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Abstract The H2Si‚Si: and its derivatives (X2Si‚Si:, X = H, Me, F, Cl, Br, Ph, Ar. . .) is a new

species. Its cycloaddition reaction is a new area for the study of silylene chemistry. The mechanism

of the cycloaddition reaction between singlet Me2Si‚Si: and acetaldehyde has been investigated

with the B3LYP/6-31G* method in article. From the potential energy profile, it could be predicted

that the reaction has one dominant reaction pathway. The reaction rule presented is that the two

reactants firstly form a four-membered Si-heterocyclic ring silylene through the [2 + 2]

cycloaddition reaction. Because of the 3p unoccupied orbital of Si: atom in the four-membered

Si-heterocyclic ring silylene and the p orbital of acetaldehyde forming a p fi p donor–acceptor

bond, the four-membered Si-heterocyclic ring silylene further combines with acetaldehyde to form

an intermediate. Because the Si atom in intermediate happens sp3 hybridization after transition

state, then, intermediate isomerizes to a spiro-Si-heterocyclic ring compound via a transition state.
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since unsaturated carbene [X2C‚C: (X = H, Me, F, Cl, Br,

Ph, Ar. . .)] was recognized as an active intermediate in the
1960s, it has not only attracted much attention from
theoretical chemists, but also has been practically applied to

the organic chemistry (Stang, 1982, 1978). For example, it
has been proved that unsaturated carbene can provide a simple
and direct way for synthesizing the small-ring, highly strained

compounds as well as those that can hardly be synthesized
through conventional ways (Stang, 1978). So far, in depth
exploration has been done on the rearrangement reaction of

alkylidene carbene (Krishnan et al., 1981; Frisch et al.,
1981), and the insertion reaction of alkylidene carbene has also
been studied (Wardrop and Zhang, 2002; Feldman and
Perkins, 2001). Apeloig and Fox have made experimental

and theoretical studies on the 3-dimensional selectivity of sub-
stituting groups from the products of the vinylidene-olefin
addition reaction of alkylidene carbene (Apeloig et al., 1983;

Fox et al., 1986). Meanwhile, we have done a relatively systematic
theoretical study on the cycloaddition reaction of alkylidene
carbene (Lu and Wang, 2003, 2004; Lu et al., 2005, 2007, 2008).
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However, studies of unsaturated ethylenic compounds of the
four main group elements have been limited to vinylidene
and its reactions so far. There have been no published reports

about analog X2Si‚Si: (X = H, Me, F, Cl, Br, Ph, Ar. . .) of
unsaturated carbene, and they are new study field of unsaturat-
ed silylene chemistry. It is quite difficult to investigate the

mechanisms of the cycloaddition reaction by experimental
methods directly, due to the high activity of unsaturated
silylene; therefore, the theoretical study is more practical. To

explore the rules of the cycloaddition reactions between
unsaturated silylene [X2Si‚Si: (X = H, Me, F, Cl, Br, Ph,
Ar. . .)] and the asymmetric p-bonded compounds,
Me2Si‚Si: and acetaldehyde were selected as the model mole-

cules, and its mechanisms were investigated and analyzed
theoretically. The results show that there are four possible
pathways of the cycloaddition reaction (considering the H

and Me transfer simultaneously) as follows:

ð1Þ

ð2Þ

ð3Þ

ð4Þ

The research result indicates the laws of cycloaddition reac-
tion between Me2Si‚Si: and acetaldehyde, and laid the theory

foundation of the cycloaddition reaction between H2Si‚Si:
and its derivatives (X2Si‚Si:, X = H, Me, F, Cl, Br, Ph,
Ar. . .) and asymmetric p-bonded compounds, which are sig-
nificant for the synthesis of small-ring and spiro-Si-hetero-

cyclic ring compounds. The study extends research area and
enriched the research content of silylene chemistry.
2. Calculation method

B3LYP/6-31G* (Lee et al., 1988) implemented in the Gaussian
98 package is employed to locate all the stationary points

along the reaction pathways. Full optimization and vibrational
analysis are done for the stationary points on the reaction
profile. Zero point energy is included for the energy

calculations. To explicitly establish the relevant species, the
intrinsic reaction coordinate (IRC) (Lee 1970; Ishida et al.,
1977) is also calculated for all the transition states appearing
on the cycloaddition energy surface profile.

