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Abstract Since disinfection by-products are a growing concern, it is important to know their quan-

tities in water treatment plants before they are released to the public. As a result, there is a require-

ment for constant monitoring of disinfection by-products (DBPs), which can have major

consequences for human health and productivity. Consequently, in previous studies, several models

for predicting disinfection byproduct formation in drinking water have been developed which were

either linear/log-linear, hybrid or neural network (radial basis function). In this study, an adaptive

neuro-fuzzy inference system (ANFIS) is proposed for predicting trihalomethane levels in real dis-

tribution systems. To train and verify the proposed model, 24 sets of data were used, including

THMs levels (TCM, BDCM, DBCM and T-THM levels) and five parameters (pH, temperature,

UVA254, residual chlorine, and dissolved organic carbon). As compared to response surface mod-

eling (RSRM) coefficient of determination, R2 is between 0.727 < R2 < 0.886, average absolute

deviation, AAD = 4.07–10.99 %), MAE = 0.01 – 0.978, and RMSE = 0.017 – 1.449. Further,

ANFIS for THMs (T-THMs, TCM, BDCM, and DBCM) prediction consistently show higher

regression coefficients between 0.956 < R2 < 0.989, average absolute deviation, AAD = 0.350

– 1.977 %), MAE = 0.002 – 0.133, and RMSE = 0.007 – 0.401, Consequently, based on the
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Nomenclature

AAD Average absolute devia

ANN Artificial neural networ
ANFIS Advanced neuro-fuzzy
BDCM Bromodichloromethane

BP Backpropagation
DBCM Dibromochloromethane
DBPs Disinfection by-produc

DOC Dissolved organic carbo
FIS Fuzzy inference system
FL Fuzzy logic

GC Gas chromatography
HAAs Haloacetic acids
HAN Haloacetonitriles
MAE Mean absolute error
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statistical indices obtained, ANFIS, on the other hand, proved to be effective for predicting the for-

mation of THMs, and thus allowed improved DBPs monitoring in water treatment systems.

� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
tion

k
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n

MFs Membership functions

MRE Mean regression error
MS Mass spectrometry
MSE Mean square error

R2 Regression
RBF Radial basis function
RMSE Root mean square error

RSM Response surface model
RSRM Response surface regression model
THMs Trihalomethanes

TCM Trichloromethane
TBM Tribromomethane
UVA Ultraviolet absorbance
WTPs Water treatment plants
1. Introduction

When it comes to preventing waterborne infections, disinfec-
tion of water is crucial, but can also pose major health hazards,
with its creation of disinfection by-products (DBPs) that could
lead to birth defects, genotoxicity, and even cancer (Chaves,

Guerreiro, Cardoso, Benoliel, & Santos, 2019, DeMarini,
2020, Kali et al., 2021, Kimura, Cuthbertson, Byer, &
Richardson, 2019, Srivastav, Patel, & Chaudhary, 2020, C.

Zhang and Lu, 2021). The most widely used disinfectants cur-
rently are chlorine and its compounds due to their availability,
relatively low cost, and high oxidative strength (Chaukura

et al., 2020, Ding et al., 2019, Du et al., 2017, Gopal,
Tripathy, Bersillon, & Dubey, 2007). The vast majority of
Nigeria’s drinking water treatment plants (DWTPs) disinfect

water with chlorine (Anthony, Ojemaye, Okoh, & Okoh,
2021).

Chlorine can form certain DBPs when it reacts with organic
and inorganic precursors in water. In drinking water disinfec-

tion, there are a large number of DBPs (suspended solids),
mostly chlorinated organic suspended solids, particularly tri-
halomethane (THMs such as trihalomethanes (T-THM) tri-

chloromethane (TCM), bromodichloromethane (BDCM),
and dibromochloromethane (DBCM)), haloacetic acids
(HAA), and haloacetonitriles (HAN) (Ding et al., 2019,

Kimura et al., 2019, Li and Mitch, 2018, Xiaoxiao Zhang
et al., 2020, Zhou et al., 2019). Monitoring the levels of cyto-
toxic, genotoxic, and carcinogenic DBPs in drinking water is
essential to the better control and protection of public health.

