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Abstract A series of S(�)-2-(4-chlorophenyl)-N-(5,7-disubstituted-2H-[1,2,4]-thiadiazolo[2,3-a]

pyrimidin-2-ylidene)-3-methylbutanamide derivatives were designed and synthesized. The struc-

tures of all the newly synthesized compounds had been identified by elemental analysis, 1H

NMR, MS and optical rotation. Their herbicidal activities were evaluated against a variety of

weeds. The preliminary results showed that most of the target compounds had moderate inhibitory

activities and selectivities against root and stalk of monocotyledon and dicotyledon plants. More

importantly, the chiral target compounds showed improved herbicidal activities to some extent over

their racemic counterparts against a variety of tested weeds, which might be contributed by the

introduction of chiral active unit. The present work provided a novel class of chirality-based thi-

adiazolopyrimidine derivatives with potent herbicidal activities for further optimization.
ª 2010 King Saud University. All rights reserved.
1. Introduction

Many of agrochemicals currently in use were chiral, and these

were increasing as more structurally complicated compounds
were introduced into use (Williams, 1996; Cai et al., 2008; Span-
om (L.P. Duan).

ity. All rights reserved. Peer-

d University.
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gler et al., 1999; Lao andGan, 2006). It was noteworthy that ste-
reochemistry strongly influenced not only biological activity but
also metabolic processes in organisms and in the environment
(Zhu et al., 2007). Growing concern about the side effects of chi-

ral agrochemicals had promoted the use of enantiomerically
pure or stereochemically enriched compounds (Williams,
1996). Therefore, a great of work have been performed on this

important research topic during the recent years (Hosokawa
et al., 2001; Song et al., 2005; Tanaka et al., 2002; Omokawa
et al., 2003; Zhou et al., 2007; Rügge et al., 2002).

In our research group, we have been interested in studying
the design, synthesis, and biological activity of compounds
containing the 2H-[1,2,4]thiadiazolo[2,3-a]pyrimidine (Xue

et al.,2004a,b, 2005a,b). 2H-[1,2,4]thiadiazolo[2,3-a]pyrimidine
derivatives were an important class of synthetic herbicide (Xue
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et al., 1998; Zhang and Xue, 1995), which were active against

the weeds of Digitaria sanguinalis (L) Scop and Chenopodium.
Generally, this kind of compounds behaved in a manner sim-
ilar to that of sulfonylurea herbicides, inhibiting the synthesis
of acetolactate, which has become a very attractive target for

herbicides (Schloss et al., 1988; Abell et al., 1995). It was well
known that S(�)-2-(4-chlorophenyl)-3-methylbutyric acid was
proved to have excellent biological activities over its non-active

counterpart, such as antibacterial, pesticidal properties and
promoting effect on plant growth (Elliott et al., 1974; Cram-
mer et al., 1985). These inspired us to assume that 2H-

[1,2,4]thiadiazolo[2,3-a]pyrimidine derivatives incorporated
with enantiomerically active S(�)-2-(4-chlorophenyl)-3-meth-
ylbutyric acid might have some improved or different biologi-

cal activities. Based on this consideration, a series of S(�)-2-(4-
chlorophenyl)-N-(5,7-disubstituted-2H-[1,2,4]-thiadiazolo[2,3-
a]pyrimidin-2-ylidene)-3-methylbutanamide derivatives were
designed and synthesized, and their herbicidal activities were

evaluated against a variety of weeds. The preliminary results
showed that the target compounds showed improved herbi-
cidal activities over their racemic counterpart against root

and stalk of monocotyledon and dicotyledon plants.
2. Experimental

2.1. Material and reagents

All the reagents and solvents were of the commercial quality
and were used without purification. Elemental analysis was

performed on a PE-2400 elemental analyze, the C, H and N
analysis were repeated twice. 1H NMR spectra were obtained
with a Bruker AM-400 spectrometer with chemical shifts re-
ported as ppm (in DMSO-d6, TMS as internal standard). Mass

spectra were recorded on a HP-5988A mass spectrometer at 70
ev. Melting points were determined by an X-6 micro-melting
point apparatus and were uncorrected.
2.2. General procedure for the preparation of 2H-

[1,2,4]thiadiazolo[2,3-a]pyrimidine derivatives(5a–f)

