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Abstract A series of 4-(1-aryl-5-chloro-2-oxo-1,2-dihydro-indol-3-ylideneamino)-N-substituted

benzenesulfonamide derivatives (1–20) was synthesized and evaluated for its in vitro antimicrobial

and anticancer activities. Antimicrobial results indicated that compounds N-(4-(1-benzoyl-5-chloro-

2-oxoindolin-3-ylideneamino) phenylsulfonyl)-4-isopropoxy benzamide (9) and N-(4-(5-chloro-1-

(2-chlorobenzoyl)-2-oxoindolin-3-ylideneamino) phenylsulfonyl)-4-isopropoxybenzamide (19) were

found to be the most effective ones. The anticancer results indicated that almost all the synthesized

compounds were more active than the standard drug carboplatin but less active than the standard

drug 5-fluorouracil (5-FU) against both the cell lines (HCT116 and RAW 264.7). 4-(1-Benzoyl-5-
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Scheme 1 Synthetic scheme of the

fonamide derivatives (1–20).
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chloro-2-oxoindolin-3-ylideneamino)-N-(pyrimidin-2-yl) benzenesulfonamide (3) was found to be

most potent and exhibited selectivity toward HCT 116. QSAR studies indicated that antimicrobial

activity of isatin derivatives against different microbial strains was governed by lipophilic parame-

ter, log P and topological parameters valance zero and third order molecular connectivity indices

(0vv and 3vv).

ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

The prevalence of multi-drug resistant microbial infections in

the past few decades has become a serious health care problem.
Prudent use of antibiotics and development of novel antimi-
crobial agents seem to be the common strategies and action

plans taken to combat this challenge. Consequently, the search
for new antimicrobial agents will always remain an important
task for medicinal chemists (Metwally et al., 2006).

Cancer has become the second cause of mortality in the
world and the development of potent and specific anticancer
agents is urgently required due to problems associated with
the existing drugs which include toxicity as well as resistance

(Kamal et al., 2010). This undoubtedly underscores the need
of developing novel anticancer agents.

Isatin is a natural product found in a number of plants,

including those of the genus Isatis. It is an endogenous com-
pound isolated in 1988 that has been reported to possess a
wide range of central nervous system activities. Several com-

pounds containing an isatin moiety have also been docu-
mented to possess antimicrobial (Karthikeyan et al., 2010),
anticonvulsant (Siddiqui et al., 2011), anti-inflammatory

(Nirmal et al., 2010), anticancer (Liang et al., 2008) and
anti-HIV (Banerjee et al., 2010) activities.

Aminopeptidase N (APN/CD13) is a zinc-dependent metal-
loprotease ectoenzyme widely expressed on hematopoietic cells

of myeloid origin and non-hematopoietic cells and tissues,
such as brain cells, fibroblasts, and epithelial cells of the kid-
ney, liver, and intestine. Over-expression of APN is often asso-

ciated with many diseases, such as cancer, viral infection and
inflammation. In the process of tumorigenesis, it plays a cru-
cial role in tumor invasion, metastasis and angiogenesis. Since

the first marketed anti-APN drug Bestatin that was launched
in 1976, many APN inhibitors (APNIs) which include
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synthesis of 4-(1-aryl-5-chloro-2
probestin, lapstatin and AHPA-Val have been reported. In-
dole-2,3-dione (isatin) derivatives such as APNIs have also

been described. Preliminary results demonstrated that most
of the isatin derivatives exhibited better inhibition than besta-
tin (Jin et al., 2013).

Recently, it has been reported that 5,7-dibromoisatin is sig-

nificantly more potent in vitro as a cytotoxin than the parent
molecule (isatin) against U937 (human monocyte-like histio-
cytic lymphoma) cells (Matesic et al., 2008). The substitution

of bromo and chloro groups at the C-5 and C-7 positions of
isatin exhibited potent anticancer activity. These isatin analogs
were also potent against a wide range of other human cancer

cell lines, including MDA-MB-231 metastatic breast adenocar-
cinoma cells. Several isatin-b-thiosemicarbazones have dis-
played activity against a parental HeLa-derived cervical

cancer cell line (KB-3-1) expressing the efflux pump multidrug
resistance (MDR). The anticancer activity of a number of isat-
in derivatives conjugated to a cell targeting moiety via a spacer
group has also been described (Penthala et al., 2010).

On the other hand, sulfonamides have a variety of biologi-
cal activity which includes antibacterial, insulin releasing, car-
bonic anhydrase inhibition, anti-inflammation, and antitumor

properties (Rohini et al., 2011). These agents block important
metabolic steps of the microorganisms e.g. sulfonamides.
Moreover, due to their metabolic inhibitory action, sulfon-

amide-based heterocycles (Selvam et al., 2006) represent an
attractive target of contemporary organic synthesis. These ear-
lier findings encouraged us to explore the synthesis of sulfona-

mides using isatin moiety and to examine their antibacterial,
antifungal and anticancer properties. There are accumulating
lines of evidence that hybridization of two or more different
bioactive molecules with complementary pharmacophoric

functions or with different mechanisms of action often renders
synergistic effects (Solomon et al., 2009).
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Table 1 Physicochemical characteristics and anticancer activity of the synthesized isatin derivatives.

Comp. M. formula M. Wt. Rf value
* IC50 in lM

HCT116 Raw 264.7

1 C25H17ClN4O5S 520.94 0.62 109.42 57.59

2 C23H16ClN3O5S 481.91 0.78 124.50 87.15

3 C25H16ClN5O4S 517.94 0.84 17.38 54.06

4 C26H18ClN5O4S 531.97 0.76 24.44 45.12

5 C24H15ClN4O4S2 522.98 0.68 99.43 15.30

6 C27H20ClN5O6S 578.00 0.74 112.46 25.95

7 C26H18ClN5O5S 547.97 0.78 80.30 9.12

8 C26H17ClN4O4S 516.96 0.80 96.72 9.67

9 C31H24ClN3O6S 602.06 0.80 101.32 13.29

10 C22H16ClN5O4S 481.91 0.72 124.50 16.60

11 C25H16Cl2N4O5S 555.39 0.78 90.03 10.80

12 C23H15Cl2N3O5S 516.35 0.66 38.73 11.62

13 C25H15Cl2N5O4S 552.39 0.82 72.41 18.10

14 C26H17Cl2N5O4S 566.42 0.70 61.79 8.83

15 C24H14Cl2N4O4S2 557.43 0.66 39.47 8.97

16 C27H19Cl2N5O6S 612.44 0.70 42.45 8.16

17 C26H17Cl2N5O5S 582.41 0.80 85.85 8.59

18 C26H16Cl2N4O5S 551.40 0.64 97.93 10.88

19 C31H23Cl2N3O6S 636.50 0.62 83.27 11.00

20 C22H15Cl2N5O4S 516.36 0.78 133.63 13.56

Carboplatin >100 >100

5-Flourouracil 4.6 4.6

* TLC mobile phase: chloroform: methanol (9:1).
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QSARmodels are highly effective in describing the structural
basis of biological activity. The success of QSAR approach can

be explained by the insight offered into the structural determina-
tion of chemical properties and the possibility to estimate the
Table 2 Antimicrobial activity (lM/ml) of synthesized isatin

derivatives.

