy: To make the models more robust, we used an 
ensemble strategy that combined predictions from multiple CNN models. 
This approach took advantage of the strengths of each architecture 
while minimizing their individual weaknesses. By combining CNNs with 
different structures and depths, the ensemble model aimed to improve 
accuracy and consistency across various cancer grades. We used voting-
based or averaging techniques for final predictions, depending on what 
worked best during our experiments.

2.4. Advanced feature selection and optimization

To manage the high number of features from combined radiomic 
and DL sources, feature selection techniques were used to reduce 
redundancy and boost model performance. Least Absolute Shrinkage 
and Selection Operator (LASSO) was applied as a regularization method. 
It works by penalizing the size of regression coefficients, effectively 
setting non-informative or redundant features to zero, thus simplifying 
the feature set while keeping its predictive strength intact. Analysis 
of Variance (ANOVA) was used to evaluate the statistical importance 
of each feature by comparing the variance between different classes. 
This helped select features with strong discriminative power based 
on their ANOVA scores. MI measured how dependent a feature was 
on the target class, ensuring that only features providing unique and 
valuable information were selected. Features with high MI scores were 
chosen for their significant contribution to model performance. RFE 
was an iterative method to refine the feature set by ranking features 
according to their importance and gradually removing the least useful 
ones until the most effective subset was found. This step-by-step process 

Figure 2. Selected pathomics features.
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helped develop a feature set that maximized accuracy while reducing 
computational load.

Although RFE showed the best results for feature selection in 
this study, we acknowledge that it has certain drawbacks compared 
to simpler methods like LASSO and ANOVA. Specifically, RFE can 
be computationally intensive, as it involves iterative model training, 
which may be challenging for large datasets or more complex models. 
Additionally, while RFE is less prone to overfitting compared to 
exhaustive feature selection methods, overfitting may still occur if 
the number of retained features is large relative to the dataset size. 
To address this, we employed cross-validation during the feature 
selection process. In contrast, methods like LASSO and ANOVA are 
computationally simpler but may not capture the complex interactions 
between features as effectively as RFE.

We trained various ML models to test the effectiveness of these 
selected features for classifying gastric cancer grades. The models 
were: (i) XGBoost- Known for its strong ensemble learning abilities 
and high performance (ii) LightGBM: Optimized for speed and memory 
efficiency (iii) CatBoost: Effective with categorical data, providing 
reliable classification results (iv) Random Forest: An ensemble method 
using multiple decision trees, balancing accuracy and avoiding 
overfitting (iv) Support Vector Machine (SVM): Capable of handling 
high-dimensional feature spaces and finding optimal class-separating 
hyperplanes (v) Multilayer Perceptron (MLP): A type of neural network 
suited for complex, non-linear classification tasks. These classifiers 
were tested with the optimized feature sets obtained from the selection 
process. Combining comprehensive feature extraction, careful selection, 
and thorough model training and validation provided a robust system 
for accurately classifying gastric cancer grades. This approach ensured 
that the final models were efficient, predictive, and suitable for reliable 
pathology image analysis.

To address potential overfitting due to data augmentation, we 
employed cross-validation and early-stopping techniques during model 
training. Regularization methods, such as dropout and L2 regularization, 
were also applied. Furthermore, we ensured that the augmented images 
maintained realistic variations consistent with typical pathological 
data, thereby improving model generalizability without introducing 
artificial bias.

2.5. Enhanced model interpretability

To ensure that the model’s decision-making process aligns with 
clinically important information, we used several interpretability 
techniques: SHAP (SHapley Additive exPlanations): SHAP values 
were used to understand the contribution of each feature to the 
model’s predictions. SHAP offers a consistent way to measure feature 
importance across different models, making it clear which radiomic or 
DL features are influencing the classification. This tool is particularly 
important in clinical settings where understanding how the model 
makes decisions helps build trust and ensures transparency. These 
interpretability techniques help make sure that the model’s outputs are 
not only accurate but also meaningful from a clinical standpoint. They 
provide insights that align with expert knowledge, which supports the 
practical use of AI in pathology.

2.6. Rigorous validation with key metrics

To measure how well the models performed, we used the following 
key metrics:

-	 Accuracy (ACC): The percentage of patches correctly classified into 
the correct cancer grades.

-	 Area Under the Curve (AUC): AUC values were calculated from 
receiver operating characteristic (ROC) curves to evaluate the 
model’s ability to distinguish between different cancer grades.

-	 F1 Score: This score, which combines precision and recall, was used 
to give a balanced view of the model’s effectiveness, especially 
when handling class imbalances.

Hyperparameter tuning via grid search: To find the best configurations 
for each model, we used grid search for hyperparameter tuning. This 
process involved systematically testing different combinations of 

hyperparameters and selecting the one that provided the highest 
performance based on validation results. Grid search was applied to all 
feature configurations and models, ensuring a thorough optimization 
process. By combining these steps, this study offers a comprehensive 
approach to grading gastric cancer. It integrates advanced feature 
configurations, ensemble learning, feature selection, interpretability 
methods, and thorough validation to develop a reliable and clinically 
useful model for pathology image classification.

The system used for running the models included high-performance 
computing resources for efficient processing and accurate results. It 
featured a multi-core CPU (AMD Ryzen) and multiple NVIDIA GPUs 
(Tesla V100) to manage the demands of DL and ML tasks. The system 
also had at least 128 GB of RAM for large-scale data processing and 
high-speed SSD storage for quick access to pathology image data. 
Software frameworks such as TensorFlow were used for training DL 
models, while Scikit-learn and XGBoost supported traditional ML tasks. 
The models were run on a Linux-based operating system for its stability 
and performance benefits.

3. Results and Discussion

3.1. Selected features and SHAP analysis

After applying various feature selection methods, a refined set of 
25 top features was identified as the most informative inputs for the 
ML models (Table 1). These features came from multiple categories, 
providing a comprehensive representation of image characteristics 
essential for effective classification. The selected features included 
Fourier Shape Descriptors (FSD), Gradient Features, Morphometry, 
Intensity-Based Features, and Haralick Features. This curated 
selection ensures a balanced input that captures both shape and 
texture information, enhancing the predictive accuracy and overall 
performance of the models in grading gastric cancer.