The synthetic routes of the target compounds 5a–f were shown
in Scheme 1. According to our reported procedure (Xue et al.,
2004a,b), S(�)-2-(4-chlorophenyl)-3-methylbutyric acid 1, pre-

pared by using the previously reported method (Zhang and
Zhao, 2008), were treated with SOCl2 and KSCN, respectively,
affording the intermediates 2 with moderate yields of 75%,
Cl
CH(CH3)2
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Scheme 1 The synthetic route
which were used directly without further purification. The fol-

lowing nucleophilic reaction of 2 with 4,6-disubstituted-2-ami-
no-pyrimidine 3a–f, led to the key intermediates 4a–f,
respectively. The subsequent oxidizing cyclization of 4a–f with
Br2 in CH2Cl2 afforded the target compounds 5a–f, which were

recrystallized twice from DMF/EtOH/H2O with satisfied
yields of 75–80%, respectively.

All the target compounds were pale yellow solid and stable

at room temperature, no hygroscopic, insoluble in water and
readily soluble in DMF and DMSO.

5a: S(�)-2-(4-chlorophenyl)-N-(5,7-dimethyl-2H-[1,2,4]

thiadiazolo[2,3-a]pyrimidin-2-ylidene)-3-methyl butanamide.
Yield 78%, mp 254–256 �C. ½a�20D , �10.5 (c, 1.15, methanol).
1H NMR d ppm: 0.70 (3H,d, CH(CH3)2), 0.90 (3H, d,

CH(CH3)2), 2.20–2.40 (1H, m, CH(CH3)2), 2.10 (3H, s, CH3),
2.20 (3H, s, CH3), 3.90–4.10 (1H, m, CHCH(CH3)2), 5.94
(1H, s, py-50-H), 7.30-7.50 (4H, m, Ph-H). MS (EI+) calcd for
C18H19ClN4OS M+ 374.1, found 374.5. Element Anal. Calc.

for C18H19ClN4OSM+ 374.1: C 57.67, H 5.11, N 14.94. Found:
C 57.61, H 5.15, N 14.92%.

5b: S(�)-2-(4-chlorophenyl)-N-(5,7-dimethoxy-2H-[1,2,4]

thiadiazolo[2,3-a]pyrimidin-2-ylidene)-3-methyl butanamide.
Yield 80%, mp 252–255 �C. ½a�20D , �19.2 (c, 0.90, methanol).
1H NMR d ppm: 0.80 (3H, d, CH(CH3)2), 1.00 (3H, d,

CH(CH3)2), 2.10–2.30 (1H, m, CH(CH3)2), 3.80–4.00 (1H, m,
CHCH(CH3)2), 4.41 (3H, s, CH3), 4.60 (3H, s, CH3), 5.91
(1H, s, py-50-H), 7.20–7.40 (4H, m, Ph-H). MS (EI+) calcd
for C18H19ClN4O3S. M

+ 406.1, found 406.3. Element Anal.

Calc. for C18H19ClN4O3S: C 53.13, H 4.71, N 13.77. Found:
C 53.10, H 4.76, N 13.72%.

5c: S(�)-2-(4-chlorophenyl)-N-(5,7-dichloro-2H-[1,2,4]thi-

adiazolo[2,3-a]pyrimidin-2-ylidene)-3-methyl-butanamide.
Yield 76%, mp 245–247 �C. ½a�20D , �19.0 (c, 1.00, methanol). 1H
NMR d ppm: 1.00 (3H, d, CH(CH3)2), 1.20 (3H, d,

CH(CH3)2), 2.45–2.55 (1H, m, CH(CH3)2), 3.90–4.00 (1H, m,
CHCH(CH3)2), 6.92 (1H, s, py-50-H), 7.30–7.40 (4H, m, Ph-
H). MS (EI+) calcd for C16H13Cl3N4OS M+ 415.7, found

416.0. Element Anal. Calc. for C16H13Cl3N4OS: C 46.23, H
3.15, N 13.48. Found: C 46.29, H 3.08, N 13.40%.

5d: S(�)-N-(7-chloro-5-methoxy-2H-[1,2,4]thiadiazolo[2,3-a]
pyrimidin-2-ylidene)-2-(4-chlorophenyl)-3-methylbutanamide.