Comp. pMICsa pMICbs pMICec pMICca pMICan

1a 1.62 1.62 1.62 2.22 1.92

2 1.89 1.59 1.59 1.59 1.89

3
a 1.92 1.92 1.62 2.22 1.92

4 1.93 1.93 1.63 2.23 1.93

5 1.62 1.92 1.92 2.22 1.92

6 1.67 1.67 1.97 2.27 1.97

7
a 1.94 1.94 1.94 2.24 1.94

8 1.62 1.92 1.92 1.62 1.92

9 1.98 1.98 1.98 1.68 1.98

10 1.59 1.59 1.59 1.59 1.89

11
a 1.65 1.65 1.95 1.65 1.95

12 1.92 1.62 1.92 2.22 1.92

13 1.65 1.95 1.95 1.65 1.95

14 1.96 1.96 1.96 1.96 1.96

15 1.95 1.95 1.95 1.95 1.95

16a 1.69 1.69 1.99 1.99 1.99

17a 1.67 1.97 1.97 1.97 1.97

18 1.95 1.95 1.95 2.25 1.95

19 2.01 2.01 2.01 2.31 2.01

20 1.92 1.62 1.92 2.22 1.92

SD 0.16 0.16 0.15 0.27 0.03

Std. 2.61* 2.61* 2.61* 2.64** 2.64**

SD – standard deviation.
* Norfloxacin.
** Fluconazole.
a Outliers.
properties of new chemical compounds without the need to syn-
thesize and test them (Sawant et al., 2013).

Prompted by the above facts and in continuation of our re-
search efforts in the field of synthesis, antimicrobial, anticancer
evaluation and QSAR studies (Sharma et al., 2012; Kumar

et al., 2013; Sigraha et al., 2012), we hereby report synthesis,
antimicrobial, anticancer evaluation and QSAR studies of 4-
(1-aryl-5-chloro-2-oxo-1,2-dihydro-indol-3-ylideneamino)-N-

substituted benzene sulfonamides.

2. Results and discussion

2.1. Chemistry

The synthesis of 4-(1-aryl-5-chloro-2-oxo-1,2-dihydro-indol-3-

ylideneamino)-N-substituted benzene sulfonamide derivatives
(1–20) was accomplished (Scheme 1). The physicochemical
characteristics of the synthesized compounds are presented in

Table 1.
The synthesized compounds were characterized by IR and

1H NMR spectroscopy and the results are in accordance with

the assigned molecular structures. IR stretching band ranging
from 1688 to 1681 cm�1 (C = O str., Ar–C = O) confirmed
the acylation of isatin. IR stretching band at 1656–

1650 cm�1 (C = N str.) confirmed the formation of a Schiff
base. Further, peak of NH in plane bending at 1516–
1491 cm�1, O = S = O str. at 1186–1142 cm�1 confirmed the
presence of sulfonamide moiety in the synthesized compounds.

In the 1H NMR spectra the signals of the respective protons
of the synthesized compounds were confirmed based on their
chemical shifts, multiplicities and coupling constants. These

spectra showed a singlet at 4.01–4.76 ppm, which corresponds
to the SO2NH protons and multipletes at 6.55–8.74 ppm,
showed aromatic protons.
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Figure 1 Structure–activity relationship for antimicrobial and anticancer activity of synthesized isatin derivatives.

Table 3 Values of selected parameters used in QSAR studies of synthesized compounds.

Comp. log P MR 0vv 3vv k1 R Te LUMO HOMO l

1
a 4.32 133.63 20.37 1.57 27.56 17.23 �6426.55 �1.48 �9.38 8.75

2 3.17 121.62 18.85 1.49 26.07 15.67 �5952.82 �1.54 �9.43 8.38

3a 4.11 133.31 20.07 1.44 27.56 17.33 �6300.99 �1.54 �9.42 9.29

4 4.30 138.24 20.99 1.57 28.53 17.73 �6456.81 �1.54 �9.40 9.14

5 4.70 133.32 20.33 1.54 26.60 16.83 �6146.78 �1.51 �9.24 8.72

6 4.54 146.89 22.73 1.55 31.43 19.20 �7252.72 �1.62 �9.45 8.86

7a 4.48 141.52 21.40 1.51 29.49 18.26 �6776.44 �1.39 �9.32 2.92

8 4.49 134.88 20.20 1.46 27.56 17.33 �6236.23 �1.51 �9.38 9.34

9 5.59 157.42 24.15 1.83 33.37 20.03 �7407.09 �1.52 �9.36 7.68

10 3.24 122.47 18.52 1.46 26.07 15.67 �5917.55 �1.29 �9.39 3.21

11
a 4.84 138.44 21.49 1.73 28.53 17.64 �6786.57 �1.55 �9.44 9.31

12 3.69 126.42 19.97 1.65 27.05 16.08 �6312.81 �1.56 �9.47 8.92

13 4.63 138.11 21.19 1.60 28.53 17.74 �6660.98 �1.57 �9.46 10.30

14 4.82 143.04 22.11 1.73 29.49 18.14 �6816.80 �1.55 �9.45 10.38

15 5.22 138.13 21.45 1.70 27.56 17.24 �6506.78 �1.55 �9.24 8.31

16
a 5.06 151.70 23.85 1.71 32.40 19.61 �7612.69 �1.35 �9.50 5.62

17a 5.00 146.33 22.52 1.67 30.46 18.67 �7136.47 �1.54 �9.24 9.04

18 5.01 139.69 21.32 1.62 28.53 17.74 �6596.22 �1.52 �9.38 9.52

19 6.10 162.23 25.26 1.99 34.34 20.44 �7767.09 �1.52 �9.39 8.05

20 3.76 127.28 19.64 1.62 27.05 16.08 �6277.56 �1.30 �9.39 2.82
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2.2. Antimicrobial activity

The antimicrobial activity of the synthesized compounds was
determined by tube dilution method (Cappucino and Sherman,
1999) and the results are given in Table 2. Compound 19 dem-

onstrated potent antibacterial activity against Staphylococcus
aureus (pMICsa = 2.01 lM). In the case of Bacillus subtilis
compounds 9 and 19 emerged as most effective antibacterial

agents with pMICbs values of 1.98 and 2.01 lM, respectively.
Compounds 9 and 19 (pMICec values 1.98 and 2.01 lM,
respectively) also emerged as the most active candidates among

the synthesized compounds against Gram-negative bacterium
Escherichia coli. In the case of antifungal activity against Can-
dida albicans, compound 19 emerged as the most active candi-

date among the synthesized compounds (pMICca values
2.31 lM) and against Aspergillus niger compounds, 9 and 19

(pMICan values 1.98 and 2.01 lM, respectively) emerged as
most active antifungal agents.

The antimicrobial results of the standard drugs, norfloxacin
and fluconazole were almost similar against all the tested micro-
organisms. In the present study however, the standard drugs

were more potent than the synthesized compounds.
In general, the results of MBC/MFC studies revealed that
the synthesized compounds were bacteriostatic and fungistatic

in action as their MFC and MBC values were (ranging from
>0.08 to >0.10 lM/ml) 3-fold higher than their MIC values
(a drug is considered to be bacteriosatic/fungistatic when its

MFC and MBC values are 3-fold higher than its MIC value
(Emami et al., 2004).