Drinking water monitoring can be a challenging and time-
consuming task that involves capital-intensive analysis with
instruments such as gas chromatography (GC) and GC/mass

spectrometry (MS) as well as complex pre-treatment proce-
dures (Bond, Templeton, Rifai, Ali, & Graham, 2014, Li
et al., 2016, Li and Mitch, 2018). Therefore, a special focus

has been given to developing models that would estimate
DBP formation, potentially providing a more effective alterna-
tive to standard monitoring (Chowdhury, 2009, Gougoutsa,

Christophoridis, Zacharis, & Fytianos, 2016, Lin et al., 2018,
Sohn, Amy, Cho, Lee, & Yoon, 2004, Uyak, Ozdemir, &
Toroz, 2007). However, the conditions for DBPs formation
in drinking water are rather complex, since water characteris-

tics such as (dissolved organic carbon (DOC), ultraviolet
absorbance at 254 nm (UVA254), bromide ion concentration
(Br pH, nitrite, ammonia, etc), and chlorination conditions

(chlorine dose, temperature and reaction time) play a major
role (Hong et al., 2020, Neale and Leusch, 2019, Sadiq and
Rodriguez, 2004a, Sohn et al., 2004, Uyak et al., 2007). Since

the complex connection makes it hard to predict DBPs forma-
tion with various factors, hence, this is the primary focus of
DBPs studies. Models presented here were developed by chlo-

rinating raw water, they were site-specific and based on careful
laboratory evaluations (source water) or treated water from a
treatment plant (Chowdhury, 2009, Singh and Gupta, 2012).
SigmaPlot software was used to study the relationships

between Br/DOC, Br/SUVA, Br/UVA, and BSF by Zheng
et al. (2020). Water quality parameters and HAA formation
were examined using Pearson correlations. Hence, linear mod-

els do not fit well the complex non-linear relationships among
the various factors that influence the formation of DBPs
(Kulkarni and Chellam, 2010, Singh and Gupta, 2012). Thus,

alternative approaches to overcome these limitations are quite
desirable. An artificial neural network (ANN) has been com-
monly regarded as a nonlinear estimator (Okoji et al., 2021a,
2021b, Singh and Gupta, 2012). Artificial intelligence may pro-

vide an attractive alternative to predict DBP formation in
drinking water given the complex non-linear relationships
between DBP formation and various factors, as well as the

heterogeneity of drinking water contaminants (Xu et al.,

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2022). ANNs are artificial intelligence approaches that simu-
late the nervous system of a human brain through the use of
the information processing network (Iliyas, Elshafei, Habib,

& Adeniran, 2013). Artificial intelligence offers distinct advan-
tages over linear regression since it can approximate any func-
tion with any accuracy, as well as its ability to learn, process

parallel data, and resist noise (Iliyas et al., 2013)
Consequently, an adaptive neuro-fuzzy inference system

(ANFIS) and the response surface method (RSM) are widely

accepted as non-linear estimation techniques (Deng et al.,
2021, Okoji et al., 2021a, 2021b, Sadiq and Rodriguez,
2004b, Singh and Gupta, 2012). As a result of the complicated
nonlinear relationships between the formation of DBPs and

various factors, with the heterogeneous nature of drinking
water contaminants. Both ANFIS and RSM could provide
an alternative approach to predict DBPs. In comparison with

linear regression, ANFIS offers several important advantages,
such as their ability to approximate any function accurately
and learning, and data noisy resistance capabilities

(Dolatabadi, Mehrabpour, Esfandyari, Alidadi, & Davoudi,
2018, Nabavi-Pelesaraei, Rafiee, Mohtasebi, Hosseinzadeh-
Bandbafha, & Chau, 2019, S�ahin and Erol, 2017). Despite

the great potential of ANFIS and RSM for predicting DBPs
formation owing to these advantages, only a few cases have

been reported for DBPs prediction using neural networks.
Based on the literature, six studies have been published on
the prediction of DBPs with neural networks: an

autoencoder-neural network (Peleato, Legge, & Andrews,
2018) and a hybrid genetic algorithm-based ANN (Moradi,
Chow, Cook, Newcombe, & Amal, 2017) were applied in

two, while BP ANNs were also used in the remaining four
studies. (Deng et al., 2021, Kulkarni and Chellam, 2010, H.
Lin et al., 2020, Singh and Gupta, 2012) and radial basis func-

tions artificial neural network (Deng et al., 2021, Hong et al.,
2020, H. Lin et al., 2020). The prediction of trihalomethane
occurrence in tap water using RBF ANN considering the
water quality parameters (Xu et al., 2022). The results of the

study suggested that RBF ANNs are capable of establishing
a relationship between THM production and the four param-
eters of water quality studied.

