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A B S T R A C T   

The rising environmental issues caused by carbon dioxide emissions and accumulation of industrial solid waste 
accelerate the development of carbon capture utilization and storage (CCUS), especially the technology using 
industrial solid waste as a raw material to prepare environmentally friendly and sustainable porous materials to 
capture CO2. This study developed four models including support vector regression(SVR), multivariate adaptive 
regression spline(Mars), random forest(RF), and gradient boosting machine(GBM) based on 762 CO2 adsorption 
datasets of zeolites synthesized from five different industrial solid waste materials to predict the CO2 adsorption 
capacity and analyze impact of various factors on CO2 adsorption performance during synthesis and adsorption 
processes. The results suggested that gradient boosting machine(GBM) and the support vector regression(SVR) 
have good accuracy and generalization performance. The R2 of the model reached 0.99 and 0.96 respectively, 
which is in good agreement with the laboratory data. In general, the specific surface area(S) and adsorption 
pressure(P) during the adsorption process of zeolite have a great influence on the final adsorption performance. 
The correlation between the specific surface area(S) and the hydrothermal reaction temperature(T2) is the 
largest, and its Pearson Correlation Coefficient is 0.61. This study paved a new approach for the accumulation 
treatment of industrial solid waste and low-carbon industry via statistical analysis and machine learning method, 
which is beneficial to environmental protection and sustainable development.   

1. Introduction 

Global warming caused by the emission of greenhouse gasses is one 
of the major environmental problems facing the world today, and its 
main cause is human activity, especially the burning of fossil fuels 
(Rahman et al., 2017, Letcher, 2019). The Intergovernmental Panel on 
Climate Change (IPCC)(Vinoba et al., 2017) mentioned in a report that 
CO2 levels in the atmosphere will increase to 450 ppm by 2035, resulting 
in a global temperature increase of 2℃. This will lead to serious envi-
ronmental problems such as severe heat waves, droughts, melting gla-
ciers, and sea level rise, posing a threat to human health, global species, 
and global ecological security(Chu et al., 2017, Yoro and Daramola, 
2020). Based on this situation, the Carbon Capture Utilization and 
Storage (CCUS) technology was launched(Cozier, 2019, Zhang, 2020, 
Luo et al., 2023). Carbon Capture Storage (CCS) and Carbon Capture 
Utilization and Storage (CCUS) are currently recognized in many 

countries as effective methods to reduce carbon dioxide gas, which can 
reduce up to 20 % of CO2 emissions. The CCUS method focuses on 
capturing and storing CO2 emitted from power plants, cement plants, oil 
refineries, and steel mills in porous materials and eventually reusing it to 
achieve the goal of reducing carbon dioxide emissions. The most critical 
aspect of carbon dioxide capture and collection technology is to produce 
materials that are low cost, low energy consuming, and have good car-
bon dioxide capture and selection performance(Zhou et al., 2019, Abd 
et al., 2021). At present, materials for adsorption of carbon dioxide 
include activated carbon(Mukherjee et al., 2019), metal oxides(Gopalan 
et al., 2022), zeolites(Aniruddha and Sreedhar, 2021), metal–organic 
frameworks (MOFs)(ALOthman and Shahid, 2022), etc. Among them, 
zeolite plays an irreplaceable role in CO2 adsorption and separation, as it 
is inexpensive, easy to produce, and provides good adsorption perfor-
mance even at high temperatures. 

The industrial accumulation of solid waste such as fly ash, bauxite 
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waste, and lithium slag causes environmental pollution and even affects 
human health. Their effective disposal methods are also a worldwide 
problem(Wu et al., 2019, Ren et al., 2021, Gao et al., 2022, Miao et al., 
2022). Due to the high content of silica and alumina in these solid 
wastes, zeolites can be produced from these solid wastes by a relatively 
cheap and fast conversion process. Asifa Iqbal et al.(Iqbal et al., 2019) 
used fly ash as raw material for the synthesis of 4A zeolite in pure phase. 
The results showed that the induction time helps to catalyze the for-
mation of primary and secondary gels during the synthesis process, 
which controls the formation of a single phase with high crystallinity 
and small crystallite size. The synthetic zeolite was also compared with 
commercial 4A zeolite and it was confirmed that the synthetic zeolite 
has only one crystalline phase with small crystallite size and 82 % 
crystallinity, which is higher than 75 % of commercial zeolite. Binyu 
Wang et al.(Wang et al., 2022) proposed a method for mild activation of 
lithium slag to synthesize highly crystalline A-type zeolite with good 
selectivity for the radioactive isotope 90Sr in aqueous solution. The re-
sults showed that the static water absorption capacity of the zeolite was 
higher than the national standard for commercial A-type zeolite in 
China, and the removal rate of Sr2+ in water is greater than 99 %. In 
addition, many scientists have focused on the CO2 adsorption perfor-
mance of zeolites that use solid waste as a raw material. Zhiqin Qiang 
et al.(Qiang et al., 2019) successfully synthesized X zeolite by simple 
hydrothermal treatment using bauxite waste as raw material and 
investigated the CO2 adsorption capacity of the zeolite. The maximum 
CO2 adsorption capacity of the X zeolite is 6.4 mmol/g in the pressure 
range of 0 ~ 101.325 KPa and at 298 K, which is 1.64 times that of the 
synthetic feldspar zeolite. Cui Quan et al.(Quan et al., 2022) prepared 
molecular sieve MCM-41 and amine-modified MCM-41 from coal 
gangue for the separation of carbon dioxide. The results showed that 
both pH and calcination temperature affected adsorption performance. 
Amine modification improved the CO2 binding capacity of MCM-41. The 
above methods of producing zeolite with adsorption value from solid 
waste as raw materials all show that synthetic zeolite has good CO2 
adsorption performance and also effectively solves the problem of solid 
waste accumulation and disposal. 