2.3. Anticancer activity

The anticancer activity (IC50) of the synthesized isatin deriva-
tives was determined against mouse leukemic monocyte mac-
rophage (RAW 264.7) and colon cancer (HCT116) cell lines

using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide (MTT) assay (Mosmann, 1983). The anticancer activ-
ity results are presented in Table 1. In general all the synthe-

sized compounds were more active than the standard drug
carboplastin (IC50 = >100 lM) but less active than the stan-
dard drug 5-FU (IC50 = 4.6 lM) against both the cell lines

(HCT116 and RAW 264.7). Compounds, 4-(1-Benzoyl-5-
chloro-2-oxoindolin-3-ylideneamino)-N-(pyrimidin-2-yl)benzene
sulfonamide (3) and 4-(5-chloro-1-(2-chlorobenzoyl)-2-oxoin-



Table 4 Correlation matrix for the antifungal activity of synthesized compounds against A. niger.

log P MR 0vv k1 R Te LUMO HOMO l pMICan

log P 1.000 0.918 0.903 0.788 0.870 �0.814 �0.435 0.314 0.408 0.905

MR 1.000 0.989 0.962 0.991 �0.959 �0.439 0.033 0.346 0.963
0vv 1.000 0.966 0.976 �0.979 �0.470 �0.002 0.348 0.980

k1 1.000 0.970 �0.984 �0.366 �0.153 0.224 0.928

R 1.000 �0.962 �0.474 �0.049 0.371 0.946

Te 1.000 0.426 0.153 �0.271 �0.970
LUMO 1.000 0.149 �0.925 �0.467
HOMO 1.000 �0.149 �0.036
l 1.000 0.356

pMICan 1.000
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dolin-3-ylideneamino)-N-(4,6-dimethoxypyrimidin-2-yl)benzene
sulfonamide (16) were found to be most potent with IC50

values of 17.38 lM against HCT116 and 8.16 lM against
RAW 264.7, respectively.

2.4. Structure–activity relationship

a. Results of the antimicrobial and anticancer screening
indicated that phenyl nucleus attached to benzenesulfon-

amide moiety increased the antimicrobial potential,
whereas its replacement with pyrimidine nucleus
improved the anticancer potential of the synthesized

isatin derivatives.
Table 5 Correlation of antibacterial, antifungal and antimi-

crobial activity of synthesized compounds with calculated

molecular descriptors.

Descriptor pMICsa pMICbs pMICec pMICca pMICan

Cos E 0.183 0.642 0.345 �0.062 0.325

log P 0.359 0.859 0.721 0.283 0.905

MR 0.365 0.701 0.617 0.266 0.963
0v 0.383 0.552 0.559 0.253 0.946
0vv 0.433 0.647 0.643 0.316 0.980
1v 0.300 0.653 0.582 0.238 0.946
1vv 0.388 0.760 0.659 0.290 0.950
2v 0.399 0.623 0.565 0.248 0.952
2vv 0.469 0.760 0.667 0.311 0.931
3v 0.623 0.197 0.354 0.255 0.742
3vv 0.706 0.505 0.564 0.326 0.832

j1 0.386 0.499 0.534 0.240 0.928

j2 0.298 0.538 0.522 0.195 0.911

j3 0.348 0.454 0.439 0.154 0.862

ja1 0.388 0.519 0.581 0.296 0.959

ja2 0.293 0.574 0.587 0.269 0.954

ja3 0.352 0.500 0.516 0.237 0.924

R 0.300 0.653 0.582 0.238 0.946

J �0.043 �0.836 �0.501 �0.135 �0.777
W 0.342 0.586 0.534 0.212 0.929

Te �0.401 �0.506 �0.625 �0.317 �0.970
Ee �0.341 �0.538 �0.585 �0.288 �0.955
Ne 0.335 0.541 0.580 0.285 0.953

SA 0.379 0.572 0.545 0.242 0.934

IP 0.050 �0.337 �0.106 �0.073 0.036

LUMO �0.164 �0.438 �0.359 �0.161 �0.467
HOMO �0.050 0.337 0.106 0.073 �0.036
l 0.084 0.571 0.323 0.071 0.356
b. The high antimicrobial activity of compound 19 indi-
cated that the presence of electron withdrawing group
(2-chloro) on benzoyl portion and electron donating
group (4-isopropoxy) on benzamide portion increased

the antimicrobial activity of the synthesized isatin deriv-
atives. The role of electron releasing groups in enhancing
the antimicrobial activity of isatin derivatives is further

supported by the study of Pandeya et al. (1999).
c. The anticancer activity results indicated that the presence

of unsubstituted pyrimidine ring attached to benzenesul-

fonamide moiety (3) increased the anticancer potential of
the synthesized compounds against HCT116 cancer cell
lines.

d. The anticancer activity results also indicated that the
presence of electron releasing methoxy group on the
pyrimidine ring attached to benzene sulfonamide moiety
(16) improved the anticancer activity of synthesized

compounds against RAW 264.7 cancer cell lines which
indicated that this substitution is beneficial for the bind-
ing with the receptor ANP. The role of electron releasing

groups in improving anticancer activity is supported by
the studies of Mologni et al. (2010).

e. From the above mentioned antimicrobial and anticancer

activity results, it can be concluded that different struc-
tural requirements are necessary for a compound to be
active against different microbial and cancer targets.
This is in accordance with the findings of Sortino et al.

(2007) and Yogeeswari et al. (2005).

The above findings are summarized in Fig. 1.

2.5. QSAR studies

In order to identify the substituent effect on the antimicrobial

activity, quantitative structure–activity relationship (QSAR)
studies were undertaken using the linear free energy relationship
model (LFER) described by Hansch and Fujita (1964)). Biolog-

ical activity data determined as MIC values were first trans-
formed into pMIC values (i.e. �log MIC) and used as a
dependent variable in the QSAR study. The different molecular
descriptors (independent variables) like log of octanol–water

partition coefficient (log P), molar refractivity (MR), Kier’s
molecular connectivity (0v, 0vv, 1v, 1vv, 2v, 2vv) and shape (j1,
j2, j3, j1, j2, j3) topological indices, Randic topological index

(R), Balaban topological index (J), Wiener topological index
(W), Total energy (Te), energies of highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital
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(LUMO), dipole moment (l), nuclear repulsion energy (Nu.E)
and electronic energy (Ele.E) were calculated for isatin deriva-
tives and values of selected descriptors are presented in Table 3

(Hansch et al., 1973; Kier and Hall, 1976; Randic, 1975, 1993;
Balaban, 1982; Wiener, 1947). Units of the energies and dipole
were electron volts (eV), and atomic units (a.u.), respectively

(Dai et al., 1999).
In the present study, a data set of 20 isatin derivatives was

subjected to linear free energy regression analysis for model

generation. During the regression analysis studies it was ob-
served that the response values of compounds 1, 3, 7, 11, 16
and 17 were outside the limits of response values of other syn-
thesized isatin derivatives. Thus compounds 1, 3, 7, 11, 16 and

17 were designated as outliers and were not involved in the data
set for QSAR model generation. In multivariate statistics, it is
common to define three types of outliers (Furusjo et al., 2006).