Despite the high potential of both ANFIS and RSM in
DBP prediction, a review of the literature shows that little or
no systematic studies have been conducted on their applica-

tion. As a result of this study, adaptive neuro-fuzzy inference
system (ANFIS) and response surface methods (RSM) have
been applied to systematically explore the feasibility of predict-

ing THMs such as trihalomethane (T-THM) which includes
trichloromethane (TCM), bromodichloromethane (BDCM),
and dibromochloromethane (DBCM) in actual production
systems to develop new technology for predicting harmful sub-

stances in water. Hence, the present work contributes signifi-
cantly to the fields of disinfectant by-product through
prediction modeling and application of statistical regression

with soft computing techniques to scientific problems: (ii) in
addition, the interactive effects specific to different monitoring
parameters were investigated via contour diagrams using

ANFIS model code; and (iii) besides the application of
ANFIS, as a modeling approach, an improved framework of
RSRM modeling equation was also proposed for the disinfec-
tant by-product (THMs).
2. Materials and method

These water treatment plants (WTPs) were built either through
traditional methods (coagulation-sedimentation-filtration-chl

orination) or through a chemical process (chlorine-chlorine,
chlorine-ultraviolet). This study made use of codes to protect
the corporate identities of the companies concerned. Water

samples were collected from twenty-four (24) sources at each
water treatment plant (WTP) in 2017 and 2018. To ensure
there are no air bubbles and no headspace, the glass tubes
labeled 50 mL were filled with water to overflowing and topped

off with screw caps covered with Teflon septa. To limit the fur-
ther production of disinfection by-products (DBPs) after col-
lection, each vial was added 25 mg of ascorbic acid as a

reducing agent (Benson et al., 2017).
The parameters of water quality such as pH, temperature,

residual free chlorine, DOC, and UVA are replicated twice

for each sample were determined based on a standard
method (Apha, 1998). There is literature available for some
characterization items that can assist in the operation of

those items Liquid-liquidquid extraction and GC/ECD
method were used according to EPA 551.1 (USEPA, 2006),
to obtain the THMs (TCM, BDCM, DBCM, and TBM).
The data of the DBPs and parameters of water quality are

presented in Table S-1.

3. Modeling methodology

ANFIS and RSM predictive models were developed having the
input variables such as reaction temperature, water pH (pH),
UVA254, residue chlorine (Cl2), and DOC concentration. The

output of the model was disinfection by-products (tri-
halomethanes – THMs) such as trihalomethanes (T-THM) tri-
chloromethane (TCM), bromodichloromethane (BDCM), and

dibromochloromethane (DBCM).

3.1. Response surface methods model (RSRM)

Considering various parameters for the prediction of DBP for-
mations, the most representative conventional method is the
multiple linear and log-linear regression (MLR).
Consequently, response surface modeling (RSM) will be used

to correct the independent variables with the dependent
variables. The three most commonly used are Box-Behnken,
central composite design (CCD), and factorial design methods.

Five-level composite designs are used to merge axial points
during experimental runs, while Box-Behnken and factorial
composite designs are used on three-level designs. The Minitab

17 statistical software was used to evaluate the response sur-
face method model. Additionally, the interactive impacts of
the independent input variables on the (DBPs) were deter-

mined. Several independent variables were studied: reaction
temperature (T), water pH (pH), UVA254, residue chlorine
(Cl2), and DOC concentration.