Machine learning (ML), a byproduct of the interdisciplinary fields of 
statistics and computer science, is often used to automatically learn, 
identify, and improve the regularities in a given data set to create a black 
box model that can accurately represent the operation of the original 
model(Moges et al., 2022, Yin et al., 2022, Huang et al., 2023). There-
fore, machine learning models are also frequently used in the study of 
the properties of zeolites. Liberty L. Mguni et al.(Mguni et al., 2022) 
used multiple linear regression (MLR) and random forest (RF) to 
investigate the adsorption desulfurization performance of zeolites for 
hydrocarbon fuels using literature data. This work demonstrates the 
effectiveness of machine learning and literature data as low-cost sub-
stitutes for experiments. Seyed Mehdi Seyed Alizadeh et al.(Alizadeh 
et al., 2022) used an artificial neural network to predict the hydrogen 
absorption capacity of 28 zeolites. The research results showed that the 
regression factor of the experimental data predicted by the neural 
network model was 0.99. Mojtaba Raji et al.(Raji et al., 2022) used 
different machine learning training algorithms to predict the CO2 
adsorption performance of different types of zeolites. The results showed 
that the established machine learning model is more conducive to the 
design and analysis of the adsorption process. 

Although machine learning models are mature in predicting zeolite 
performance, there are relatively few studies on zeolite CO2 adsorption 
performance based on machine learning models(Wanyonyi et al., 2021, 
Alizadeh et al., 2022, Ducamp and Coudert, 2022, Mguni et al., 2022). In 
particular, the effects of zeolite fusion conditions, Hydrothermal con-
ditions and adsorption conditions on the amount of carbon dioxide 
adsorbed were not adequately considered. Therefore, this study in-
vestigates the CO2 adsorption capacity of zeolites prepared by a two-step 
process (Alkali Fusion and Hydrothermal) using various solid wastes as 
raw materials, and trains various machine learning models based on 

literature data. Finally, the model with high precision and strong 
generalization performance was built to explain the factors affecting 
CO2 adsorption capacity during the zeolite synthesis process and 
adsorption process. This opens a new path for industrial waste treatment 
and low-carbon industry, and provides a theoretical basis for waste 
resource utilization conducive to environmental protection and sus-
tainable development. Fig. 1 shows the general process flow of this 
study. 

2. Method 

2.1. Data acquisition 

In this study, five different solid wastes (Coal fly ash, Bauxite tailings, 
Coal waste, Laterite residue and Bauxite, Nickel laterite residue) were 
selected as raw materials, and zeolites were synthesized by two-step of 
alkali fusion and hydrothermal processes. The types of zeolites synthe-
sized were NaA, 4A, FAU, LTA, X-Type (NaX, Ca-NaX), P-Type, and A-X- 
Type. It should be noted that the synthesis of zeolite by alkali fusion / 
hydrothermal method is a complex phenomenon, which involves many 
variables affecting the adsorption performance of zeolite for carbon 
dioxide adsorption. For the preparation process of zeolite, the different 
oxide content of the selected raw materials, the alkali source content in 
the alkali fusion process, the temperature and time of alkali fusion, the 
temperature and time of hydrothermal, the aging time and different 
cationic modification will indirectly cause differences in the formation 
of zeolites, and these differences will ultimately affect the adsorption 
performance of carbon dioxide by zeolite. In addition, the structural of 
the zeolite, such as the specific surface area of the zeolite, the outer 
surface, the average micropore and mesopore diameter of the micro-
pore, will directly determine the amount of carbon dioxide adsorbed by 
the zeolite. The main objective of this study is to investigate the effects of 
some parameters in alkali fusion process, hydrothermal process and 
adsorption process on the carbon dioxide adsorption performance of 
zeolites. And because of the independence of different literature data, it 
is impossible to comprehensively consider all the influencing factors. 