The analysis of dependence plots for the top 25 features offers 
valuable insights into how these features influence the model's 
predictions (Figure 3). Each feature has a unique impact, with some, 
like Shape.FSD1, Gradient.Mag. Mean, and Haralick.Correlation. Mean, 
showing significant effects on model output. SHAP values reveal the 
strength of each feature's contribution, where higher values signal a 
greater influence on the model's decisions. The observed patterns 
indicate both linear and non-linear relationships, suggesting that some 
features have a simple correlation with the target while others interact in 
more complex ways. The color variations in the plots point to potential 
interactions between features, providing a deeper understanding of 
how certain attributes may work together or counteract each other in 
shaping predictions. These observations highlight the importance of 
careful feature selection and analysis in building robust ML models and 
optimizing their predictive performance.

Figure 4 illustrates a SHAP feature importance plot, which 
underscores the contributions of the top 25 features used in our 
predictive model. This visualization is essential for understanding 

Table 1. Categorization of top selected features across different feature 
groups.

Feature Group Number of Features Features

Fourier Shape 
Descriptors (FSD)

2 Shape.FSD1, Shape.FSD2

Gradient Features 3 Gradient.Mag.Mean,Gradient.Mag.
Std, Gradient.Mag.HistEntropy

Morphometry 7 Size.Area, Size.MajorAxisLength, 
Shape.Circularity, Shape.Eccentricity, 
Shape.Solidity, Shape.HuMoments1, 
Shape.HuMoments2

Intensity-Based Features 3 Intensity.Mean, Intensity.Std, 
Intensity.HistEntropy

Haralick Features 10 Haralick.Contrast.Mean, Haralick.
Correlation.Mean, Haralick.
SumAverage.Mean, Haralick.Entropy.
Mean, Haralick.DifferenceEntropy.
Mean, Haralick.SumEntropy.
Mean,Haralick.IMC1.Mean, Haralick.
IMC2.Mean,Haralick.Contrast.Range, 
Haralick.IDM.Mean
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Figure 3. Dependence plots for top 25 features illustrating SHAP values and feature interactions in model predictions. SHAP: SHapley Additive exPlanations.

Figure 4. SHAP-based feature importance analysis for enhanced model interpretability. SHAP: SHapley Additive exPlanations.
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how the model makes decisions by identifying which features have 
the greatest influence on its outputs. Prominent features such as 
‘Shape.Eccentricity’ and ‘Haralick.Correlation.Mean’ emerge as 
significant contributors, showing the highest SHAP values. The plot 
also summarizes the contributions of less impactful features under an 
“Other Features” category, offering a comprehensive view of feature 
importance throughout the model. By using SHAP values, this analysis 
ensures a transparent and interpretable method for evaluating feature 
influence, aiding in the targeted refinement of feature selection and 
model improvement.

3.2. Radiomic features alone

XGBoost and CatBoost were the best-performing models when 
combined with RFE. Both models showed high AUC, ACC, and F1-
score metrics, highlighting their strength in handling complex radiomic 
features (Table 2). XGBoost with RFE achieved an AUC of 91.9% on 
the training set, 91.2% on the validation set, and 91.1% on the test set, 
along with strong ACC and F1-scores of 90.23% and 89.14% on the 
training set, respectively. Similarly, CatBoost had AUCs of 92%, 91.5%, 
and 91.2% for training, validation, and test sets, respectively, with an 
F1-score of 90.5% on the test set (Figure 5).

In contrast, SVM and MLP showed lower performance, especially 
when used with LASSO feature selection. This suggests these models 
may struggle with the high-dimensional nature of radiomic data or may 
not make as effective use of feature reduction as ensemble models like 
XGBoost.

RFE consistently provided the best results across all models, as 
proven by higher AUC, ACC, and F1-scores. This consistency indicates 
that RFE is effective at selecting the most informative radiomic features, 
boosting model performance. MI also performed well, though slightly 
behind RFE, as it picked features with unique predictive value. ANOVA 
had moderate results, doing better than LASSO but not reaching RFE or 
MI levels. LASSO showed the lowest performance overall, suggesting it 
may be better suited for simpler or smaller feature sets.

3.2. Deep learning features

3.2.1. Xception model

XGBoost and CatBoost continued to show strong performance, 
especially when combined with RFE for feature selection. The results 

in Table 3 highlight their ability to make the most of DL features. 
Both models achieved high AUCs, exceeding 93% during training and 
maintaining high performance in validation and testing. For example, 
XGBoost with RFE had an AUC of 93.25% in training, 92.12% in 
validation, and 91.9% in testing, with an F1-score of 90.5% in testing. 
CatBoost similarly excelled, reaching an AUC of 93.9% in training and 
92.22% in testing.

Random Forest performed competitively with AUCs up to 92.21% 
during training with RFE but showed slight variability in testing 
(91.25% AUC, indicating solid but somewhat less consistent results 
compared to XGBoost and CatBoost.

SVM and MLP had lower overall performance, particularly when 
paired with LASSO, showing difficulties in handling high-dimensional 
DL features. However, MLP with RFE performed above average, 
achieving a 92.25% AUC in training but dropping to 89.21% in testing 
(Figure 6). RFE proved to be the best feature selection method across 
all models, resulting in the highest AUC, ACC, and F1-scores. This 
shows RFE's strength in identifying the most informative DL features 
for optimal model performance. MI also performed well, slightly 
trailing RFE, demonstrating its usefulness in selecting unique predictive 
features. ANOVA provided moderate results, good for maintaining 
solid metrics but not as impactful as RFE or MI. LASSO consistently 
showed lower performance, indicating it may not be the best choice for 
complex, high-dimensional DL features.

3.2.2. InceptionV3 model

From the results in Table 4, XGBoost and CatBoost stood out as 
the best-performing models when using DL features extracted from the 
InceptionV3 model, especially with RFE as the feature selection method. 
XGBoost with RFE achieved AUCs of 91.71% for training, 90.78% 
for validation, and 90.56% for testing, along with high ACC and F1-
scores across all datasets, indicating strong and reliable classification. 
CatBoost also performed exceptionally well with RFE, reaching an AUC 
of 92.56% during training and 90.78% in testing (Figure 7).

RFE proved to be the best feature selection method, consistently 
yielding the highest AUC, ACC, and F1-scores, highlighting its ability 
to refine feature sets and improve model performance. MI and ANOVA 
also produced solid results but did not match the performance and 
consistency of RFE. LASSO showed the lowest performance, confirming 
its limited usefulness with complex, high-dimensional DL feature sets.

Table 2. Performance metrics (AUC, ACC, F1Score) of machine learning models with various feature selection techniques for radiomic features.