According to Eq. (1), a quadratic model has been utilized to

describe how the DBPs (Y) system responds to independent
input variables. The input variables were reaction temperature
x1ð Þ, water pH (pH) x2ð Þ, UVA254 x3ð Þ, residue chlorine (Cl2)

x4ð Þ, DOC concentration x5ð Þ.
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Y ¼ d0 þ d1X1 þ d2X2 þ d3X3 þ d4X4 þ d5X5 þ d11X
2
1

þ d22X
2
2 þ d33X

2
3 þ d44X

2
4 þ d55X

2
5 þ d12X1X2

þ d13X1X3 þ d14X1X4 þ d15X1X5 þ d23X2X3

þ d24X2X4 þ d25X2X5 þ d34X3X4 þ d35X3X5

þ d45X4X5 þ � ð1Þ
where d0 is the offset term or model constant; d1; d2; d3; d4; d5
are the linear or first-order terms; d11; d22; d33; d44; d55 are the
pure quadratic or squared terms;
d12; d13; d14; d15; d23; d24; d25; d34; d35; d45 Here are the quadratic

function’s interactive terms; � is the random error term that
makes differences between experimental and predicted results
uncertain. The correlation coefficient (R2) value and was used

to establish whether the quadratic model was acceptable.

3.2. ANFIS modeling of the DBPs

Fuzzy logic (FL) is a logical concept that converts linguistic
terms into mathematical symbols by modifying logical opera-
tions. The FL method employs specific if-then rules and elim-
inates the need to apply crisp values in a physical process that

involves qualitative or uncertain terms. However, obtaining a
detailed and precise view of the problem is essential
(Karkevandi-Talkhooncheh et al., 2017). Simulating a prob-

lem with the Fuzzy logic (FL) concept alone may not have
resulted in the right result for several reasons, such as differ-
ences in expert opinions, lack of knowledge, or errors

(Alahyar, Ansar, & Adel, 2017). Alternatively, artificial neural
networks (ANNs) are capable of supervised learning based on
data and can be utilized. Both FL and ANN techniques are

combined into ANFIS. To perform the hybrid process, Jang
(1993) proposes introducing membership functions (MFs) that
are then optimized by applying ANNs and fuzzy if-then rules
through a specific architecture called the Fuzzy Inference Sys-

tem (FIS). The ANFIS model for predicting DBPs in this
study was proposed using the programming language of
MATLAB 2013b and expected to give better outcomes when

compared with RBF ANNs for nonlinearity purpose. For
instance, reaction temperature (T), water pH, UVA254, residue
chloride (Cl2), and DOC concentration were listed as input fac-

tors and THMs (TCM, BDCM, DBCM, and T-THM) as out-
put factors. In addition, an adequate number of clusters must
be provided for ANFIS to be able to provide sufficient predic-
tion capabilities. The developed ANFIS model uses fuzzy c-

means clustering to form a fuzzy inference system. The training
method is dependent on how much data are assessed. To deter-
mine the number of rules and membership functions for the

antecedents and consequents, the rule extraction process uses
the Fuzzy c-means (FCM) clustering function or genfis3.
Additionally, the Fuzzy c-means (FCM) clustering methods

(genfis3) were utilized for optimizing the results. In this pro-
cess, a set of rules has been extracted that model the data
and generate an initial FIS for the ANFIS training procedure.

MATLAB’s genfis3 command creates a fuzzy C-means cluster-
ing structure that can be used to extract a set of rules and
membership functions that model the training data of the
fuzzy system using an ANFIS architecture. The number of

clusters to use in modeling the data can be controlled with this
function. In this study, 20 experimental datasets were used as
training data (train data) for the neuron-based fuzzy inference
system to train and test the ANFIS model. As a result of the
model training process, the most accurate predictive model
was discovered. The remaining 4 test data observations were

used to create the best prediction model. Fig. 1 shows the
ANFIS model architecture with five input independent vari-
ables and four output dependent variables.