1. X/Y relation outliers are substances for which the relation-
ship between the descriptors (X variables) and the depen-

dent variables (Y variables) is not the same as in the (rest
of the) training data.

2. X outliers. Briefly, a substance is an X outlier if the molec-

ular descriptors for this substance do not lie in the same
range as the (rest of the) training data.

3. Y outliers are only defined for training or test samples.
They are substances for which the reference value of

response is invalid.

As there was no difference in the activity (Table 2) as well as

the molecular descriptor range (Table 3) of these outliers when
compared to other isatin derivatives, these outliers belong to
the category of Y outliers (Substances for which the reference

value of response is invalid).
Preliminary analysis was carried out in terms of correlation

analysis. A correlation matrix constructed for antifungal activ-

ity against A. niger is presented in Table 4. In general, high
colinearity (r > 0.5) was observed between different parame-
ters. The high interrelationship was observed between topolog-
ical parameter, Randic index (R) and steric parameter, molar

refractivity (MR, r= 0.991) and low interrelationship was ob-
served between electronic parameter, HOMO and topological
parameter, valance zero order molecular connectivity index

(0vv, r= -0.002). The correlations of different molecular
descriptors with antibacterial and antifungal activity against
different microorganisms are presented in Table 5.

The correlation matrix (Table 4) indicated the predomi-
nance of topological parameter, valance zero order molecular
connectivity index (0vv) in describing the antifungal activity
of the synthesized compounds against A. niger. Thus, QSAR

model for antifungal activity against A. niger was developed
using valance zero order molecular connectivity index (0vv).

pMICan ¼ 0:01740vv þ 1:571

n ¼ 14 r ¼ 0:980 q2 ¼ 0:945 s ¼ 0:0069 F ¼ 296:78

ð1Þ

Here and thereafter, n – number of data points, r – correlation
coefficient, q2 – cross validated r2 obtained by leave one out

method, s – standard error of the estimate and F – Fischer
statistics.

Topological indices are numerical quantifiers of molecular

topology and are sensitive to bonding pattern, symmetry,
content of heteroatom as well as degree of complexity of atomic
neighborhoods (Lather andMadan, 2005). The valence zero or-
der molecular connectivity topological index (0vv) represents

the molecules with branched structure. In this case, the positive
correlation was observed between 0vv and antifungal activity
against A. niger. Therefore, the antifungal activity of synthe-

sized compounds against A. niger will increase with increase
in their 0vv values. This is clearly evident from Table 3 that com-
pound 19 having highest 0vv value of 25.26 is having highest

antifungal activity against A. niger (pMICan = 2.01, Table 2).
The QSAR model expressed by Eq. (1) was cross validated

by its high q2 value (q2 = 0.945) obtained with leave one out
(LOO) method. The value of q2 greater than 0.5 is the basic

requirement for qualifying a QSAR model to be a valid one
(Golbraikh and Tropsha, 2002). The comparison of observed
and predicted antifungal activities is presented in Table 6. It

can be seen from the results that the observed and predicted
antifungal activities against A. niger lie close to each other as
evidenced by their low residual values Table 6. The plots of ob-

served, predicted and residual pMICan values were also devel-
oped to check the statistical validity of QSAR models. The
plot of predicted pMICan against observed pMICan (Fig. 2)

also favors the model expressed by Eq. (1). Further, the plot
of observed pMICan vs residual pMICan (Fig. 3) indicated that
there was no systemic error in model development as the prop-
agation of error was observed on both sides of zero (Kumar

et al., 2007).
Lipophilic parameter, log P was the most dominating

parameter in describing the antibacterial activity of the synthe-

sized compounds against B. subtilis and E. coli.

pMICbs ¼ 0:172 log pþ 1:058

n ¼ 14 r ¼ 0:859 q2 ¼ 0:657 s ¼ 0:089 F ¼ 33:78
ð2Þ

In order to improve the value of correlation coefficient, we
coupled log P with dipole moment (l), which resulted in best
QSAR model for antibacterial activity of synthesized com-

pounds against B. subtilis (Eq. (3)).

pMICbs ¼ 0:150 log Pþ 0:195lþ 0:997

n ¼ 14 r ¼ 0:892 q2 ¼ 0:711 s ¼ 0:083 F ¼ 21:51
ð3Þ

As in case of antibacterial activity against B. subtilis, the

antibacterial activity of the synthesized compounds against E.
coli (Eq. (4)) was also positively correlated with log P. Hence,
antibacterial activity of synthesized compounds against both
bacterial strains will increase with increase in their log P values.

pMICec ¼ 0:128 log Pþ 1:297

n ¼ 14 r ¼ 0:721 q2 ¼ 0:331 s ¼ 0:108 F ¼ 12:98
ð4Þ

Antibacterial activity of synthesized compounds against S.
aureus was best described by topological parameter, valance
third order molecular connectivity index (3vv) which was pos-

itively correlated with antibacterial activity (Eq. (5)).
Progress in the use of quantitative structure–activity rela-

tionship (QSAR) methods has shown the importance of the
hydrophobic or lipophilic nature of biologically active mole-

cules. The lipophilicity modifies the penetration of bioactive
molecules through the apolar cell membranes. This property
is usually characterized by the partition coefficient (log P),

which is essentially determined from distribution studies of
the compound between an immiscible polar and non-polar sol-
vent pair.



Table 6 Comparison of observed and predicted antimicrobial activity obtained by mt-QSAR models.

Comp. pMICsa pMICbs pMICec pMICan

Obs. Pre. Res. Obs. Pre. Res. Obs. Pre. Res. Obs. Pre. Res.

1 1.62 1.76 �0.14 1.62 1.82 �0.20 1.62 1.85 �0.23 1.92 1.93 �0.01
2 1.89 1.80 0.09 1.59 1.64 �0.05 1.59 1.70 �0.11 1.89 1.90 �0.01
3 1.92 1.63 0.29 1.92 1.80 0.12 1.62 1.82 �0.20 1.92 1.92 0.00

4 1.93 1.75 0.18 1.93 1.82 0.11 1.63 1.85 �0.22 1.93 1.94 �0.01
5 1.62 1.73 �0.11 1.92 1.87 0.05 1.92 1.90 0.02 1.92 1.92 0.00

6 1.67 1.72 �0.05 1.67 1.85 �0.18 1.97 1.88 0.09 1.97 1.97 0.00

7 1.94 1.66 0.28 1.94 1.73 0.21 1.94 1.87 0.07 1.94 1.94 0.00

8 1.62 1.65 �0.03 1.92 1.85 0.07 1.92 1.87 0.05 1.92 1.92 0.00

9 1.98 1.95 0.03 1.98 1.98 0.00 1.98 2.01 �0.03 1.98 1.99 �0.01
10 1.59 1.73 �0.14 1.59 1.55 0.04 1.59 1.71 �0.12 1.89B 1.89 0.00