Therefore in this study, the types of raw materials, synthesis condi-
tions, adsorption conditions and carbon dioxide adsorption performance 
of zeolite were used as research data. A total of 762 sets of data points 
were extracted from 11 literature(Lee and Jo, 2010, Liu et al., 2011, Du 
et al., 2014, Liu et al., 2014, Zgureva, 2016, Jung et al., 2018, Qiang 
et al., 2019, Qiang et al., 2019, de Aquino et al., 2020, Verrecchia et al., 
2020, Boycheva et al., 2021). As shown in Table 1 for details. The 
conditions for two-step zeolite synthesis, and conditions for CO2 
adsorption are used as inputs to the model, and conditions for zeolite 
synthesis are divided into conditions for alkali fusion and hydrothermal 
conditions. Alkali fusion conditions include raw material (R), fusion 
time (t1), fusion temperature (T1), and silicon-aluminum molar ratio n 
(Si:Al) in the synthetic precursor. Hydrothermal conditions include hy-
drothermal time (t2) and hydrothermal temperature (T2). Adsorption 
conditions include the specific surface area of synthetic zeolite (S), the 
adsorption pressure (P), and the adsorption temperature (T3). The 
output of the model indicates the amount of adsorbed carbon dioxide 
(C). Most literature gives the elemental content in the raw material, but 
not directly the molar ratio of silicon-aluminum in the precursor n(Si: 
Al), so the data in the literature must be converted. To obtain a highly 
accurate and verified model, all data are randomly divided into a 
training set (80 % of the data) and a test set (20 % of the data). The data 
in the training set is used to train and build the machine learning model, 
and the data in the test set is used to verify the generalization perfor-
mance of the model. It should be noted that the training set and test set 
in this research are obtained from the same paper. Hence, the real pre-
dictive performance of the learning models may be overoptimized since 
there are no intrinsic generalizations of models from different data sets. 
More different data sets from the various research projects can be 
combined together to provide more robust analysis in the future 
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research. 

2.2. Model description 

In this study, four different machine learning models were used to 
predict CO2 adsorption performance of two-step synthetic zeolites, and 

the optimized fitting results were used to guide the green recycling 
pathway of zeolites synthesized from various solid wastes to obtain high 
CO2 adsorption performance in a green and cost-effective manner. 
Support Vector Regression (SVR), Multivariate Adaptive Regression 
Spline (Mars), Random Forest (RF), and Gradient Boosting Machine 
(GBM) are all created by the CARET in R, which is a collection of more 

Fig. 1. Flow chart of this study.  

Table 1 
Details of the data employed in this research.  

Alkali fusion conditions Hydrothermal conditions Adsorption conditions CO2 Adsorption 
(C, mol/Kg) 

Numbers 
of data 

Raw material 
(R) 

Time 
(t1, h) 

Temperature 
(T1, K) 

n(Si:Al) Time 
(t2, h) 

Temperature 
(T2, K) 

BET surface 
area (S, m2/ 
g) 

Pressure (P, 
bar) 

Temperature 
(T3, K) 

Coal fly ash 1 433–1023 0.88–3.63 2–24 353–373 30–498 0.0034–1.12 273–673 0.020–4.972 515 
Bauxite 

tailings 
2 773.15 2.83 16 383.15 571, 736 0.05–1.01 273–303 0.977–7.023 100 

Coal waste 2 1123.15 1.76 3 363.15 28.67 0.0021–1.0072 298 0.690–3.294 49 
Laterite 

residue and 
Bauxite 

2 873.15 2.82 6 373.15 486 0.0057–0.94 273, 303 0.530–3.998 57 

Nickel 
laterite 
residue 

2 823.15 1.76 8 373.15 31 0.050–0.96 273, 298 1.719––3.462 41  
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than 25 other packages. This package can automatically split and pre-
process the model and optimize it by resampling and cross-validation 
methods, which helps to diagnose overfitting and make the fitting 
result more accurate and reliable. Fig. 2 shows the schematic diagram of 
the four principles of machine learning, and the principles and methods 
of each machine learning are described in detail below. 

2.2.1. Support vector regression model 
The Support Vector Machines (SVM) are one of the most popular 

supervised learning-based machine learning models. Their basic prin-
ciple is to find the hyperplane that forms the largest interval in the 
feature space to discriminate between different types of data sets(Cortes 
and Vapnik, 1995). Therefore, this model was originally used to solve 
two-class classification problems(Suthaharan, 2016, Sunitha and Raju, 
2021). For the regression problem, support vector regression (SVR) is 
used which is based on the support vector machine principle. The 
schematic diagram of the algorithm is shown in Fig. 2 (a). By continu-
ously optimizing the hyperparameter combinations, it is acceptable to 
find a large number of points that are matched in the SVR and the 
remaining points as close as possible to within a certain error range 
(epsilon band in the figure), which is within a certain distance from the 
true value. Moreover, the introduction of various kernel functions φ(x, 
y) maps the low-dimensional sample space to the high-dimensional 
space, making it linearly separable to handle nonlinear regression 
problems. Therefore, different kernel functions may have a certain 
impact on the prediction performance of the final model(Ma et al., 
2015). The current mainstream kernel functions are linear kernel, 
Gaussian kernel, radial basis kernel, etc. The choice of the hyper-
parameters on the SVR are explained in section 2.3.1. 