3.3. Performance criteria

An analysis of the ANFIS and RSRM models was performed

using statistical goodness-of-fit parameters. A good indicator
for the correlation efficiency of the model is its coefficient of
determination. Furthermore, some statistical models were used

to estimate how much error there was between the anticipated
and experimental values. As shown in Eqs. (2)–(6), they are the
mean square error (MSE), the root mean square error
(RMSE), the mean absolute error (MAE), and the average

absolute deviation (AAD) (Jian, Hongdong, & Jingjing,
2011, Vu-Bac, Lahmer, Zhang, Zhuang, & Rabczuk, 2014).
4. Results and discussion

4.1. Predictions of DBPs with RSM models

Water quality models are built by selecting parameters by
examining their correlations with THMs in step-wise regres-

sion. Consequently, in most cases, THMs are determined pri-
marily by entering the input parameters into the models
(Hong et al., 2016). Although DOC and UVA254 did not

occur in raw water (water before disinfection), they appear
to be closely related, according to the references (H. Lin
et al., 2020). Organic and inorganic precursors for the forma-
tion of DBP still exist as indicators in the distribution system

using DOC/UVA254.
Predictive model and response surface regression for each

DBPs

T� THMs ¼ �2234� 25Tempþ 763pH

� 28956UVA254 � 807Cl2 þ 292DOC

þ 0:54Temp2 � 53:4pH2 þ 2218UVA2
254

þ 13:3Cl22 þ 1:4DOC2 � 0:9Temp � pH
þ 174Temp �UVA254 þ 12:1Temp � Cl2
� 0:87Temp �DOCþ 3436pH �UVA254

þ 67pH � Cl2 � 37pH �DOC

� 209UVA254 � Cl2 � 290UVA254 �DOC

þ 3Cl2 �DOC ð7Þ

TCM ¼ �2251� 22Tempþ 752pH� 27631UVA254

� 721Cl2 þ 270DOCþ 0:52Temp2 � 51:8pH2

þ 925UVA2
254 þ 12:9Cl22 � 1:1DOC2 � 1:3Temp

� pHþ 155Temp �UVA254 þ 11:0Temp � Cl2
� 0:60Temp �DOCþ 3301pH �UVA254 þ 59pH

� Cl2 � 35pH �DOC� 100UVA254 � Cl2
� 120UVA254 �DOCþ 3Cl2 �DOC ð8Þ



Fig. 1 ANFIS model architecture with five input variables (Okoji, Anozie, & Omoleye, 2022).

Fig. 2 R2 and correlation for Model 1 to 4 of Disinfection by-product (DBPs) of water treatment plant.
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Table 2 Evaluation models based on statistical analysis.

Equations Number

R2 ¼ 1�
Pn

i¼1
Yi;pre�Yi;expð Þ2Pn

i¼1
Yi;exp�Ymð Þ2

(2)

MSE ¼
Pn

i¼1
Yexp�Ypreð Þ2
n

(3)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Yexp�Ypreð Þ2
n

r
(4)

MAE ¼ 1
n

Pn
i¼1b Yexp � Ypre

� �c (5)

AAD ¼ 1
n

Pn
i¼1

b Yexp�Ypreð Þc
Yexp

� �
x100

(6)
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DBCM ¼ �33:6� 2:37Tempþ 19:5pH� 1013UVA254

� 36:9Cl2 þ 16:6DOCþ 0:0141Temp2

� 1:796pH2 þ 3550UVA2
254 þ 0:251Cl22

þ 0:936DOC2 þ 0:204Temp � pHþ 14:16Temp

�UVA254 þ 0:467Temp � Cl2 � 0:141Temp

�DOCþ 93:3pH �UVA254 þ 3:48pH � Cl2
� 1:84pH �DOC� 74:0UVA254 � Cl2
� 120:8UVA254 �DOC� 1:23Cl2 �DOC ð9Þ

BDCM ¼ 51� 1:09Temp� 8:1pH� 313UVA254

� 49:0Cl2 þ 5:5DOCþ 0:0014Temp2

þ 0:23pH2 � 2258UVA2
254 þ 0:136Cl22

þ 1:56DOC2 þ 0:123Temp � pHþ 5:2Temp

�UVA254 þ 0:583Temp � Cl2 � 0:121Temp

�DOCþ 42pH �UVA254 þ 4:54pH � Cl2
� 0:55pH �DOC� 35UVA254 � Cl2
� 49UVA254 �DOC� 0:66Cl2 �DOC ð10Þ

Based on the current research, TCM has a positive relation-
ship with UVA254 aside from Temperature and pH considering
model 2 (Eq. 3), while BDCM has a positive relationship with

DOC aside from Temperature and pH with model 4 (Eq. 5).
The result suggests that aromatic organic matter might play
an important role in TCM formation. Conversely, the organic

matter with UV absorbance has little effect on BDCM yields,
and DOC is a more accurate marker for BDCM precursors.
The significant high correlation between UVA254 and T-