Machine 
learning 
models

Feature 
Selection

AUC (%) ACC (%) F1score (%)

Training Validation Testing Training Validation Testing Training Validation Testing

XGBoost LASSO 78.3 77.5 75.5 77.25 76.23 75.58 76.76 75.25 74.9
ANOVA 89.25 88.25 87.8 88.23 87.29 86.92 89.27 88.9 88.5
MI 90.6 89.32 89.25 89.89 89.5 89.2 87.31 86.98 86.45
RFE 91.9 91.20 91.10 90.23 89.25 89.32 89.14 88.75 88.5

LightGBM LASSO 77.5 76.25 76.2 78.23 77.87 77.5 79.34 78.65 78
ANOVA 87.3 87.2 86.25 86.14 85.9 85.5 87.8 86.8 85.64
MI 89.21 89 88.69 88.5 88.2 87.25 89.21 89.10 88.78
RFE 90.5 89.74 89.5 86.25 86.15 85.69 87.24 87.12 86.52

CatBoost LASSO 76.65 76.25 75.9 77.25 76.58 76.56 78.5 77.25 76.1
ANOVA 88.5 88.2 87.5 87.23 87.10 86.9 86.9 86.5 86.23
MI 90.5 89.23 88.78 88.89 88.25 87.5 89.23 89.10 88.90
RFE 92 91.5 91.2 91 90.32 90.2 92 91.5 90.5

Random 
Forest

LASSO 78.45 78.25 76.5 76.5 76.25 74.25 79.5 78.3 75.25
ANOVA 89.45 89.25 88 85.23 84.5 83.48 86.23 85.25 84.78
MI 90.8 89.23 88.23 87.9 86.5 86.2 88.23 87.25 86.23
RFE 91.23 90.25 90.2 88.6 88.2 86.5 87.1 86.4 86.2

SVM LASSO 77.5 76.9 76.2 76.5 76.10 75.9 75.9 75.4 74.9
ANOVA 86.45 86.25 85.9 84.78 83.9 82.78 84.5 83.8 82.45
MI 87.23 86.5 86.10 86.54 86.45 85.10 85.10 84.58 83.15
RFE 85.15 84.25 83.14 82.9 82.45 81.8 83.92 83.12 82.5

MLP LASSO 77.25 76.9 75.5 75.35 74.9 73.9 76.25 75.14 74.25
ANOVA 87.14 86.14 85.14 86.5 85.5 84.36 87.56 86.47 86.41
MI 89.85 88.47 87.98 88.25 87.9 87.41 90.5 89.23 88.14
RFE 90.74 89.23 88.87 89.54 89.12 88.85 87.52 87.10 86.74

AUC: Area under the curve, ACC: Accuracy, LASSO: Least absolute shrinkage and selection operator, ANOVA: Analysis of variance, MI: Mutual information, RFE: Recursive feature 
elimination, SVM: Support vector machine, MLP: Multi-layer perceptron.
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Figure 5. ROC curve for radiomic features model on testing data. LASSO: Least absolute shrinkage and selection operator, ANOVA: Analysis of variance, MI: Mutual information, 
RFE: Recursive feature elimination, ROC: Receiver operating characteristic, MLP: Multi-layer perceptron, SVM: Support vector machine.

Table 3. Performance metrics (AUC, ACC, F1Score) of machine learning models with various feature selection techniques using deep learning features from the 
Xception model.

Machine 
learning models

Feature 
Selection

AUC (%) ACC (%) F1score (%)

Training Validation Testing Training Validation Testing Training Validation Testing

XGBoost LASSO 79.35 78.5 77.25 75.25 76.10 75.78 77.70 75.30 75.20
ANOVA 90.25 89.29 88.82 88.9 88.29 87.92 89.89 89.5 88.95
MI 91.74 90.42 90.12 89.95 89.92 88.20 88.41 88.20 87.78
RFE 93.25 92. 12 91.9 92.43 91.25 91.10 91.9 91.75 90.5

LightGBM LASSO 80.25 79.51 76.25 76.35 75.11 74.78 78.23 73.30 73.21
ANOVA 91.53 89.12 87.22 89.92 87.36 88.92 90.25 86.5 86.92
MI 92.74 91.26 91.12 90.95 88.28 86.20 89.41 84.20 84.70
RFE 93.45 92. 9 92.2 91.32 90.35 90.12 89.93 85.75 85.52

CatBoost LASSO 81.22 80.58 77.75 77.65 76.32 75.18 78.33 76.33 75.23
ANOVA 93.73 92.21 91.26 92.93 91.38 90.97 90.89 88.52 87.90
MI 91.74 89.26 88.12 89.95 87.28 85.20 89.81 85.20 83.70
RFE 93.9 92. 92 92.22 90.32 90.23 90.78 88.95 85.85 85.89

Random Forest LASSO 81.43 79.91 77.48 78.48 77.20 75.25 80.28 79.28 76.23
ANOVA 90.43 90.15 88.98 86.21 85.48 84.26 86.58 86.23 85.20
MI 92.78 91.25 89.30 88.28 87.50 87.18 89.21 88.23 87.21
RFE 92.21 91.23 91.25 89.58 89.48 87.48 88.08 87.28 87.10

SVM LASSO 79.28 78.68 76.98 77.28 76.88 76.68 76.68 76.18 75.74
ANOVA 88.23 88.13 86.62 85.56 85.14 83.74 86.12 84.58 83.36
MI 89.01 87.28 86.25 87.12 87.96 85.88 86.18 85.36 83.92
RFE 86.23 85.53 83.92 83.68 83.23 82.58 85.74 83.9 83.14

MLP LASSO 79.06 76.71 76.41 76.16 75.71 74.71 77.06 75.95 75.06
ANOVA 87.95 86.95 85.25 87.31 86.31 86.17 88.39 87.28 87.22
MI 90.66 89.28 87.80 89.06 88.71 88.22 91.31 90.04 88.95
RFE 92.25 91.14 89.21 90.35 89.93 89.66 89.33 88.91 87.25

LASSO: Least absolute shrinkage and selection operator, ANOVA: Analysis of variance, MI: Mutual information, RFE: Recursive feature elimination, MLP: Multi-layer perceptron, 
SVM: Support vector machine, AUC: Area under the curve, ACC: Accuracy.
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Figure 6. ROC curve for Xception model on testing data. LASSO: Least absolute shrinkage and selection operator, ANOVA: Analysis of variance, MI: Mutual 
information, RFE: Recursive feature elimination, ROC: Receiver operating characteristic, MLP: Multi-layer perceptron, SVM: Support vector machine.