2.2.2. Multivariate adaptive regression splines model 
The multivariate adaptive regression spline (Mars) is a data analysis 

method proposed by American statistician Jerome Friedman in 1991 
(Friedman, 1991). The method uses the tensor product of the spline 
function as the basis function and is divided into three steps: Forward 
process, backward pruning process and model selection. The basic 
principle of the algorithm is shown in Fig. 2(b). The data is segmented by 
adaptively selecting nodes, and two new linear basis functions are 
generated by selecting each node. When the forward process is com-
plete, N + 1 linear basis functions are used to generate an overfitting 
model. Under the premise of ensuring the accuracy of the model, the 
basis functions that contribute little to the model in the overfitting 
model are deleted backward. Finally, an optimal model is selected as the 
regression model. The choice of the hyperparameters on Mars are 
explained in section 2.3.1. 

2.2.3. Random forest model 
The random forest (RF) is an integrated model based on the Bagging 

algorithm and consists of basic units of decision trees. The so-called 
integrated model is used to obtain a learner with better generalization 
performance. By training several individual learners and combining 
certain combination strategies, the single learner model with poor per-
formance eventually becomes a strong learner model(Cutler et al., 2012, 
González et al., 2015). The basic principle of the random forest model is 
shown in Fig. 2(c). The RF model randomly samples the original dataset 
to form N different sample datasets, and then builds N different decision 
tree models based on these datasets. Finally, the final result is obtained 
based on the average of these decision tree models (for the regression 
model) or the voting situation (for the classification model), and the 
final random forest model is output based on the evaluation results. The 
choice of the hyperparameters on RF are explained in section 2.3.1. 

Fig. 2. Graphical schematic of four machine learning models (()). 
adapted from Kriner, 2007, Lahiri and Ghanta, 2008, Zhang et al., 2021, Huo et al., 2022 
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2.2.4. Gradient boosting machine model 
Gradient Boosting Machine (GBM) is another type of integrated 

learning that differs from Random Forest. Although both models consist 
of basic decision trees, the GBM is based on the boosting algorithm 
(Ayyadevara, 2018, Konstantinov and Utkin, 2021). Its main principle is 
shown in Fig. 2(d). It consists of building a collection of shallow and 
weak continuous trees sequentially, where each tree learns and im-
proves the previous tree and continuously adds new models to the 
collection. Thus, at each specific iteration, a new weak-base learner 
model is trained based on the errors of the entire ensemble learned so 
far. This continuously increases the accuracy of the model, which is 
usually difficult to beat by other algorithms. The choice of the hyper-
parameters on GBM are explained in section 2.3.1. 

2.3. Model construction and performance evaluation 

2.3.1. Model training and testing 
In this study, four machine learning models were built and the 

hyperparameters were adjusted to optimize the model accuracy and 
improve the generalization ability of the model. Hyperparameter grid 
search in the package of CARET(Kuhn et al., 2021) randomly matches 
the selected hyperparameter combinations, determines different 
hyperparameter combinations, and trains machine learning models of 
different hyperparameter combination schemes that help find reason-
able values for tuning parameters. At the same time, triple independent 
10-fold cross-validation was used as a resampling scheme to avoid final 
overfitting of the model. Minimize the error between the predicted value 
and the experimental value with such a method. Table 2 contains all 
hyperparameters considered by the four machine learning models and 
their meaning. 

2.3.2. Model performance evaluation 
For the performance evaluation of four regression prediction model, 

the following three indexes are mainly investigated: root mean squared 
error (RMSE), mean absolute error (MAE), coefficient of determination 
(R2). The RMSE and MAE are indicators for evaluating model errors. The 
smaller the value is, the stronger the prediction accuracy of the model. 
On the contrary, the R2 represents the proximity between the predicted 
value of the model and the measured value, and the closer the value is to 
1, the higher the prediction accuracy of the model. The calculation 
formulas for these three indicators are as follows. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ N

i = 1
(
YTure,i − YModel,i

)2

N

√

(1)  

MAE =

∑ N
i=1

⃒
⃒YTure,i − YModel,i

⃒
⃒

N
(2)  

R2 = 1 −
∑ N

i=1

(
YTure,i − YModel,i

)2

∑ N
i=1

(
YTure,i − Y

)2 (3) 

Where, YTure,i, YModel,i, and Y denote the ith sample’s experimental 
value, the ith sample’s predicted value and the average value of all 
experimental values; N indicates the total number of samples. 