THM in model 1 (Eq. (7)) showed the dominant fraction of
TCM to be responsible for this (Table 1). Additionally,
TCM and T-THMs levels are negatively influenced by temper-
ature (Temp), contrary to the prevailing perception that a high

temperature will usually increase the yield of THMs (Model 1
and 5). (Hong et al., 2016). With respect to of this phe-
nomenon, the temperature in this study captured both disinfec-

tion temperatures as well as seasonal changes. Therefore, the
seasonal variation in organic precursors is likely responsible
for the relationship between temperature and THMs.Table 2

Even though there is an apparent correlation of the input
parameters and THMs level, the R2 (the goodness fits) of the
Table 1 THM concentrations and corresponding water quality par

Parameter No. of data Mean

DBPs TCM (lg/L) 24 24.58

BDCM (lg/L) 24 0.4

DBCM (lg/L) 24 0.22

T-THMs (lg/L) 24 25.2

Temperature (oC) 24 25.9

pH 24 7.20

UVA254 (lg/L) 24 0.015

Cl2 (lg/L) 24 0.33

DOC (lg/L) 24 0.79
considered models is quite moderate (R2 = 0.63–0.87, model
1–4) are moderately acceptable. Based on these results, it seems

that the regression model may be suitable for predicting THM
levels in water treatment system. However, natural treatment
plant water disinfection is generally carried out under condi-

tions in which some parameters, like temperature, do not
change continuously, and disinfection time is difficult to mea-
sure. Additionally, water with high DOC and UVA254 levels

may not be connected to DBPs as water with low DOC and
UVA254 are often used in this type of laboratory simulation
model. Consequently, regression is not a good method of pre-
dicting DBP levels in water treatment plants, making alterna-

tive methods fundamentally necessary.

4.2. ANFIS models for predicting THMs level

The plots of the Gaussian Membership Functions (MF) for
each of the five inputs (reaction temperature, water pH (pH),
UVA254, residual chlorine (Cl2), and DOC concentration)

are displayed in Fig. 1. In Table S-2 are the results of the pre-
dictions of T-THMs, TCMs, BDCMs, DBCMs and ANFIS
models. While, Fig. 3 presents a plot of the predicted values

and measured values by ANFIS. The calculated R2 for each
DBPs from the model were 0.9780, 0.9894, 0.9553, and
0.9840 respectively. The near-unity values of R indicate agree-
ment between predictions and experimental results. Conse-

quently, R2 values reflects 97.8 %, 98.9 %, 95.5 % and 98.4
%, an explanation can be given by the model for minimal vari-
ameters in DWTP.

Maximum Minimum SD Mode

31.21 18.5 2.82 22.59

0.65 0.15 0.13 0.35

0.31 0.16 0.051 0.18

31.97 19.07 2.83 –

30.0 24.0 1.73 24.0

7.71 6.92 0.18 7.18

0.038 0.001 0.01 0.005

1.51 0.05 0.32 0.28

2.02 0.03 0.53 0.61



Fig. 3 Plot of predicted vs measured values (a) T-THMs (b) TCM (c) DBCM (d) BDCM.
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ation between measured values and predictions. In addition, it
can also be an indication that the model is well fitted with R2

showing high value.

4.3. An evaluation of water quality characteristics

Consequently, most parameters of water quality showed sea-
sonal variation. In general, temperatures, pH levels, DOC val-

ues, and UVA concentrations were higher in hot weather than
in cold weather. Despite the fact that water treatment tech-
nique has not changed over time, the seasonal variation in

above parameters in the water treatment plant is likely due
mainly to variations in source water quality. Source water usu-
ally has a higher precipitation rate and more conducive condi-

tions for bacteria and algae to grow at warm temperatures.
According to the present study, water runoff and biogrowth
in the plant are mostly responsible for the higher levels of
DOC values, UVA254, and pH. As a result of algal growth,
both extracellular and intracellular organic matter can be
released, contributing to DOC and UVA254 (Hong et al.,
2013), a rise in water pH is caused by hydroxyl ions released
by algal photosynthesis during the warm season.
4.4. Parameter interaction using ANFIS

Utilizing three dimensional surface and contour plots repre-

sented in Figs. 4 to 11, which allow visual observations, the
interactions between the five parameters of water disinfection
by-products (T-THM, TCM, BDCM and DBCM) were

examined.