Yield 75%, mp 251–253 �C. ½a�20D , �10.9 (c, 1.80, methanol). 1H
NMR d ppm: 1.00 (3H, d, CH(CH3)2), 1.10 (3H, d,
CH(CH3)2), 2.30–2.40 (1H, m, CH(CH3)2), 3.90–4.00 (1H, m,

CHCH(CH3)2), 4.15 (3H, s, OCH3), 5.74 (1H, s, py-5
0
-H),

7.50–7.60 (4H, m, Ph-H). MS (EI+) calcd for C17H16Cl2N4O2S
M+ 410.0, found 410.2. Element Anal. Calc. for C17H16Cl2-
Cl
CH(CH3)2

CONH
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s of the target compounds.
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N4O2S: C 49.64, H 3.92, N 13.62. Found: C 49.72, H 3.85, N

13.59%.
5e: S(�)-2-(4-chlorophenyl)-N-(5-hydroxy-7-methyl-2H-

[1,2,4]thiadiazolo[2,3-a]pyrimidin-2-ylidene)-3-methylbutana-
mide. Yield 80%, mp >300 �C. ½a�20D , �12.1 (c, 0.50, metha-

nol). 1H NMR d ppm: 0.90 (3H, d, CH(CH3)2), 1.10 (3H, d,
CH(CH3)2), 2.40-2.55 (1H, m, CH(CH3)2), 2.49 (3H, s, CH3),
3.90–4.05 (1H,m, CHCH(CH3)2), 6.87 (1H, s, py-5

0
-H), 7.30–

7.50 (4H, m, Ph-H). MS (EI+) calcd for C17H17ClN4O2S
M+ 376.1, found 376.1. Element Anal. Calc. for
C17H17ClN4O2S: C 54.18, H 4.55, N 14.87. Found: C 54.24,

H 4.51, N 14.82%.
5f: S(�)-N-(7-chloro-5-methyl-2H-[1,2,4]thiadiazolo[2,3-a]

pyrimidin-2-ylidene)-2-(4-chlorophenyl)-3-methylbutanamide.

Yield 80%, mp 235–237 �C. ½a�20D , �14.3 (c, 0.80, methanol). 1H
NMR d ppm: 1.00 (3H, d, CH(CH3)2), 1.10 (3H, d,
CH(CH3)2), 2.11 (3H, s, CH3), 2.30–2.40 (1H, m, CH(CH3)2),
3.90–4.00 (1H, m, CHCH(CH3)2), 5.74 (1H, s, py-5

0
-H), 7.50–

7.60 (4H, m, Ph-H). MS (EI+) calcd for C17H16Cl2N4OS M+

394.0, found 394.2. Element Anal. Calc. for C17H16Cl2N4OS: C
51.65, H 4.08, N 14.17. Found: C 51.72, H 3.99, N 14.10%.

2.3. Biological activity

The herbicidal activities of target compounds were evaluated by
flat-utensil method according with the standard bioactivity test
procedures of Shanghai Academy of Agricultural Sciences in
China (Xue et al., 2005a,b). The three monocotyledon weeds

and two dicotyledon weeds used to test the herbicidal activity
of compounds are Echinochloa crusgallis L., Sorghum bicolort,
Digitaria sanguinalis (L.) scop Chenopodium serotinum (L.)

and Amaranthus retroflexus L., respectively. Seeds were planted
in a 6 cm-diameter flat-utensil containing artificial mixed soil.
Length of root and stalk of the above ground tissues was mea-

sured after treatment for 6 days. The inhibition ratio is used
to describe the control efficiency of the compounds. Dosage
(activity ingredient) for each compound is 50 ppm and

100 ppm. Purified compounds were dissolved in 100 lL N,N-
dimethylformamide with the addition of 30 mL water and 1%
Tween 80 to give 50 ppm and 100 ppm concentration for each
Table 1 The inhibition percentage of the target compounds agains

Compounds Concentration (ppm) Echinochloa

crusgallis L.