11 1.65 1.92 �0.27 1.65 1.90 �0.25 1.95 1.92 0.03 1.95 1.94 0.01

12 1.92 1.96 �0.04 1.62 1.72 �0.10 1.92 1.77 0.15 1.92 1.92 0.00

13 1.65 1.79 �0.14 1.95 1.89 0.06 1.95 1.89 0.06 1.95 1.94 0.01

14 1.96 1.91 0.05 1.96 1.92 0.04 1.96 1.91 0.05 1.96 1.96 0.00

15 1.95 1.89 0.06 1.95 1.94 0.01 1.95 1.97 �0.02 1.95 1.94 0.01

16 1.69 1.85 �0.16 1.69 1.87 �0.18 1.99 1.94 0.05 1.99 1.99 0.00

17 1.67 1.84 �0.17 1.97 1.92 0.05 1.97 1.94 0.03 1.97 1.96 0.01

18 1.95 1.80 0.15 1.95 1.93 0.02 1.95 1.94 0.01 1.95 1.94 0.01

19 2.01 2.11 �0.10 2.01 2.07 �0.06 2.01 2.08 �0.07 2.01 2.01 0.00

20 1.92 1.89 0.03 1.62 1.62 0.00 1.92 1.78 0.14 1.92 1.91 0.01

Observed pMICan
2.022.001.981.961.941.921.901.88
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Figure 2 Plot of observed pMICan against predicted pMICan

obtained by Eq. (1).
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Figure 3 Plot of observed pMICan against residual pMICan

obtained by Eq. (1).
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This quantitative descriptor of lipophilicity (logP) is one of the

keydeterminantsof pharmacokineticproperties.Knowing the ex-
act values for this parameter, it is possible to predict the inhibitory
activity of the drugs (Podunavac-Kuzmanovic et al., 2008).

log P is the logarithm of the ratio of the concentrations of

the un-ionized solute in two solvents, which is calculated
according to the following equation, where o is octanol and
w is un-ionized water.

log Po=w ¼ logð½soluteo�=½solutew�Þ

The hydrophobic effect is the major driving force for the bind-
ing of drugs to their receptor targets in pharmacodynamics,

and is based on the log P contribution of each atom. Each
atom in a molecule contributes to the log P by the amount
of its atomic parameter multiplied by the degree of exposure

to the surrounding solvent (Park et al., 2008)
pMICsa ¼ 0:7683vv þ 0:582

n ¼ 14 r ¼ 0:760 q2 ¼ 0:272 s ¼ 0:118 F ¼ 11:91
ð5Þ

In order to improve the value of correlation coefficient, we
coupled valance third order molecular connectivity index

(3vv) with Balaban index (J) which resulted in best QSAR
model for antibacterial activity of synthesized compounds
against S. aureus (Eq. (6)).

pMICsa ¼ 0:9343vv þ 0576J� 0:356

n ¼ 14 r ¼ 0:769 q2 ¼ 0:342 s ¼ 0:111 F ¼ 7:95
ð6Þ

As in case of Eq. (1), the high q2 value (q2 = 0.711) supported
the validity of developed QSAR model for antibacterial activ-

ity against B. subtilis (Eq. (3)). In case of antibacterial activity
against E. coli (Eq. (4)) and S. aureus (Eq. (6)) the value q2 is
less than 0.5 (0.331 and 0.342, respectively), which shows that



4-(1-Aryl-5-chloro-2-oxo-1,2-dihydro-indol-3-ylideneamino)-N-substituted benzene sulfonamides 443
the developed models are invalid ones. But according to the

recommendations of Kim et al. (2007), the regression models
are acceptable if the value of standard deviation (SD, Table 2)
is not much larger than 0.3. As the value of standard deviation

is less than 0.3 (Table 2), the developed QSAR models for anti-
bacterial activity against E. coli (Eq. (4)) and S. aureus (Eq.
(6)) are valid ones. Further, the low residual values (Table 6)
supported the validity of QSAR models i.e. Eqs. (4) and (6).

It is important to note that no significant correlation was
observed between the antifungal activity of synthesized com-
pounds against C. albicans and their physicochemical parame-

ters. Further, high residual activity values observed in case of
outliers (compounds 1, 3, 7, 11, 16 and 17) justified their re-
moval before the development of QSAR models.

Generally for QSAR studies, the biological activities of
compounds should span 2–3 orders of magnitude. But in
the present study the range of antibacterial and antifungal
activities of the synthesized compounds is within one order

of magnitude. It is important to note that the predictability
of the QSAR models developed in the present study is high
evidenced by their low residual values. This is in accordance

with results suggested by the Bajaj et al. (2005), who stated
that the reliability of the QSAR model lies in its predictive
ability even though the activity data are in the narrow range.

Further, recent literature reveals that the QSAR models have
been applied to describe the relationship between narrow
range of biological activity and physicochemical properties

of the molecules (Narasimhan et al., 2007; Sharma et al.,
2006; Hatya et al., 2006; Kumar et al., 2006). When biological
activity data lie in the narrow range, the presence of minimum
standard deviation of the biological activity justifies its use in

QSAR studies (Kumar et al., 2007; Narasimhan et al., 2007).
The minimum standard deviation (Table 2) observed in the
antimicrobial activity data justifies its use in QSAR studies.

In summary, the antimicrobial activity of synthesized isatin
derivatives against different microbial strains was governed by
lipophilic parameter, log P and topological parameters valance

zero and third ordermolecular connectivity indices (0vv and 3vv).

3. Conclusion

A series of 4-(1-aryl-5-chloro-2-oxo-1,2-dihydro-indol-3-ylide-
neamino)-N-substituted benzenesulfonamide derivatives (1–
20) was synthesized and evaluated for its in vitro antimicrobial

and anticancer activities. Antimicrobial study indicated that
compounds 9 and 19 were found to be the most effective anti-
microbial agents. Anticancer results indicate that all the syn-
thesized compounds were more potent than the standard

drug carboplastin but less active than the standard drug 5-flu-
orouracil (5-FU) against both the cells (HCT116 and RAW
264.7). The compound 3 was found to be the most potent

one against HCT116 and compound 16 against RAW 264.7.

4. Experimental

4.1. Chemistry

Starting materials were obtained from commercial sources and
were used without further purification. Solvents were dried by
standard procedures. Reaction progress was observed by thin

layer chromatography. Melting points were determined in
open capillary tubes on a Sonar melting point apparatus and
were uncorrected. 1H and 13C NMR spectra were determined
by Bruker 500 MHz NMR spectrometer in appropriate deuter-

ated solvents and are expressed in parts per million (d, ppm)
downfield from tetramethylsilane (internal standard). NMR
data are given as multiplicity (s, singlet; d, doublet; t, triplet;

m, multiplet) and number of protons. IR spectra were recorded
on a Varian Resolutions Pro spectrophotometer in a KBr disk.