Table 4. Performance metrics (AUC, ACC, F1Score) of machine learning models with various feature selection techniques using deep learning features from the 
InceptionV3 model.

Machine learning 
models

Feature 
Selection

AUC (%) ACC (%) F1score (%)

Training Validation Testing Training Validation Testing Training Validation Testing

XGBoost LASSO 79.01 77.16 75.91 73.91 74.76 74.44 76.36 73.96 73.86
ANOVA 88.91 87.95 87.48 87.56 86.95 86.58 88.55 88.16 87.61
MI 90.4 89.18 88.18 89.61 88.28 86.26 87.07 86.86 86.44
RFE 91.71 90.78 90.56 91.89 89.21 89.76 90.56 90.41 89.16

LightGBM LASSO 78.25 78.25 74.91 75.01 73.77 73.44 76.89 71.96 71.87
ANOVA 90.19 87.78 85.88 88.18 86.22 87.58 88.91 85.16 85.58
MI 91.4 88.72 88.18 90.61 86.94 84.26 88.37 82.86 83.36
RFE 92.11 91.56 90.86 89.18 89.01 88.28 88.39 84.41 84.18

CatBoost LASSO 79.88 79.24 76.41 76.31 74.98 73.84 76.99 74.99 73.89
ANOVA 92.39 91.87 89.92 91.59 90.04 89.63 89.55 87.18 86.56
MI 90.4 87.92 86.78 88.61 85.94 83.86 88.37 83.86 82.36
RFE 92.56 91.58 90.78 88.98 88.79 89.74 87.61 84.51 84.55

Random Forest LASSO 80.09 79.57 76.14 77.14 75.86 73.91 78.94 77.94 74.89
ANOVA 89.92 89.81 87.64 85.87 84.14 82.92 85.24 85.89 83.86
MI 91.44 89.91 87.96 86.94 86.16 85.84 87.87 86.89 86.87
RFE 91.87 89.89 89.91 89.74 88.14 86.14 86.74 85.94 85.76

SVM LASSO 77.94 76.34 74.64 75.94 75.54 75.34 75.34 74.84 72.4
ANOVA 87.25 86.71 85.78 84.55 83.82 82.45 84.17 83.29 82.82
MI 88.67 85.94 84.91 85.78 86.62 84.64 84.84 84.02 83.58
RFE 85.89 84.19 82.58 83.34 81.89 81.74 84.4 82.56 78.8

MLP LASSO 77.72 76.37 75.77 74.82 74.37 73.67 75.72 74.61 73.72
ANOVA 86.61 85.61 83.91 85.97 84.97 84.83 87.05 85.94 85.88
MI 89.32 88.94 86.46 87.72 87.37 86.88 89.97 88.7 87.61
RFE 90.12 89.8 87.87 90.81 88.59 88.32 87.99 87.57 85.61

LASSO: Least absolute shrinkage and selection operator, ANOVA: Analysis of variance, MI: Mutual information, RFE: Recursive feature elimination, MLP: Multi-layer perceptron, 
SVM: Support vector machine, AUC: Area under the curve, ACC: Accuracy.
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Random Forest showed competitive metrics, achieving AUCs up to 
91.87% in training, but had less consistency in testing, with an AUC 
of 89.91%. SVM and MLP showed moderate performance. MLP with 
RFE reached an AUC of 90.12% in training but dropped to 87.87% 
in testing, suggesting potential overfitting or difficulties in handling 
complex features. SVM had lower overall performance, even with RFE, 
indicating it may struggle with high-dimensional features compared to 
ensemble methods like XGBoost and CatBoost.

3.2.3. DenseNet169 model

As shown in Table 5, XGBoost and CatBoost were the top-performing 
models when using DL features extracted from the DenseNet169 model, 
especially with RFE for feature selection. XGBoost with RFE achieved 
an AUC of 89.52% in training and maintained solid performance with 
88.37% in testing, along with high ACC and F1-scores. CatBoost also 
performed well with RFE, recording an AUC of 90.17% in training and 
88.39% in testing, demonstrating its ability to handle complex feature 
sets effectively.

RFE was the most effective feature selection technique, consistently 
providing the highest AUC, ACC, and F1-scores across most models. 
This showcases RFE's strength in refining and retaining the most 
informative features for optimal model performance. MI and ANOVA 
performed well but were slightly less effective than RFE. LASSO showed 
lower effectiveness, indicating it may not be ideal for high-dimensional, 
complex DL features.

Random Forest performed adequately with RFE, achieving an AUC 
of 89.48% in training but showing a slight dip in consistency during 
testing. SVM and MLP showed moderate performance. SVM with RFE 
reached an AUC of 84.5% in training, but decreased to 80.19% in 

Figure 7. ROC curve for InceptionV3 model on testing data. LASSO: Least absolute shrinkage and selection operator, ANOVA: Analysis of variance, MI: Mutual information, RFE: 
Recursive feature elimination, ROC: Receiver operating characteristic, MLP: Multi-layer perceptron, SVM: Support vector machine.

testing, indicating possible overfitting or feature-handling limitations. 
MLP with RFE performed better, with an AUC of 87.73% in training but 
lower consistency in testing at 85.48% (Figure 8).

LightGBM showed good performance with an AUC of 89.72% during 
training with RFE, though its testing AUC of 88.47% indicated slight 
variability. Overall, DL features from DenseNet169 combined with RFE 
led to significant improvements in model performance, with XGBoost 
and CatBoost standing out as the top models for classification. Table 
4 provides a detailed comparison of performance across training, 
validation, and testing sets for each model and feature selection method, 
demonstrating RFE's notable impact on enhancing classification 
accuracy and model robustness.

3.2.4. EfficientNet model

As shown in Table 6, CatBoost and LightGBM emerged as the 
top-performing models when using DL features extracted from the 
EfficientNet model, especially with ANOVA and RFE feature selection 
techniques. CatBoost paired with ANOVA excelled, achieving an AUC 
of 95.8% in training and maintaining a strong 94.33% in testing, along 
with the highest ACC and F1-scores for both datasets. LightGBM with 
RFE also performed very well, with an AUC of 94.52% in training and 
93.27% in testing (Figure 9).

RFE proved to be a consistently strong feature selection method, 
providing high AUC, ACC, and F1-scores across most models. ANOVA 
also showed similar effectiveness, especially with CatBoost, achieving 
the highest AUC and F1-score metrics. MI performed well but slightly 
trailed behind RFE and ANOVA. LASSO showed decent results but 
was less effective in handling complex DL features compared to other 
methods.