4.4.1. Effect of DOC and UVA254

The contour diagram of the relationship between DOC and

UVA254 on T-THMs and TCM are all significant as depicted
in Figs. 4 and 5 respectively. The effects are consistent with



Fig. 4 The interaction effects between DOC (lg/L) and UVA (lg/L) on T-THMs (lg/L).

Fig. 5 The interaction effects between DOC (lg/L) and UVA (lg/L) on TCM (lg/L).
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past works, (Hong et al., 2016). From displayed contour curve,
it is very obvious that the organic matter (DOC) and UVA254

were the most important factors contributing to the presence
of T-THMs and TCM in drinking water. Furthermore,
Hong et al. (2020), found that DOC and UVA254 had equally
important roles in the development of THMs in DWTP, par-

ticularly UVA254 as an indicator of the amount of aromatic
carbon. However, according to studies conducted by (H. Lin
et al. (2020)), UVA254 in DWTP showed a good sign for T-

THMs or TCMs display. This claim also reflected on the con-
tour diagram as showed in Figs. 6 and 7 respectively and which
is rightly supported by the studies of Hu, Song, & Karanfil

(2010) and Hong et al. (2013). Basically, bromide levels are
considered to be an important factor in determining the forma-
tion of both BDCM and DBCM.
4.4.2. Effect of pH and temperature (oC)

Figs. 8 and 9 depicts the contour diagram of the relationship
between pH and Temperature (oC) on T-THMs and TCM
(lg/L) value. However, Fig. 3 shows how the parameters inter-
acted, with a significant effect on the variation of T-THMs and

TCM (lg/L) value of the DBPs. The T-THMs and TCM (lg/
L) value of the DBPs were highest at the highest pH and Tem-
perature (o C). As both the pH and Temperature (o C) increase,

the DBPs value of the T-THMs and TCM (lg/L) increases as
depicted in Figs. 8 & 9. This occurred when the temperature
was higher than 25� C and increase in T-THMs and TCM were

correlated with pH increase as well. Hence, the interaction
between temperature and T-THMs and TCM emerged as a
result of the collective effect of temperature and seasonal

change in water quality on T-THMs and TCM values (Xiaoye



Fig. 6 The interaction effects between DOC (lg/L) and UVA (lg/L) on BDCM (lg/L).

Fig. 7 The interaction effects between DOC (lg/L) and UVA (lg/L) on DBCM (lg/L).
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Zhang, Tian, Zhang, Bai, & Zhang, 2019). As a result of water
chlorination more commonly occurring in this dispensation,
br- also has less significant effect on T-THMs and TCM con-

centrations. Consequently, Figs. 10 & 11 showed bromine
THMs (BDCM and DBCM) were very low in quantities,
whose formations are thought to be greatly affected by bro-

mine concentrations. In general, the higher the Br/UVA254

ratio, the higher the bromine substitution factor (BSF). Con-
sidering that temperature can be used as a proxy for bromide

level to some degree, and UVA is already included in the
model, the key parameters influencing Br-THM formation
were included in the ANFIS model. Hence, both ANFIS and
RSMR models are able to predict BDCM and DBCM levels

in drinking water treatment plant even without bromide levels.
Additionally to DOC and UVA254, other environmental

factors also affect DBP formation. THMs concentration

was negatively impacted by temperature, while TCM concen-
tration was positively influenced by it. On the other hand, this
indicates that an increase in temperature may boost DBPs
that are stable (such as THMs) and reduce those that are
unstable. (HANs, HKs) (Hong et al., 2013). Therefore, the
seasonal change in organic precursors may partly explain

the connection among temperature and DBPs (THMs and
DBCM). Despite prior studies indicating that the higher pH
could increase the production of THMs and impede DBCM

formation, there is no evidence that pH could affect concen-
tration of most DBPs except BDCM (Fang, Ma, Yang, &
Shang, 2010). However, this may be associated by an insignif-

icant pH difference between the considered water samples
(Table S-1).