3. Results and discussion 

3.1. Accuracy and optimization of machine learning models 

3.1.1. Optimization of support vector machines 
Fig. 3 compares the predictive performance of support vector 

regression models with three different kernels, including the Gaussian 
kernel function, the linear kernel function, and the radial basis function. 
The SVR of these three kernels all uses tuneLength = 5 to train the 
model. What needs to be explained is that the meaning of tuneLength is 
different for the different machine learning models. For SVR, tune-
Length = 5, which means you try 5 different sigma and cost values to 
train the model. From Section 2.3.2, the smaller MAE and RMSE values 
denote the better models, while the higher R2 means the better models. 
Therefore, the SVR model whose kernel is a radial basis kernel function 
has the best predictive performance among the three kernels, and the 
value of R2 reaches 0.97. The SVR models with linear kernels and 
Gaussian functions do not perform well. The MAE value of the SVR 
model of the radial basis kernel function is 0.26, while the MAE value of 
the Gaussian kernel function is about 1.7 times that of the radial basis 
kernel function. The MAE of the linear kernel function is about 1.5 times 
that of the radial basis function. Compared to the radial basis function 
model, the RMSE of the linear kernel function and the Gaussian kernel 
function are 1.6 times, respectively. From the above, it can be seen that 
the radial basis kernel function has better accuracy than the others. At 
this point, the optimal value of Cost and Sigma obtained by the random 
search are 4 and 0.16, respectively. 

To further investigate and verify the influence of the value of Cost 
and Sigma on the accuracy of the SVR model with radial basis kernel 
function, the performance indicators of the SVR model under 35 sets of 
different Cost and Sigma value hyperparameter combinations are eval-
uated in Fig. 4. The meanings of the Cost and Sigma are given in Table 2. 
The values of Cost control the trade-off between achieving a low error on 
the training data and minimizing the norm of the weights. As the Cost 
value continues to increase, it means that the tolerance range of the 
model is gradually expanding and the accuracy of the model is 
improving, but it is also prone to overfitting. It can be seen from the 
figure that the accuracy of the model improves significantly as the value 
of Cost increases from 1 to 100. As the value of Cost continues to in-
crease, the improvement in the model performance index becomes 
gradually apartment. The sigma serves as another hyperparameter 
defining the range of influence of a single training example. For the R2 

index in the SVR model, when Sigma is 0.05, the performance indicators 
of the model are smaller than when Sigma is 0.1. This is because the SVR 
model boundary at low values of Sigma is essentially based on the point 
closest to the boundary, ignoring the more distant points that do not 
exactly fit all the data, and the model boundary will be smoother. When 
the Sigma is greater than 0.1, the performance index of the model does 
not improve significantly, and the larger Sigma may lead to over-fitting 
of the model. The optimal combination of hyperparameters for the SVR 
model is shown in Table 3. 

3.1.2. Optimization of multivariate adaptive regression splines model 
Fig. 5 shows the optimization of the accuracy considering the com-

bination of the two hyperparameters degree and nprune. The parameter 
degree specifies the maximum degree of interaction, while the param-
eter nprune specifies the number of terms to be preserved in the final 
model. The degree parameter is set to 1 by default, which means that the 

Table 2 
Hyperparameter combinations for machine learning models.  

Model Dependent 
packages in caret 

Parameters Implication 

SVR kernlab kernel Kernel function of SVR 
Cost Regularisation parameter 
Sigma Bandwidth of kernel function 

RF randomForest mtry Number of variables to randomly 
sample as candidates at each split 

ntrees Number of decision trees 
Mars earth degree Maximum degree of interaction 

nprune Number of terms to retain 
GBM gbm, plyr interaction 

depth 
Maximum nodes per tree 

shrinkage Learning Rate 
ntrees Number of decision trees  
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interaction term is not considered when creating the MARS model. 
Although the generalizability of the model can be tested by selecting 
more interaction elements, an upper limit should be set on the degree of 
interaction. A lower degree of interaction can not only save the time 
needed to run the model, but also help explain the final model(Friedman 
et al., 2001). It can be seen from the figure that the overall generaliza-
tion of the model is poor when the interaction element is not considered, 
and R2 can only reach about 0.8. When the value of degree is 2, the R2 

increases by about 18 %, but as the degree increases, the more inter-
action elements are considered, the less the accuracy of the model im-
proves. In addition, the performance of the model is also significantly 
improved by increasing the value of nprune. When the degree is 2 and 

nprune is 20, the R2 can reach the highest value of 0.954, and the RMSE 
and MAE are 0.29 and 0.20, respectively. When nprune continues to 
increase from 20, the performance of the model will not change. The 
optimal combination of hyperparameters for the Mars model is shown in 
Table 3. 

3.1.3. Optimization of random forest model 
Fig. 6 shows the optimization of the RF model by the two hyper-

parameters ntrees and mtry. The mtry represents the number of vari-
ables to randomly sample as candidates at each split. When the value of 
mtry is larger, it means that the decision tree is more likely to select 
important features that are related to the outcome variables of most 

Fig. 3. Accuracy of SVR for different kernel functions.  

Fig. 4. Optimization of Sigma and Cost to accuracy of radial basis function based SVR.  
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splits. The ntrees represent the number of trees. When the value of mtry 
increases from 2 to 6, the R2 increases significantly. If mtry continues to 
increase, the accuracy of the model does not change significantly. 
Increasing the number of trees in the RF model within the first 20 will 
better fit the model’s performance, but further increasing the number of 
trees from 20 will not significantly change the model’s performance. The 
optimal combination of hyperparameters for the RF model is shown in 
Table 3. 