Sorghum

bicolort

Stalk Root Stalk

(±)5a 50 20 0 0

100 25 10 10

(±)5b 50 30 0 10

100 30 0 20

5a 50 50 30 20

100 80 30 25

5b 50 40 20 25

100 70 20 40

5c 50 40 30 20

100 75 50 30

5d 50 60 80 60

100 70 100 80

5e 50 30 70 35

100 40 80 40

5f 50 10 70 10

100 30 90 20
sample. Then it was sprayed using a laboratory belt sprayer

delivering at 3.0 mL-spray-volume. For comparison, another
flat-utensil containing the mixture of the same amount of water,
N,N-dimethylformamide and Tween 80 was sprayed as control.
Triplicate each treatment. Activity numbers represent percent

displaying herbicidal damage as compared to control. The inhi-
bition ratio is calculated by the following equation:

Inhibition ration ¼ 1� comparison

treatment
� 100%
3. Results and discussion

3.1. Synthesis of 2H-[1,2,4]thiadiazolo[2,3-a]pyrimidine
derivatives(5a–f) and characterization

Firstly, S(�)-2-(4-chlorophenyl)-3-methylbutyric acid 1 was

acylated by SOCl2 followed by isothiocyanation and coupling
reactions with 4,6-disubstituted-2-amino-pyrimidine 3a–f to
give N0-(4,6-disubstituted-pyrimid-2-yl)-N-[2-(4-chlorophenyl)-
3-methylbutyric)]-thiourea 4a–f in moderate yield. Then the ti-

tle compounds 5a–f were successfully obtained using bromine
as cyclic reagent with overall 50–60% yield. Compounds 5a–f
were characterized by 1H NMR, EI and elemental analysis. All

results are in full agreement with the proposed structures. For
example, the singlet signal at 6.87 ppm (pyrimidine) and the
doublet signal at 0.9 and 1.1 ppm (CH(CH3)2) of 1H NMR

spectra suggest that compound 5e is consistent with its struc-
ture, and MS matches the calculated values to show the
[M]+ ions as 376.1. The results of elemental analyses are in

good agreement with those calculated for the suggested for-
mula. The melting points are sharp indicating the purity of
these compounds.

3.2. Biological activity of target compounds

The herbicidal activities of the target compounds were evalu-
ated against a variety of weeds by flat-utensil method accord-
ing with the standard bioactivity test procedures of Shanghai

Academy of Agricultural Sciences in China. The results were
summarized in Table 1.
t various weeds.

Digitaria

sanguinalis L.

Chenopodium

serotinum L.

Amaranthus

retroflexus L.

Root Stalk Root Stalk Root Stalk Root

0 40 30 40 35 10 20

0 60 70 70 60 20 50

0 35 30 20 20 30 20

0 60 60 50 50 30 45

20 55 45 50 50 50 50

20 90 80 80 85 95 100

20 50 40 90 90 45 40

50 90 80 90 90 80 95

20 0 0 20 30 50 45

20 10 0 40 60 75 80

60 0 0 10 10 0 0

80 10 10 20 10 20 30

30 10 20 70 50 60 50

30 10 25 100 80 95 90

20 30 30 80 80 90 85

40 30 40 85 90 100 100
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From Table 1, we could find that most of the target com-

pounds had moderate inhibitory activities and selectivities
against root and stalk of monocotyledon and dicotyledon
plants. Compounds 5a and 5f showed the highest inhibitory
activities against root and stalk of Amaranthus retroflexus L.

in higher concentration (1.0 · 10�4 lg/mL), while compounds
5d and 5e showed good activities against root of Echinochloa
crusgallis L. and stalk of Chenopodium serotinum L., respec-

tively. It was worth noting that the chiral target compounds
showed improved herbicidal activities to some extent over their
racemic counterparts (such as 5a versus (±)5a and 5b versus

(±)5b) against a variety of tested weeds, which might be con-
tributed by the introduction of chiral active unit. Further struc-
ture–herbicidal activity relationships about the designed

compounds were under the way. The present work provided a
novel class of chirality-based thiadiazolopyrimidine derivatives
with potential herbicidal activities for further optimization.

4. Conclusion

In the present work, we design and discover a new class of

S(�)-2-(4-chlorophenyl)-3-methylbutyric acid thiadiazolopyr-
imidine conjugates with potential herbicidal activities. The pre-
liminary results showed that most of the target compounds

had moderate inhibitory activities and selectivities against root
and stalk of monocotyledon and dicotyledon plants. Further-
more, the chiral target compounds showed improved herbi-

cidal activities to some extent over their racemic counterparts
against a variety of tested weeds, which might be contributed
by the introduction of chiral active unit.
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