Yan et al.� Arabian Journal of Chemistry Article in Press

11

Table 5. Performance metrics (AUC, ACC, F1Score) of machine learning models with various feature selection techniques using deep learning features from the 
DenseNet169 model.

Machine learning 
models

Feature 
Selection

AUC (%) ACC (%) F1score (%)

Training Validation Testing Training Validation Testing Training Validation Testing

XGBoost LASSO 77.62 74.77 73.52 72.52 72.37 72.05 74.95 71.57 71.47
ANOVA 86.62 85.56 85.19 85.17 84.54 84.19 86.16 85.77 85.22
MI 88.22 86.19 85.79 87.22 85.89 83.87 84.68 84.47 84.05
RFE 89.52 88.39 88.37 89.5 86.32 87.37 88.37 88.02 86.57

LightGBM LASSO 75.86 75.26 72.52 72.22 71.38 71.05 74.5 69.57 69.48
ANOVA 87.85 85.35 83.49 85.75 83.83 85.59 86.52 82.77 83.59
MI 89.71 86.33 85.79 88.22 84.75 81.87 85.97 80.77 80.97
RFE 89.72 89.17 88.47 86.29 86.62 85.89 86.56 82.02 81.79

CatBoost LASSO 77.29 76.85 74.02 73.92 72.59 71.45 74.6 72.6 71.5
ANOVA 91 89.48 87.53 89.2 87.75 87.24 87.16 84.79 84.17
MI 889.01 85.53 84.39 86.22 83.55 81.47 85.58 81.47 79.97
RFE 90.17 89.19 88.39 86.59 86.4 87.35 85.22 82.12 82.16

Random Forest LASSO 78.7 77.16 73.75 74.75 73.47 71.52 76.55 75.55 72.5
ANOVA 87.53 87.42 85.25 83.48 81.75 80.53 82.85 83.5 81.47
MI 90.05 87.52 85.57 84.55 83.77 83.45 85.48 84.5 84.48
RFE 89.48 87.5 87.52 87.35 85.77 83.75 84.55 83.55 83.37

SVM LASSO 76.55 73.95 72.25 73.55 73.15 72.95 72.95 72.45 70.01
ANOVA 84.86 84.32 83.39 82.16 81.43 80.06 81.58 80.9 80.43
MI 86.28 83.55 82.52 83.39 84.23 82.25 82.45 81.63 81.19
RFE 84.5 81.8 80.19 80.95 79.57 79.35 82.51 80.17 76.41

MLP LASSO 775.33 73.98 73.38 72.43 71.98 71.28 73.33 72.22 71.33
ANOVA 85.22 83.22 81.52 83.58 82.58 82.44 84.56 83.55 83.49
MI 87.93 86.55 84.07 85.33 84.98 84.49 88.58 86.31 85.22
RFE 87.73 87.41 85.48 88.42 86.2 85.93 85.66 85.18 83.22

LASSO: Least absolute shrinkage and selection operator, ANOVA: Analysis of variance, MI: Mutual information, RFE: Recursive feature elimination, MLP: Multi-layer perceptron, 
SVM: Support vector machine, AUC: Area under the curve, ACC: Accuracy.

Figure 8. ROC curve for DenseNet169 model on testing data. LASSO: Least absolute shrinkage and selection operator, ANOVA: Analysis of variance, MI: Mutual information, RFE: 
Recursive feature elimination, ROC: Receiver operating characteristic, MLP: Multi-layer perceptron, SVM: Support vector machine.



Yan et al.� Arabian Journal of Chemistry Article in Press

12

Table 6. Performance metrics (AUC, ACC, F1Score) of machine learning models with various feature selection techniques using deep learning features from the 
efficient net model.

Machine learning 
models

Feature 
Selection

AUC (%) ACC (%) F1score (%)

Training Validation Testing Training Validation Testing Training Validation Testing

XGBoost LASSO 82.42 79.57 78.32 76.32 77.17 76.85 78.77 76.37 76.27
ANOVA 91.22 90.36 89.89 89.97 89.36 88.99 90.96 90.78 90.12
MI 92.81 91.69 90.59 92.02 90.69 88.67 89.48 89.27 88.15
RFE 92.12 91.10 92.27 92.34 91.62 90.17 91.97 89.82 88.12

LightGBM LASSO 80.26 80.46 77.32 78.42 76.18 75.85 79.3 74.37 74.28
ANOVA 92.62 90.19 88.29 90.59 88.63 89.99 91.32 87.57 87.99
MI 93.81 91.43 90.59 93.02 89.35 86.67 90.78 85.27 85.77
RFE 94.52 93.14 93.27 92.59 91.42 90.69 90.8 86.82 86.59

CatBoost LASSO 82.39 81.65 78.82 78.72 77.39 76.25 79.4 77.4 77.3
ANOVA 95.8 95.23 94.33 93.9 93.22 92.04 95.96 94.56 94.25
MI 92.81 90.33 89.19 91.02 89.35 87.27 90.78 86.27 85.77
RFE 92.9 91.41 90.98 91.39 90.20 89.15 90.02 89.92 88.96

Random Forest LASSO 82.55 81.14 78.55 79.55 78.27 76.32 81.35 80.35 78.35
ANOVA 92.35 92.32 90.05 88.28 86.55 86.33 87.65 88.3 86.27
MI 93.85 92.32 90.37 89.35 88.57 88.25 90.28 89.3 89.28
RFE 94.58 92.3 92.32 92.15 90.55 88.55 89.15 88.35 88.17

SVM LASSO 80.35 78.75 77.05 78.35 77.95 78.75 77.75 77.25 76.81
ANOVA 90.56 89.32 88.19 86.96 86.23 84.86 86.58 85.7 85.23
MI 92.08 88.63 87.32 88.19 89.03 88.05 87.25 86.43 85.99
RFE 88.3 86.65 84.99 85.75 84.3 84.15 86.81 84.97 81.21

MLP LASSO 95.63 95.32 94.9 93.9 93.78 92.18 94.13 93.02 92.9
ANOVA 90.02 88.52 86.32 88.38 87.38 87.24 89.46 88.35 88.29
MI 92.73 91.45 88.87 90.13 89.78 91.29 92.38 91.11 90.02
RFE 92.33 92.90 90.28 93.22 91 90.73 90.45 89.98 88.02

LASSO: Least absolute shrinkage and selection operator, ANOVA: Analysis of variance, MI: Mutual information, RFE: Recursive feature elimination, MLP: Multi-layer perceptron, 
SVM: Support vector machine, AUC: Area under the curve, ACC: Accuracy.