3.1.4. Optimization of gradient boosting machine model 
Fig. 7 shows the optimization of the GBM Model accuracy for the 

three hyperparameters shrinkage, ntrees, and interaction depth. As can 
be seen from Table 2, ntrees is the number of decision trees representing 
the basic unit of GBM. In Fig. 7, the accuracy of the model is greatly 
improved when the number of trees increases to 200, and when the 
number of trees exceeds 200, it has little effect on the accuracy of the 
model. The shrinkage is considered as a learning rate in the GBM model, 
which is used for reducing, or shrinking, the impact of each additionally 
fitted base-learner (decision tree). It reduces the size of incremental 
steps and thus penalizes the importance of each consecutive iteration. 
From Fig. 7, it can be seen that with a shrinkage of 0.35, the number of 
trees required to achieve stability is less than 0.05. Moreover, the 
interaction depth is the maximum number of nodes in each tree. When 
the interaction depth is 1, the accuracy of model is the poorest and R2 is 
only 0.90–0.95. When shrinkage is 0.05, the accuracy increases signif-
icantly with increasing number of trees and increasing interaction 
depth. The optimal combination of hyperparameters for the GBM model 
is shown in Table 3. 

3.1.5. Comparison of accuracy and predictive performance of different 
machine learning models 

Table 3 shows the best accuracy obtained by four optimal hyper-
parameter combinations of machine learning models, and Fig. 8 presents 
the comparison of the accuracy of the different machine learning 
models. Table 3 shows that the GBM model has the highest R2 of 0.99 for 
the following combination of hyperparameters: shrinkage = 0.15, 
ntrees = 400, and interaction depth = 9. In addition, the time cost of the 
GBM model is about 35 % lower than that of the RF model. The SVR 
model is second only to the GBM model, and its R2 can also reach 0.98. 
Of the four machine learning models, the Mars model has the lowest 
accuracy. When the hyperparameter combination is: degree = 2, nprune 
= 30, its R2 is only 0.95, and RMSE and MAE are 0.29 and 0.20, 
respectively. But the Mars model is the most time efficient and cost 
effective of the four models. 

Fig. 9 is a comparison of the generalization performance of four 
machine learning models that predict data with experimental data. It 
can be seen from the figure that most of the data points generated by the 
GBM model and the SVR model lie on the 45◦diagonal. Except for the 
Mars model and the RF model, the data points generated by other 
models are very near the center line and essentially situated within a 15 
% error region. The generalization ability of the GBM model is also the 
best among the four machine learning models. The value of R2 can reach 
up to 0.96 but differs from the performance of the model in the training 
dataset, which shows that the GBM model has overfitting. The 

Table 3 
Optimal combination of hyperparameters for machine learning models.  

Model Combination of 
hyperparameters 

Time 
(s) 

RMSE RSquared MAE 

SVR Kernel function: radial basis 
Sigma = 0.1 
Cost = 80  

10.11  0.18  0.98  0.12 

Mars degree = 2 
nprune = 30  

8.49  0.29  0.95  0.20 

RF mtry = 8 
ntrees = 50  

14.78  0.22  0.97  0.13 

GBM shringkage = 0.15 
ntrees = 400 
interaction depth = 9  

9.58  0.12  0.99  0.073  

Fig. 5. Optimization of nprune and degree to accuracy of Mars.  

Fig. 6. Optimization of ntrees and mtry to accuracy of RF.  
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generalization performance of the SVR model is second only to the GBM 
model and the value of R2 is 0.95. The generalization performance of the 
Mars and RF models is poor and their R2 is only 0.91. The prediction 
results are essentially similar to the accuracy results of the model pre-
sented in the previous Section 3.1. 

Therefore, the SVR model and the GBM model both have good ac-
curacy and generalization performance, which can not only predict well 
the CO2 adsorption performance of zeolites synthesized from different 
solid wastes but also overcome some deficiencies of traditional 
adsorption isotherm models (e.g., Langmuir model). This is because the 
machine learning model cannot be constrained by various factors such 
as the type of raw material and adsorption conditions, and the model can 
be built directly from actual experimental data without considering 
some implicit assumptions in traditional models(Meng et al., 2019, Zhu 
et al., 2020). Thus, the machine learning model constructed in this study 
is applied to the research of CO2 adsorption performance of synthetic 
zeolites for different solid waste, reducing time-consuming and expen-
sive performance testing, which is conducive to the realization of eco-
nomic and efficient clean production and environmental sustainability. 