4.2. General procedure for the synthesis of 4-(1-aryl-5-chloro-2-
oxo-1, 2-dihydro-indol-3-ylideneamino)-N-substituted

benzenesulfonamide (1–20)

Thionyl chloride 32.8 g (0.3 mol) was added to different aro-
matic acids (0.25 mol) in a round bottomed flask. After addi-
tion, the mixture was refluxed for 2 h. The excess of thionyl
chloride was removed by distillation. To the solution of acid

chloride (1 mol) 0.1 mol of 5-chloroisatin was added and the
mixture was refluxed for 1 h and 30 min. Then the reaction
mixture was cooled and the resultant precipitate (N-acyl 5-

chloroisatin) was collected, washed with hexane and recrystal-
lized from ethyl acetate. A solution of 0.05 mol of different sul-
fonamides in warm ethanol was added to the corresponding

solution of N-acyl 5-chloroisatin (0.05 mol) in the presence
of small amount of glacial acetic acid. The mixture was re-
fluxed for 4–6 h. Then the reaction mixture was allowed to
cool at room temperature and the precipitate obtained was fil-

tered, dried and recrystallized from ethanol.

4.2.1. 4-(1-benzoyl-5-chloro-2-oxoindolin-3-ylideneamino)-N-

(5-methylisoxazol-3-yl) benzenesulfonamide (1)

Mp (�C) 246–248; Yield – 85%; IR (KBr pellets)cm�1 1494
(NH in plane bending, sec. amine), 1681 (C‚O str., Ar–
C‚O), 1651 (C‚N str.), 1179 (O‚S‚O str.), 730 (C–Cl

str., Ar–Cl), 1247 (–C–O–N str., isoxazole), 894 (CH out of
plane bending, isoxazole), 894–699 (CH out of plane bending,
indole). 1H NMR (DMSO) d; 6.14–7.96 (12, m, ArH), 4.17

(1H, s, SO2NH), 2.30 (3H, s, ArCH3);
13CNMR (DMSOd6,

d ppm): 166.18, 161.62, 136.46, 133.62, 129.89, 129.30,
129.12, 128.06, 125.82.

4.2.2. N-(4-(1-benzoyl-5-chloro-2-oxoindolin-3-
ylideneamino)phenylsulfonyl)acetamide (2)

Mp (�C) 88–90; Yield – 80%; IR (KBr pellets) cm�1 1494 (NH

in plane bending, sec. amine), 1682 (C‚O str., Ar–C‚O),
1651 (C‚N str.), 1180 (O‚S‚O str.), 1494 (CH3 bending
vibration, COCH3), 730 (C–Cl str., Ar–Cl), 894–699 (CH out

of plane bending, indole). 1H NMR (DMSO) d; 7.58–7.97
(12H, m, ArH), 4.01 (1H, s, SO2NH), 2.38 (3H, s, COCH3).

4.2.3. 4-(1-benzoyl-5-chloro-2-oxoindolin-3-ylideneamino)-N-

(pyrimidin-2-yl) benzenesulfonamide (3)

Mp (�C) 252–254; Yield – 72%; IR (KBr pellets) cm�1 1493
(NH in plane bending, sec. amine), 1682 (C‚O str., Ar–

C‚O), 1651 (C‚N str.), 1180 (O‚S‚O str.), 1604 (C‚N
str., pyrimidine), 700 (C–Cl str., Ar–Cl), 730 (CH out of plane
bending, 4-sustituted pyrimidine), 894–657 (CH out of plane
bending, indole). 1H NMR (DMSO) d; 6.58–8.71 (15H, m,

ArH), 4.18 (1H, s, SO2NH); 13CNMR (DMSOd6, d ppm):
166.18, 161.63, 136.47, 133.64, 132.88, 129.91, 129.32, 129.13,
128.07, 128.83.



444 M. Kumar et al.
4.2.4. 4-(1-benzoyl-5-chloro-2-oxoindolin-3-ylideneamino)-N-

(4-methylpyrimidin-2-yl) benzenesulfonamide (4)

Mp (�C) 268–270; Yield – 76%; IR (KBr pellets) cm�1 1493
(NH in plane bending, sec. amine), 1681 (C‚O str., Ar–
C‚O), 1651 (C‚N str.), 1180 (O‚S‚O str.), 1575 (C‚N

str., pyrimidine), 700 (C–Cl str., Ar–Cl), 752–795 (CH out of
plane bending, 4-sustituted pyrimidine), 897–697 (CH out of
plane bending, indole). 1H NMR (DMSO) d; 6.58–8.71

(14H, m, ArH), 4.17 (1H, s, SO2NH), 2.33 (3H, s, ArCH3).

4.2.5. 4-(1-benzoyl-5-chloro-2-oxoindolin-3-ylideneamino)-N-
(thiazol-2-yl) benzene sulfonamide (5)

Mp (�C) 213–215;Yield – 82%; IR (KBr pellets) cm�1 1493 (NH
in plane bending, sec. amine), 1683 (C‚O str., Ar–C‚O), 1652
(C‚N str.), 1150 (O‚S‚O str.), 1576 (C = N str., thiazole),

731 (C–Cl str., Ar–Cl), 750 (C–S–C str., thiazole), 897 (CH
out of plane bending, thiazole), 897–699 (CH out of plane bend-
ing, indole). 1H NMR (DMSO) d; 6.55–7.95 (14, m, ArH), 4.15
(1H, s, SO2NH); 13CNMR (DMSOd6, d ppm): 166.34, 166.18,

161.65, 161.19, 141.49, 137.86, 136.64, 136.53, 133.67, 133.60,
132.87, 132.61, 130.57, 129.94, 129.21, 129.12, 128.91, 128.75,
128.06, 127.17, 125.80, 125.37, 124.89, 120.34, 108.64.

4.2.6. 4-(1-benzoyl-5-chloro-2-oxoindolin-3-ylideneamino)-N-
(4, 6-dimethoxypyrimidin-2-yl)benzenesulfonamide (6)

Mp (�C) 124–126; Yield – 85%; IR (KBr pellets) cm�1 1494

(NH in plane bending, sec. amine), 1684 (C‚O str., Ar–
C‚O), 1652 (C‚N str.), 1180 (O‚S‚O str.), 1286 (C–O–C
str.), 1576 (C‚N str., pyrimidine), 731 (C–Cl str., Ar–Cl),

1602 (C = C str., pyrimidine), 894–659 (CH out of plane
bending, indole).1H NMR (DMSO) d; 6.55–7.95 (13H, m,
ArH), 4.17 (1H, s, SO2NH), 3.65 (6H, s, ArOCH3).

4.2.7. 4-(1-benzoyl-5-chloro-2-oxoindolin-3-ylideneamino)-N-
(6-methoxypyridazin-3-yl) benzenesulfonamide (7)

Mp (�C) 208–210; Yield – 74%; IR (KBr pellets)cm�1 1493

(NH in plane bending, sec. amine), 1681 (C‚O str., Ar–
C‚O), 1652 (C‚N str.), 1183 (O‚S‚O str.), 1287 (C–O–C
str.), 1400 (N–N str., pyridazine), 730 (C–Cl str., Ar–Cl),

887–656 (CH out of plane bending, indole). 1H NMR (DMSO)
d; 6.56–8.74 (14H, m, ArH), 4.19 (1H, s, SO2NH), 3.33 (3H, s,
ArOCH3);

13CNMR (DMSOd6, d ppm):166.17, 161.65,
149.23, 141.01, 136.53, 133.67, 132.87, 129.94, 129.12, 128.93,

128.06, 125.80, 125.33, 120.43, 101.62.