Figure 9. ROC curve for EfficientNet model on testing data. LASSO: Least absolute shrinkage and selection operator, ANOVA: Analysis of variance, MI: Mutual information, RFE: 
Recursive feature elimination, ROC: Receiver operating characteristic, MLP: Multi-layer perceptron, SVM: Support vector machine.
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LightGBM performed best with RFE, achieving an AUC of 94.52% 
in training and 93.27% in testing, demonstrating its robustness with 
feature selection. XGBoost showed strong metrics with MI, achieving an 
AUC of 92.81% in training and 90.59% in testing, indicating consistent 
performance. Random Forest performed well with RFE, reaching an 
AUC of 94.58% in training but a slight drop to 92.32% in testing.

SVM and MLP had mixed results. MLP with LASSO achieved 
unexpectedly high AUCs (95.63% in training and 94.9% in testing), 
suggesting potential overfitting or strong learning during training. 
SVM underperformed compared to ensemble models, with its best 
AUC at 92.08% in training and 87.32% in testing when using MI, 
indicating challenges with complex features. Overall, DL features from 
the EfficientNet model, especially with ANOVA and RFE, significantly 
boosted the performance of CatBoost and LightGBM. Table 5 highlights 
the comparative performance across training, validation, and testing 
datasets for each model and feature selection method, demonstrating 
the effectiveness of RFE and ANOVA in managing comprehensive 
feature sets and enhancing model performance.

3.2.5. Integrated approach

The integrated approach that combines radiomic and DL features 
from all CNN models significantly improved the performance of ML 
models, as shown in Table 6. XGBoost, LightGBM, and CatBoost 
were the top-performing models, particularly when paired with RFE 
or ANOVA for feature selection. CatBoost with ANOVA reached the 
highest training AUC of 97.73% and maintained a strong testing AUC 
of 95.26%, showing excellent generalization. XGBoost with RFE also 
performed very well, achieving a testing AUC of 96.9% (Figure 10). In 
this study, we integrated radiomic features and DL features at the feature 
level. Features were extracted from multiple CNN models (Xception, 
InceptionV3, DenseNet169, EfficientNet) along with radiomic features 

from pathological images. After combining these features, we applied 
feature selection techniques to enhance the model’s performance 
and reduce dimensionality before using them in ML classifiers. It is 
important to note that we did not perform result-level integration, 
where predictions from multiple models are combined post-prediction. 
Instead, the integration was performed before classification, during the 
feature extraction and fusion stages.

Combining radiomic and DL features presented several challenges, 
primarily due to the differences in the nature and scale of the two types 
of features. Radiomic features are handcrafted and capture low-level 
statistical properties, while DL features are learned representations 
that capture high-level abstractions of the image. To mitigate the risk 
of redundancy and conflicting information, we performed feature 
selection on both sets of features before combining them, ensuring 
that only the most informative features were retained. Additionally, 
we applied normalization and standardization techniques to harmonize 
the scale of both feature sets, facilitating their effective integration into 
the model.

RFE proved to be the most effective feature selection method for 
maximizing performance across metrics, leading to the highest AUC, 
ACC, and F1-scores. ANOVA also delivered strong results, particularly 
with CatBoost. MI showed good performance but was slightly behind 
RFE and ANOVA in consistency. LASSO had the lowest performance, 
highlighting its limitations with complex combined feature sets.

XGBoost with RFE achieved a training AUC of 96.05% and a testing 
AUC of 96.9%, with high ACC and F1-scores, showing its strong 
generalization capabilities with combined feature sets. LightGBM 
performed well with LASSO, achieving a training AUC of 96.19% and a 
testing AUC of 94.25%, although ANOVA and MI results were slightly 
lower, showing variability in the effect of feature selection. CatBoost 
was the standout model with ANOVA, achieving a training AUC of 
97.73% and a testing AUC of 95.26%, demonstrating its adaptability 

Figure 10. ROC curve for combining radiomic and deep learning features from all CNN models on testing data. LASSO: Least absolute shrinkage and selection operator, ANOVA: 
Analysis of variance, MI: Mutual information, RFE: Recursive feature elimination, ROC: Receiver operating characteristic, MLP: Multi-layer perceptron, SVM: Support vector machine.
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Table 7. Performance metrics (AUC, ACC, F1-Score) of machine learning models using an integrated approach combining radiomic and deep learning features 
from all CNN models.

Machine learning 
models

Feature 
Selection

AUC (%) ACC (%) F1-score (%)

Training Validation Testing Training Validation Testing Training Validation Testing

XGBoost LASSO 85.22 82.5 81.25 79.25 80.1 79.78 81.7 79.3 79.2
ANOVA 95.15 93.39 92.82 92.9 92.29 91.92 93.89 93.71 93.05
MI 94.74 94.25 93.52 94.95 93.62 91.6 92.41 92.2 91.08
RFE 96.05 95.7 96.9 97.27 95.55 95.1 96.9 95.75 95.05

LightGBM LASSO 96.19 95.41 94.25 95.35 94.5 94.18 96.23 94.3 93.90
ANOVA 95.55 93.74 91.22 93.52 91.56 92.92 94.25 90.5 90.92
MI 95.74 94.33 93.52 95.45 92.28 89.6 93.71 88.2 88.7
RFE 94.45 93.24 92.2 94.52 92.35 91.62 92.73 89.75 87.52

CatBoost LASSO 86.32 84.62 81.75 81.45 80.32 79.18 83.33 80.33 80.23
ANOVA 97.73 97.19 95.26 96.43 95.38 94.17 94.89 92.52 91.9
MI 96.74 93.36 92.12 93.95 92.28 90.2 93.71 89.2 89.12
RFE 93.98 92.77 91.9 93.8 92.13 90.08 92.95 91.85 90.89

Random Forest LASSO 85.48 84.07 81.48 82.48 81.2 79.25 84.28 83.28 81.28
ANOVA 94.28 94.9 92.98 91.21 89.48 89.26 90.58 91.23 90.25
MI 95.78 94.25 93.3 92.48 91.5 91.18 93.21 92.23 92.29
RFE 96.51 95.33 95.25 95.08 93.48 91.48 92.08 91.28 91.10

SVM LASSO 84.28 83.68 80.98 81.24 80.88 81.18 80.68 80.88 80.20
ANOVA 94.49 92.55 91.12 89.84 89.16 87.79 89.51 88.63 88.16
MI 96.01 91.80 90.25 91.12 91.96 90.98 90.18 89.36 88.92
RFE 92.23 89.88 87.92 88.68 87.23 87.98 89.74 87.9 84.14

MLP LASSO 83.06 82.71 81.11 80.16 79.71 80.01 81.06 79.95 79.06
ANOVA 93.95 91.87 89.25 91.31 90.31 90.17 93.39 91.28 91.22
MI 97.66 97.38 95.8 96.98 96.52 95.2 96.31 95.04 94.95
RFE 95.26 93.83 93.21 96.14 93.93 93.66 93.38 92.91 91.95

LASSO: Least absolute shrinkage and selection operator, ANOVA: Analysis of variance, MI: Mutual information, RFE: Recursive feature elimination, MLP: Multi-layer perceptron, 
SVM: Support vector machine, AUC: Area under the curve, ACC: Accuracy.