3.2. Sensitivity analysis of variables affecting CO2 absorption 

3.2.1. Variable importance analysis 
Fig. 10 illustrates the results of a global sensitivity analysis of nine 

variables from the four machine learning models using permutation 

techniques. Fig. 11 shows nine input parameters divided into three types 
of variables. These include the alkali fusion conditions and hydrother-
mal conditions during synthesis, and the adsorption conditions during 
adsorption experiments. The nine variables are divided into three types, 
alkali fusion conditions: raw material (R), alkali fusion temperature 
(T1), and alkali fusion time (t1); hydrothermal conditions: hydrothermal 
temperature (T2), silicon aluminum molar ratio of the synthetic pre-
cursor n(Si:Al), and hydrothermal time (t2); adsorption conditions: 
adsorption pressure (P), adsorption temperature (T3), zeolite specific 
surface area (S). From Fig. 10, it can be seen that the results of the 
variable importance analysis of these four machine learning models are 
all different, and it is difficult to explain exactly which variable is closest 
to the experimental situation and has the greatest influence on the CO2 
adsorption performance of zeolite. Some variable importance tools 
usually do not take into account the fact that many predictive models 
can fit the data almost equally well, leading to the Rashomon effect in 
statistics(Fisher et al., 2019, Del Giudice and Marco, 2021). Further-
more, Fig. 11 shows that the adsorption conditions have the greatest 
influence on the CO2 adsorption performance of zeolite, followed by the 
hydrothermal conditions in the four machine learning models. This is 
because the zeolites specific surface area (S) is a very important 
parameter for CO2 adsorption. These rough and irregular surfaces result 
from the pore filling of large cations or the partial fusion of cationic 
compounds during hydrothermal treatment. For many microporous 
structures, it should be noted that the adsorption capacity depends on 
the impregnated cations rather than the structure of the adsorbent and 
that these cations will dominate the adsorption force between the gas 
molecules and the solid adsorbent through bilateral interactions(Pirn-
gruber et al., 2010, Zukal et al., 2010). At the same time, according to Le 
Chatelier’s principle(Pourhakkak et al., 2021), the adsorption temper-
ature and adsorption pressure change the adsorption performance of 
zeolite adsorbent with the change of temperature and pressure, so the 
adsorption amount changes with the change of adsorption temperature 
and pressure. 

Fig. 12 shows the values of Shapley in four machine learning models 
using the local sensitivity analysis method. This value is the average 
value calculated for the order of arrangement of ten different variables, 
shown in red and green, respectively, representing negative mean and 
positive means. The figure also summarizes the distribution of the 
contribution of each explanatory variable in different rankings repre-
sented by purple boxplots. From Fig. 12, it can be concluded that hy-
drothermal conditions are also one of the important determining factors 
affecting CO2 adsorption in the four machine learning models. It is worth 

Fig. 7. Optimization of three hyperparameters to accuracy of GBM.  

Fig. 8. Comparison of accuracy of different machine learning models.  
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noting that the type of raw material is not the factor that determines the 
adsorption performance, and that the silicon-aluminum molar ratio n(Si: 
Al) in the precursor may have a greater influence on the adsorption 
performance of zeolite. This also shows that regardless of the kind of the 
industrial solid waste, as long as the reaction precursor is rich in silicon 
aluminum content, the different silicon aluminum content in the hy-
drothermal will affect the pH and silicon aluminum framework structure 
of the synthesized zeolite, thus influencing the adsorption performance 
and selectivity of polar molecules. In addition, the hydrothermal tem-
perature (T2) is also a very important parameter for determining the 
structure of zeolites, leading to high solubility of reactants and high 
values of crystallization rate constants, which cause rapid crystallization 
to form large crystals(Kotova et al., 2016, Tauanov et al., 2018). At the 
same time, the activity of water, which serves as a solvent in zeolite 
synthesis, increases sharply with temperature and promotes the forma-
tion of zeolites. 

3.2.2. Effects of variables correlations and interactions 
The GBM and SVR models with better model accuracy and general-

ization ability were selected to analyze the correlations between vari-
ables in this study. Fig. 13 shows that the results of the interaction of the 
GBM and SVR model variables are similar compared to the raw dataset. 
From the previous section, it is clear that the factor that strongly in-
fluences CO2 adsorption performance is zeolite specific surface area (S). 
Whether it is alkali fusion conditions or hydrothermal conditions, it has 
some influence on the specific surface area of the zeolite after crystal-
lization. Among them, the zeolite specific surface area (S) shows a strong 
positive correlation with the hydrothermal temperature (T2) and is 0.61 
and 0.47 for GBM and SVR, respectively, with an error of only 1.6 % and 
21.6 % compared to the raw data. The hydrothermal temperature affects 
the hydrothermal reaction rate during zeolite synthesis, which in turn 
affects the autogenous pressure in the reactor and changes the zeolite 