4.5. Performance evaluation of developed models

The accuracy of RSRM and ANFIS models in predicting the
DBPs value of the drinking water treatment plant was deter-
mined by assessing the R2, mean square error (MSE), mean

absolute error (MAE), average absolute deviation (AAD),
and root mean square error (RMSE)



Fig. 8 The interaction effects between pH and Temp (o C) on T-THMs (lg/L).

Fig. 9 The interaction effects between pH and Temp (o C) on TCM (lg/L).
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Table 3 presents the results obtained, which supports the
high values of R observed for RSMR and ANFIS. In addi-
tion, Figs. 2 and 3 demonstrate the correlation plots of exper-

imental and predicted values for both models, with a R value
close to 1 in both cases showing good correlation. Further-
more, both models had high R2 values, each almost unity,

and suggesting good fit with data. These two models were
compared in terms of MSE and RMSE, which are measure
of closeness between fitted lines and data points. In both
MSE and RMSE, the values were low, indicating a good fit
of the models. A model’s accuracy and precision are mea-
sured using MAE and AAD. In general, the model performed
better with lower statistical indicators. As a result, these val-

ues were evaluated for the developed models and are shown
in Table 3. In light of the statistical indexes from Table 3,
the ANFIS model outperformed RSRM, as indicated by its

high AAD (2.067 to 10.989 %) for all the different DBPs
evaluated. In the current study, it has been established that
ANFIS provides better accuracy and precision in predictions
compared to RSRM.



Fig. 10 The interaction effects between pH and Temp (o C) on BDCM (lg/L).

Fig. 11 The interaction effects between pH and Temp (o C) on DBCM (lg/L).

Table 3 Performance evaluation of RSRM and ANFIS models.

RSMR ANFIS

T-THMs TCM BDCM DBCM T-THMs TCM BDCM DBCM

R 0.853 0.855 0.910 0.941 0.989 0.995 0.978 0.989

R2 0.727 0.731 0.828 0.886 0.978 0.989 0.956 0.978

MSE 2.099 2.055 0.003 0.000 0.161 0.087 0.001 0.000

RMSE 1.449 1.433 0.055 0.017 0.401 0.294 0.028 0.007

MAE 0.978 0.977 0.040 0.010 0.133 0.087 0.009 0.002

AAD 4.067 4.171 10.989 4.982 0.468 0.350 1.977 0.973
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5. Conclusions

In this study, the capability of the RSRM and ANFIS model
in predicting DBPs value of the drinking water treatment plant
was determined and has been evaluated. The performance
analysis of the models are done by comparing the predicted
value with the measured data. The accuracy of the model were

determined using mean square error (MSE), mean absolute
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error (MAE), average absolute deviation (AAD), and root
mean square error (RMSE). The main observations of the
investigation are summarized as follows:

1. The evaluation of ANFIS model with site measured data
indicates a good agreement with mean absolute error

(MAE) (002 < MAE < 0.133) and
(0.956 < R2 < 0.989). The R2 tending to a unit (1), showed
that ANFIS has the capability to predict a nonlinearity

relationships between the inputs such as reaction tempera-
ture, water pH (pH), UVA254, residue chlorine (Cl2), and
DOC concentration and Disinfectants by-products

2. The use of RSRM model with site measured data indicates

an agreement with MAE (010 < MAE < 0.978) and
(0.727 < R2 < 0.886). The R2 tending to a unit (1), showed
that RSRM also has the capability to predict a nonlinearity

relationships but with less efficient compared to the results
of ANFIS model.

3. The results of the parameters interaction analysis show that

the DOC and UVA254 on T-THMs and TCM are all signif-
icant, while T-THMs and TCM (lg/L) value of the DBPs
were highest at the highest pH and Temperature (o C).

But low pH and temperatures impede the formation of
DBCM.

It has been shown in this study that ANFIS is more capable

of capturing complex and non-linear relationships regarding
THMs and further enhancements in prediction accuracy com-
pared to RSRM, also better compared to the previously stud-

ied RBF ANN (). ANFIS provided a significant opportunity
for the evaluation of water treatment system functions, disin-
fection process controls and DBP monitoring in the actual

water supply system.
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