Table 8. Performance metrics (AUC, ACC, F1-score) of direct and ensemble deep learning models.

Machine learning models AUC (%) ACC (%) F1-score (%)

Training Validation Testing Training Validation Testing Training Validation Testing

Xception 88.17 87.49 86.29 82.2 82.9 80.13 83.65 82.55 82.20
InceptionV3 83.24 82.36 81.29 81.3 81.06 79.93 90.18 89.25 89.16
DenseNet169 93.23 91.72 90.16 92.37 91.18 90.23 92.9 91.33 90.81
EfficientNet 95.26 94.27 93.20 94.23 93.43 93.20 93.86 93.5 92.19
Ensemble deep learning models 97.20 96.16 94.22 96.19 96.10 95.80 96.44 95.20 93.10

AUC: Area under the curve, ACC: Accuracy.

to complex and diverse feature sets. Random Forest performed solidly 
with RFE, achieving a training AUC of 96.51% and a testing AUC of 
95.25%, although there was a slight drop in ACC and F1-scores during 
testing (Table 7).

SVM and MLP showed moderate performance compared to the 
ensemble models. MLP performed best with MI, achieving a training 
AUC of 97.66% and a testing AUC of 95.8%. SVM also performed 
best with MI but fell behind the top ensemble models. Integrating 
radiomic and DL features from all CNN models and using advanced 
selection techniques like RFE and ANOVA significantly boosts model 
performance in classification tasks. MLP and CatBoost stood out as 
the most robust models, achieving high AUCs and strong ACC and F1-
scores. Table 6 summarizes the performance metrics and highlights the 
potential of this integrated approach for high diagnostic accuracy and 
reliability in computational pathology. Among the feature selection 
methods tested, RFE outperformed others like LASSO and ANOVA due 
to its ability to iteratively remove the least important features based 
on model performance. This method is particularly well-suited for 
datasets with high dimensionality, such as the combined radiomic and 
DL features in this study.

The top features selected by our model, including Haralick 
descriptors, align with known pathological markers of gastric cancer. 
Haralick features quantify texture patterns in the tissue, which are 
often disrupted in cancerous tissues. Previous studies have shown that 
texture abnormalities correlate with tumor heterogeneity and cellular 
architectural changes, both of which are common in gastric cancer. The 
relevance of these features supports their selection as key discriminative 
factors for cancer classification.

3.2.6. Direct and ensemble deep learning models

From Table 8, it is evident that EfficientNet outperformed other 
standalone DL models, achieving the highest AUC, ACC, and F1-scores 
among individual models. It recorded an impressive training AUC of 
95.26% and maintained strong generalization with a testing AUC of 
93.20%. DenseNet169 also performed well, achieving a training AUC 
of 93.23% and a testing AUC of 90.16%, demonstrating consistent 
classification performance (Figure 11).

Xception and InceptionV3 showed comparatively lower performance. 
Xception reached an AUC of 88.17% in training and 86.29% in testing, 
while InceptionV3 recorded an AUC of 83.24% in training and 81.29% in 
testing, indicating moderate capability in handling classification tasks. 
The ensemble approach, which combines outputs from multiple CNN 
models, performed best overall. It achieved the highest training AUC of 
97.20% and maintained a strong testing AUC of 94.22%. The ensemble 
also reached high ACC (95.80% in testing) and F1-scores (93.10% 
in testing), showcasing its ability to use the strengths of individual 
models for enhanced performance. EfficientNet stands out as the most 
effective individual model, with excellent accuracy and generalization. 
DenseNet169 also showed strong and reliable performance. However, 
the ensemble model outperformed all standalone models, demonstrating 
that combining multiple architectures can capture a broader range of 
features and improve classification robustness and accuracy.

The provided heatmaps visualize the q-values for different ML 
models and feature selection methods across various scenarios, including 
radiomic features, DL features from different CNN architectures, and 
combinations of these features (Figure 12). The heatmaps reveal a clear 
pattern where models like CatBoost, LightGBM, and XGBoost consistently 
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Figure 11. ROC curve for ensemble deep learning models on testing data. LASSO: Least absolute shrinkage and selection operator, ANOVA: Analysis of variance, MI: Mutual 
information, RFE: Recursive feature elimination, ROC: Receiver operating characteristic, MLP: Multi-layer perceptron, SVM: Support vector machine.

Figure 12. Comparison of Q-values for different machine learning models and feature selection methods in radiomic and deep feature analysis. LASSO: Least absolute shrinkage and 
selection operator, ANOVA: Analysis of variance, MI: Mutual information, RFE: Recursive feature elimination, ROC: Receiver operating characteristic, MLP: Multi-layer perceptron, 

SVM: Support vector machine.
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show low q-values, indicating statistically significant performance across 
feature selection methods such as ANOVA, LASSO, MI, and RFE.

DL features from EfficientNet and DenseNet169 stand out with 
consistently low q-values, highlighting their strength in capturing 
essential image characteristics for classification. Ensemble models 
showed particularly strong results, achieving the lowest q-values 
compared to individual models, showcasing their ability to combine 
and utilize the strengths of various CNN feature sets effectively. RFE 
and ANOVA were found to be the most effective feature selection 
methods, maintaining strong statistical significance across different 
model types. In contrast, LASSO had slightly higher q-values in some 
cases, indicating less reliability in handling complex feature sets. Direct 
CNN models exhibited lower performance than ensemble and hybrid 
approaches due to their reliance on a single architecture, limiting their 
ability to capture diverse image characteristics. Ensembles leverage 
the strengths of multiple models, while hybrids approach integrated 
radiomic features, enhancing robustness. Further optimization of direct 
CNN models could include attention mechanisms or training on larger 
datasets to improve their generalization capabilities.