crystallization products. If the hydrothermal temperature is not high 
enough, this will result in a low specific surface area for zeolite forma-
tion, and the rate of formation of the various crystals and the aspect ratio 
of the crystals will also be affected by the temperature(Bortolatto et al., 
2017, Tauanov et al., 2018, Khajeh Amiri et al., 2019). Therefore, at a 
suitable hydrothermal temperature and hydrothermal time, zeolite 
crystals with relatively uniform particle size can be obtained, which 
affects the specific surface area of the zeolite. In addition, zeolite specific 
surface area (S) and fusion temperature (T1) showed a strong negative 
correlation, which was − 0.55 and − 0.45 for GBM and SVR, respectively, 
with errors of 8.3 % and 25 %. This is because within a certain range, too 
high a melting temperature of the alkalis destroys the surface structure 
of the zeolite, resulting in a smaller specific surface area. Fig. 13 also 
shows that the silicon-aluminum molar ratio n(Si:Al) and the fusion time 
(t1) also have a strong positive correlation with the zeolite specific 
surface area. The higher the n(Si:Al), the larger the zeolite specific 
surface area of framework finally formed, and the acidity gradually in-
creases(Chaves et al., 2015). Fig. 14 shows the comparison of break- 
down plot with variables interaction of the GBM and SVR models to 
determine the effect of the interaction between different variables on the 
adsorption performance of zeolite for carbon dioxide. The interaction 
between each variable is included as a single bar in the figure. Since the 
influence of each variable cannot be disentangled, the graph uses just 
that single bar to represent the contribution of each variable. It can be 
seen from the Fig. 14 (a) that compared with the average model pre-
diction, the specific surface area of 79.2 reduces the performance of 
zeolite for carbon dioxide, and the adsorption performance is further 
reduced at a silicon-aluminum ratio of 3.63. However, since the 
adsorption temperature is 298, this increases the adsorption perfor-
mance of the zeolite. 

In both the global and local sensitivity analyses, alkali fusion con-
ditions were found to be the weakest variable affecting zeolite 

Fig. 9. Comparison of predictive performance of different machine learning models.  
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adsorption performance. In the GBM model with the best generalization 
performance, the importance of alkali fusion time (t1) is also at the 
bottom. However, a large number of publications indicate that the step 
of alkali fusion can decompose the Silicon and aluminum rich crystalline 
phases and form soluble aluminates and silicates, making them highly 
reactive and promoting the formation of zeolites(Ayele et al., 2016, Jin 

et al., 2021, Lin and Chen, 2021). This is most likely due to the fact that 
the machine learning model is limited by the original data sources of 11 
literature. The limited amount of data under alkali fusion conditions 
caused the model to learn incorrectly, so the final result did not match 
the actual situation. In addition, Fig. 13 shows an unusually strong 
correlation between the alkali fusion time (t1) and the type of raw 

Fig. 10. Ranking the importance of different machine learning models on the CO2 adsorption performance variables of two-step synthesized zeolites.  

Fig. 11. The relative importance of three types of input variables in different machine learning models.  
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material (R), again due to the small amount of data on alkali fusion 
conditions for each raw material in the data set. Therefore, this requires 
a larger amount of experimental data. In the future, the influence of 
alkali fusion conditions on the adsorption performance of zeolite will be 
further researched and evaluated to provide guidance for the cleaner 
process of industrial solid waste and reduce the experimental time and 
cost. 

4. Conclusions 

In this study, a dataset containing 762 experimental designs of two- 
step (alkali fusion and hydrothermal) synthesis zeolite for CO2 adsorp-
tion was conducted from the published literatures. Four ML models, 
Support Vector Regression Model (SVR), Multivariate Adaptive 
Regression Splines Model (Mars), Random Forest Model (RF), Gradient 
Boosting Machine Model (GBM), were used to predict the adsorption 
performance of zeolite for CO2. Based on the global and local sensitivity 
analysis methods, the types of input parameters with the most signifi-
cant effect on the adsorption performance of zeolite were identified. 
Finally, through Pearson correlation coefficient to reveal the potential 
mutual influence of alkali fusion conditions, hydrothermal conditions 
and adsorption conditions on the CO2 adsorption capacity of zeolite. 
The following conclusions were obtained: 

(1) The GBM and SVR have the best model accuracy in the four 

machine learning models, and the R2 reached 0.99 and 0.98 respec-
tively. At this time, the combination of hyperparameters in the GBM 
model is: shrinkage = 0.15, ntrees = 400, and interaction depth = 9. 

(2) The GBM and SVR also have the best generalization performance 
in the four machine learning models, and the R2 reached 0.96 and 0.95 
respectively. However, the generalization performance of Mars and RF is 
poor, and the R2 is only 0.91. 

(3) Based on the global and local sensitivity analysis, the importance 
ranking of each variable in the four machine learning models is different 
due to the influence of the Rashomon effect in statistics. However, it is 
not difficult to see that the zeolite specific surface area (S) in the 
adsorption conditions has the greatest impact on the zeolite CO2 
adsorption performance, followed by the silicon-aluminum molar ratio n 
(Si:Al) of the precursor and the hydrothermal temperature in the hy-
drothermal conditions. 

(4) Hydrothermal conditions and alkali fusion conditions both affect 
the zeolite specific surface area (S), but due to the lack of data on alkali 
fusion conditions, the learning of the ML model is somewhat misleading. 
The influence of alkali fusion conditions on other input features and 
impact on zeolite CO2 adsorption performance differ from experimental 
results and theoretical understanding, and further research is needed in 
the future. 

Fig. 12. Shapley values in four machine learning models.  

Fig. 13. Comparison of variable correlation heatmap.  

H. Wu et al.                                                                                                                                                                                                                                      



Arabian Journal of Chemistry 17 (2024) 105507

12

Fig. 14. Comparison of break-down plot with variable interaction.  
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