4.2.8. 4-(1-benzoyl-5-chloro-2-oxoindolin-3-ylideneamino)-N-

(pyridin-2-yl) benzene sulfonamide (8)

Mp (�C) 220–222;Yield – 68%; IR (KBr pellets) cm�1 1495 (NH
in plane bending, sec. amine), 1683 (C = O str., Ar–C = O),
1651 (C = N str.), 1182 (O = S = O str.), 1577 (C = N str.,

pyridine), 1602 (C = C str., pyridine), 731 (C–Cl str., Ar–Cl),
895–617 (CH out of plane bending, indole). 1H NMR (DMSO)
d; 6.55–8.11 (16H, m, ArH), 4.19 (1H, s, SO2NH).

4.2.9. N-(4-(1-benzoyl-5-chloro-2-oxoindolin-3-ylideneamino)
phenylsulfonyl)-4-iso propoxybenzamide (9)

Mp (�C) 208–210; Yield – 74%; IR (KBr pellets) cm�1 1515

(NH in plane bending, sec. amine), 1684 (C‚O str., Ar–
C‚O), 1653 (C‚N str.), 1182 (O‚S‚O str.), 1166
(CH(CH3)2 bending), 1259 (C–O–C str.), 732 (C–Cl str.,
Ar–Cl), 886–645 (CH out of plane bending, indole). 1H
NMR (DMSO) d; 6.09–7.95 (16H, m, ArH), 4.72 (1H, s,

SO2NH), 4.19 (1H, s, CH), 1.29 (6H, d, CH(CH3)2);
13CNMR (DMSOd6, d ppm): 166.19, 164.75, 161.72,
161.66, 154.04, 136.52, 133.67, 133.61, 132.88, 130.92,

130.46, 129.94, 129.25, 128.07, 125.82, 124.55, 123.98,
115.42, 112.68.
4.2.10. 1-(4-(1-benzoyl-5-chloro-2-oxoindolin-3-
ylideneamino)phenylsulfonyl)guanidine (10)

Mp (�C) 88–90; Yield – 80%; IR (KBr pellets) cm�1 1516 (NH
in plane bending, sec. amine), 1681 (C‚O str., Ar–C‚O),

1650 (C‚N str.), 1181 (O‚S‚O str.), 699 (C–Cl str., Ar–
Cl), 898–641 (CH out of plane bending, indole). 1H NMR
(DMSO) d; 7.46–7.95 (12H, m, ArH), 4.20 (1H, s, SO2NH),

3.31 (3H, s, COCH3).
4.2.11. 4-(5-chloro-1-(2-chlorobenzoyl)-2-oxoindolin-3-
ylideneamino)-N-(5-methyl isoxazol-3-yl)benzenesulfonamide

(11)

Mp (�C) 203–205; Yield – 76%; IR (KBr pellets) cm�1 1491
(NH in plane bending, sec. amine), 1687 (C‚O str., Ar–

C‚O), 1656 (C‚N str.), 1142 (O‚S‚O str.), 777 (C–Cl
str., Ar–Cl), 895 (CH out of plane bending, isoxazole), 895–
665 (CH out of plane bending, indole). 1H NMR (DMSO) d;
7.47–8.06 (12H, m, ArH), 4.17 (1H, s, SO2NH), 2.38 (3H, s,

ArCH3).
4.2.12. N-(4-(5-chloro-1-(2-chlorobenzoyl)-2-oxoindolin-3-

ylideneamino)phenyl sulfonyl)acetamide (12)

Mp (�C) 220–222; Yield – 76.87%; IR (KBr pellets) cm�1 1491
(NH in plane bending, sec. amine), 1686 (C‚O str., Ar–
C‚O), 1655 (C‚N str.), 1183 (O‚S‚O str.), 777 (C–Cl

str., Ar–Cl), 1402 (CH3 bending vibration, COCH3), 895–665
(CH out of plane bending, indole). 1H NMR (DMSO) d;
7.58–7.97 (14H, m, ArH), 4.18 (1H, s, SO2NH), 2.37 (3H, s,

COCH3);
13CNMR (DMSOd6, d ppm): 165.17, 161.57,

137.74, 136.15, 133.59, 132.33, 130.01, 129.86, 129.63, 129.37,
129.24, 126.01.

4.2.13. 4-(5-chloro-1-(2-chlorobenzoyl)-2-oxoindolin-3-
ylideneamino)-N-(pyrimidin-2-yl) benzenesulfonamide (13)

Mp (�C) 220–222; Yield – 76.87%; IR (KBr pellets) cm�1 1491

(NH in plane bending, sec. amine), 1687 (C‚O str., Ar–
C‚O), 1656 (C‚N str.), 1183 (O‚S‚O str.), 777 (C–Cl
str., Ar–Cl), 1593 (C‚N str., pyrimidine), 777 (CH out of

plane bending, 4-sustituted pyrimidine), 896–665 (CH out of
plane bending, indole). 1H NMR (DMSO) d; 7.65–7.97
(14H, m, ArH), 4.18 (1H, s, SO2NH).

4.2.14. 4-(5-chloro-1-(2-chlorobenzoyl)-2-oxoindolin-3-
ylideneamino)-N-(4-methyl pyrimidin-2-yl)benzenesulfonamide
(14)

Mp (�C) 220–222; Yield – 76.87%; IR (KBr pellets) cm�1 1491

(NH in plane bending, sec. amine), 1686 (C‚O str., Ar–
C‚O), 1656 (C‚N str.), 1183 (O‚S‚O str.), 777 (C–Cl
str., Ar–Cl), 1593 (C‚N str., pyrimidine), 777 (CH out of
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plane bending, 4-sustituted pyrimidine), 896–666 (CH out of
plane bending, indole). 1H NMR (DMSO) d; 7.58–8.02
(13H, m, ArH), 4.19 (1H, s, SO2NH), 2.38 (3H, s, ArCH3);
13CNMR (DMSOd6, d ppm): 165.17, 161.56, 137.74, 136.14,
133.58, 132.33, 130.01, 129.85, 129.65, 129.37, 129.24, 126.02.

4.2.15. 4-(5-chloro-1-(2-chlorobenzoyl)-2-oxoindolin-3-
ylideneamino)-N-(thiazol-2-yl) benzenesulfonamide (15)

Mp (�C) 220–222; Yield – 76.87%; IR (KBr pellets) cm�1 1491
(NH in plane bending, sec. amine), 1687 (C‚O str., Ar–

C‚O), 1655 (C‚N str.), 1183 (O‚S‚O str.), 777 (C–Cl
str., Ar–Cl), 1593 (C‚N str., thiazole), 739 (C–S–C str., thia-
zole), 896–666 (CH out of plane bending, indole, thiazole). 1H

NMR (DMSO) d; 7.64–7.96 (13, m, ArH), 4.18 (1H, s,
SO2NH).