Overall, the integrated approach that combines radiomic and 
CNN-extracted deep features demonstrated consistently low q-values, 
confirming the value of multimodal feature integration for improving 
classification accuracy and reliability in computational pathology tasks.

To assess the statistical significance of performance differences 
between the various ML models with different feature selection 
techniques, we performed a DeLong test. The models compared include 
XGBoost, LightGBM, CatBoost, Random Forest, SVM, and MLP, each 
evaluated with different feature selection methods such as LASSO, 
ANOVA, MI, and RFE, across multiple datasets (radiomic and DL 
features from different CNN models). Specifically, we compared the 
AUC values from Table 2 to Table 8 for the validation and testing sets.

For instance, when comparing the performance of XGBoost with RFE 
feature selection against XGBoost with ANOVA feature selection across 
the various DL models (e.g., Xception, InceptionV3, DenseNet169, 
EfficientNet), we observed substantial differences in AUC scores, with 
the RFE method typically outperforming ANOVA. The DeLong test was 
performed to evaluate whether these observed differences in AUC are 
statistically significant. The results indicated that the differences in 
AUC values between XGBoost with RFE and XGBoost with ANOVA, as 
well as other model comparisons (e.g., LightGBM vs. CatBoost), were 
significant in most cases, with p-values < 0.05, suggesting that the 
choice of feature selection technique notably influences the model's 
performance.

The DeLong test further confirmed that ensemble DL models, 
particularly the combination of features from all CNN models, 
consistently outperformed individual models, with AUC values reaching 
97.20% on the testing set. This statistical analysis offers robust evidence 
of the significant performance improvements achieved through feature 
selection and model ensemble techniques.

3.3. Discussion

This study introduces an innovative framework that integrates 
radiomic and DL features extracted from pathology WSIs and evaluated 
through an ensemble of ML models. Our approach significantly 
improves gastric cancer grading, achieving high predictive accuracy in 
terms of AUC, ACC, and F1-scores. By combining CNN architectures 
like Xception, InceptionV3, DenseNet169, and EfficientNet with 
radiomic features, we leverage the strengths of both traditional and 
DL methods to enhance model performance and clinical relevance. 
Considering the computational demands and workflow compatibility of 
our framework, we envision it being deployed in real-world pathology 
labs with optimizations for GPU or CPU inference, ensuring efficient 
use of resources during the prediction phase. For the training phase, 
cloud-based solutions or dedicated hardware accelerators could further 
reduce computational bottlenecks. The integration of our framework 
with existing digital pathology platforms would allow pathologists 
to seamlessly incorporate our model into their workflow, providing 
decision support without disrupting current practices. The proposed 
method can be extended to identify additional clinically relevant 
features, such as tumor margin clarity and lymphovascular invasion, 

by adapting the feature extraction process and incorporating specific 
annotations. This extension will be explored in future studies to 
enhance the model's clinical applicability and provide deeper insights 
into pathological characteristics.

A study by Tan et al. [31] on radiopathomics for gastric cancer 
staging using CT and WSI features, which achieved an AUC of 0.951 
in training and 0.837 in testing; our ensemble model surpassed these 
results with a training AUC of 97.20% and a testing AUC of 94.22%, 
demonstrating superior classification power through a multimodal 
approach. Cao et al. [32] study using multi-instance learning (MIL) 
focused on identifying cancerous regions in WSIs and achieved high 
accuracy. In contrast, our method directly extracts features from 
multiple CNNs, avoiding complex tile-level aggregation and supporting 
higher-level classification tasks with an ensemble approach, achieving 
comparable or better accuracy.

Chen et al. [33] work on enhancing TNM staging for prognosis with 
pathomics showed clinical utility, but our model, integrating radiomics 
and Dl features, achieved a training AUC of 97.73% and a testing AUC 
of 95.26%, surpassing single-focus approaches. The Wang et al. [34] 
DL model for gastric adenocarcinoma, trained on The Cancer Genome 
Atlas, achieved over 90% accuracy. Our approach expands on this by 
combining DL and radiomic features, resulting in a more diverse and 
robust model with consistently high validation and testing scores.

Huang et al. [35] AI models for diagnosis matched expert pathologists 
with a 0.920 accuracy in external validation. Our model goes further by 
integrating DL features from multiple CNNs and radiomics, boosting both 
accuracy and robustness. Jeong study [36] on radiomic classification for 
gastric tumors highlighted logistic regression as an effective method, 
but our approach surpasses this by using ensemble models that combine 
radiomic and DL features for better predictive accuracy.

Despite our promising results, there are limitations to our approach:

1.	 Data heterogeneity: Differences in staining, scanning, and image 
quality across institutions may impact model generalizability. 
Future work should involve multi-institutional datasets to validate 
the model's consistency.

2.	 Feature extraction complexity: The combination of radiomic and 
DL features adds complexity, requiring significant computational 
resources and expertise. Future studies could focus on simplifying 
this process through automation.

3.	 Clinical integration challenges: Integrating such models into current 
clinical workflows may be difficult due to compatibility issues and 
training needs. Collaboration with IT developers and pathologists to 
create user-friendly tools would help address these challenges.

Future directions:

The dataset includes a representative range of gastric cancer 
grades and histological variations but does not fully encompass rare 
subtypes. This limitation may affect the generalizability of the model 
to uncommon cases. Future studies will aim to incorporate additional 
data from multiple institutions, including rare subtypes, to enhance the 
robustness of the framework.

Automated feature extraction: Develop streamlined, automated 
processes to simplify workflows.

Efficient architectures: Explore lightweight models to reduce 
computational costs.

Adaptive learning: Implement transfer learning for better adaptation 
to new data.

Advanced regularization: Use techniques like elastic net and Bayesian 
optimization to combat overfitting and improve model stability.

4. Conclusions

Our study introduces a comprehensive framework for gastric 
cancer grading that integrates radiomic and DL features with advanced 
ensemble modeling to achieve outstanding predictive performance. 
The findings highlight the importance of feature diversity and strategic 
selection in boosting classification accuracy. Although challenges such 
as data variability and computational complexity remain, the suggested 
improvements point towards enhanced generalizability and smoother 



Yan et al.� Arabian Journal of Chemistry Article in Press

17

clinical integration. This work sets a new standard in computational 
pathology, providing a solid base for future research focused on 
multimodal data fusion and real-world clinical use.
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