4.2.16. 4-(5-chloro-1-(2-chlorobenzoyl)-2-oxoindolin-3-
ylideneamino)-N-(4,6-dimethoxy pyrimidin-2-
yl)benzenesulfonamide (16)

Mp (�C) 220–222; Yield – 76.87%; IR (KBr pellets) cm�1 1491

(NH in plane bending, sec. amine), 1686 (C‚O str., Ar–
C‚O), 1656 (C‚N str.), 1183 (O‚S‚O str.), 777 (C–Cl
str., Ar–Cl), 1250 (C–OC str.), 1594 (C‚N str., pyrimidine),

896–666 (CH out of plane bending, indole). 1H NMR (DMSO)
d; 7.51–8.06 (12H, m, ArH), 4.19 (1H, s, SO2NH), 3.30 (6H, s,
ArOCH3).

4.2.17. 4-(5-chloro-1-(4-chlorobenzoyl)-2-oxoindolin-3-
ylideneamino)-N-(6-methoxy pyridazin-3-
yl)benzenesulfonamide (17)

Mp (�C) 220–222; Yield – 76.87%; IR (KBr pellets) cm�1 1491

(NH in plane bending, sec. amine), 1687 (C‚O str., Ar–
C‚O), 1655 (C‚N str.), 1183 (O‚S‚O str.), 1250 (C–O–C
str.), 1402 (N–N str., pyridazine), 777 (C–Cl str., Ar–Cl),

896–666 (CH out of plane bending, indole). 1H NMR (DMSO)
d; 7.51–8.03 (13H, m, ArH), 4.19 (1H, s, SO2NH), 3.31 (3H, s,
ArOCH3).

4.2.18. 4-(5-chloro-1-(2-chlorobenzoyl)-2-oxoindolin-3-
ylideneamino)-N-(pyridin-2-yl) benzenesulfonamide (18)

Mp (�C) 220–222; Yield – 76.87%; IR (KBr pellets) cm�1 1491

(NH in plane bending, sec. amine), 1687 (C‚O str., Ar–
C‚O), 1655 (C‚N str.), 1183 (O‚S‚O str.), 777 (C–Cl
str., Ar–Cl), 1593 (C‚N str., pyridine), 896–665 (CH out of

plane bending, indole). 1H NMR (DMSO) d; 7.51–8.02
(15H, m, ArH), 4.18 (1H, s, SO2NH); 13CNMR (DMSOd6, d
ppm): 165.18, 161.58, 137.75, 136.16, 133.60, 132.34, 130.02,

129.88, 129.61, 129.38, 129.24, 126.01, 112.87.

4.2.19. N-(4-(5-chloro-1-(2-chlorobenzoyl)-2-oxoindolin-3-
ylideneamino)phenyl sulfonyl)-4-isopropoxybenzamide (19)

Mp (�C) 208–210; Yield – 74%; IR (KBr pellets) cm�1 1492
(NH in plane bending, sec. amine), 1688 (C‚O str., Ar–
C‚O), 1656 (C‚N str.), 1186 (O‚S‚O str.), 1160
(CH(CH3)2 bending), 1259 (C–O–C str.), 742 (C–Cl str., Ar–

Cl), 889–668 (CH out of plane bending, indole). 1H NMR
(DMSO) d; 6.08–8.01 (15H, m, ArH), 4.76 (1H, s, SO2NH),
4.18 (1H, s, CH), 1.30 (6H, d, CH(CH3)2);

13CNMR

(DMSOd6, d ppm): 165.18, 164.75, 161.71, 161.59, 154.04,
137.77, 136.18, 133.61, 132.34, 130.92, 130.46, 130.02, 129.89,
129.59, 129.39, 129.25, 126.00, 124.55, 123.98, 115.41, 112.61.

4.2.20. 1-(4-(5-chloro-1-(2-chlorobenzoyl)-2-oxoindolin-3-
ylideneamino) phenyl sulfonyl)guanidine (20)

Mp (�C) 88–90; Yield – 80%; IR (KBr pellets) cm�1 1491 (NH
in plane bending, sec. amine), 1688 (C‚O str., Ar–C‚O),

1656 (C‚N str.), 1186 (O‚S‚O str.), 741 (C–Cl str., Ar–
Cl), 896–666 (CH out of plane bending, indole). 1H NMR
(DMSO) d; 6.71–8.62 (11H, m, ArH), 4.19 (1H, s, SO2NH),

3.30 (3H, s, COCH3);
13CNMR (DMSOd6, d ppm): 165.17,

161.56, 137.74, 136.13, 133.58, 132.33, 130.02, 129.85, 129.67,
129.38, 129.24, 126.03.

4.3. Evaluation of antimicrobial activity

4.3.1. Determination of MIC

The antimicrobial activity was performed against Gram-posi-
tive bacteria: Staphylococcus aureus, B. subtilis, the Gram-neg-
ative bacterium E. coli and several fungal strains: C. albicans

and A. niger using the tube dilution method (Cappucino and
Sherman, 1999). Dilutions of test and standard compounds
were prepared in double strength nutrient broth – I.P. (bacte-

ria) or Sabouraud dextrose broth – I.P. (fungi) (Pharmaco-
poeia of India, 2007). The samples were incubated at 37 �C
for 24 h (bacteria), at 25 �C for 7 d (A. niger) and at 37 �C
for 48 h (C. albicans) and the results were recorded in terms
of minimum inhibitory concentration (MIC).

4.3.2. Determination of MBC/MFC

The minimum bactericidal concentration (MBC) and fungi-
cidal concentration (MFC) were determined by sub culturing
100 lL of culture from each tube (which remained clear in

the MIC determination) on fresh medium. MBC and MFC
values represent the lowest concentration of compound that
produces a 99.9% end point reduction (Rodriguez-Arguelles

et al., 2005).

4.4. Anticancer evaluation

The anticancer activity of the synthesized compounds was

determined against murine leukemia (RAW 264.7) and colon
cancer (HCT116) cell lines. Cancer cell lines were purchased
from the American Type Culture Collection (ATCC),

Manassas, VA, USA. All cell lines were cultured in RPMI
1640 (Sigma) supplemented with 10% heat inactivated fetal
bovine serum (FBS) (PAA Laboratories) and 1% penicillin/

streptomycin (PAA Laboratories). Cultures were maintained
in a humidified incubator at 37 �C in an atmosphere of 5%
CO2. Anticancer activity of the synthesized compounds at var-
ious concentrations was assessed using the 3-(4,5-dimethylthi-

azol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) (Sigma)
assay, as described by Mosmann (1983) but with minor mod-
ification, following 72 h of incubation. Assay plates were read

using a spectrophotometer at 520 nm. Data generated were
used to plot a dose–response curve of which the concentration
of test compounds required to kill 50% of the cell population

(IC50) was determined. Anticancer activity was expressed as
the mean IC50 of three independent experiments.
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4.5. QSAR studies

The structures of synthesized isatin derivatives were first pre-
optimized with the Molecular Mechanics Force Field
(MM+) procedure included in Hyperchem 6.0 (1993) and the

resulting geometries were further refined by means of the semi-
empirical method PM3 (Parametric Method-3). We chose a
gradient norm limit of 0.01 kcal/Å for the geometry optimiza-
tion. The lowest energy structure was used for each molecule

to calculate physicochemical properties using TSAR 3.3 soft-
ware for Windows (TSAR 3D Version 3.3, 2000). Further,
the regression analysis was performed using the SPSS software

package (SPSS for Windows, 1999).
Appendix A. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.arabjc.
2013.03.002.
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