3. Results and discussion

3.1. Reaction (1): channels of forming a four-membered
Si-heterocyclic ring silylene (P1), methyl transfer products
(P1.1, P1.3) and hydrogen transfer products (P1.2)

The geometrical parameters of intermediate (INT1), transition
states (TS1, TS1.1, TS1.2, TS1.3) and products (P1, P1.1, P1.2,

P1.3) appearing in reaction (1) between Me2Si‚Si: and
acetaldehyde are given in Fig. 1. The energies are listed in
Table 1, and the potential energy profile for the cycloaddition

reaction is shown in Fig. 2. According to Fig. 2, it can be seen
that reaction (1) consists of five steps: the first step is that the
two reactants (R1, R2) form an intermediate (INT1), which is

a barrier-free exothermic reaction of 67.7 kJ/mol; the second
step is that the intermediate (INT1) isomerizes to a four-mem-
bered Si-heterocyclic ring silylene (P1) via the transition state
(TS2) with an energy barrier of 24.5 kJ/mol; the third and

fourth steps are that the four-membered Si-heterocyclic ring
silylene (P1) undergoes SiASi and C(3)ASi(2) methyl transfer
via the transition states (TS1.1 and TS1.3) with energy barriers

of 151.1 and 91.4 kJ/mol, respectively, resulting in the forma-
tion of products (P1.1 and P1.3). The fifth step is that the
four-membered Si-heterocyclic ring silylene (P1) undergoes

C(3)ASi(2) hydrogen transfer via the transition state (TS1.2)
with energy barrier of 144.0 kJ/mol, resulting in the formation
of product (P1.2). The reactions of P1 fi P1.1, P1 fi P1.2 and
P1 fi P1.3 are prohibited in thermodynamics, because the

energies of P1.1, P1.2 and P1.3 are 55.5, 50.6 and
58.1 kJ/mol higher than that of P1, and the reaction (1) will
be ended in product P1.

3.2. Reaction (2): channel of forming a spiro-Si-heterocyclic

ring compound (P2)

In reaction (3), the four-membered Si-heterocyclic ring silylene
(P1) further reacts with acetaldehyde to form a spiro-Si-hetero-
cyclic ring compound (P2). The geometrical parameters of

intermediate (INT2), transition state (TS2) and product (P2)
appearing in reaction (2) are given in Fig. 3. The energies are
listed in Table 1, and the potential energy profile for the
cycloaddition reaction is shown in Fig. 2. According to

Fig. 2, it can be seen that the process of the reaction (3) is as
follows: on the basis of P1 formed in the reaction (1), the P1
further reacts with acetaldehyde (R2) to form an intermediate

(INT2), which is also a barrier-free exothermic reaction of
38.3 kJ/mol; and then the intermediate (INT2) isomerizes to
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Figure 1 Optimized B3LYP/6-31G* geometrical parameters and the atomic numbering for the species in cycloaddition reaction (1).

Bond lengths and bond angles are in angstrom and degree, respectively.
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a spiro-Si-heterocyclic ring compound (P2) via the transition

state (TS2) with an energy barrier of 28.0 kJ/mol.

3.3. Reaction (3): channels of forming four-membered Si-
heterocyclic ring silylene (INT3) and

Its isomer (P3), H-transfer product (P3.1) and Me-transfer
products (P3.2 and P3.3)

The geometrical parameters of the four-membered Si-hete-
rocyclic ring silylene (INT3), transition states (TS3, TS3.1,
TS3.2 and TS3.3) and products (P3, P3.1, P3.2 and P3.3)
appearing in reaction (3) between Me2Si‚Si: and acetaldehyde

are given in Fig. 4. The energies are listed in Table 1, and the
potential energy profile for the cycloaddition reaction is shown
in Fig. 2. According to Fig. 2, it can be seen that reaction (4)

consists of five steps: the first step is that the two reactants (R1,
R2) form a four-membered Si-heterocyclic ring silylene
(INT3), which is a barrier-free exothermic reaction of

181.6 kJ/mol; the second step is that the INT3 isomerizes to
a distorted four-membered ring product (P3) through the tran-
sition state (TS3) with energy barrier of 7.3 kJ/mol; the third

step is that the four-membered Si-heterocyclic ring silylene
(INT3) undergoes C(3)ASi(2) hydrogen transfer via the transi-
tion state TS3.1 with energy barrier of 10.5 kJ/mol, resulting in
the formation of product (P3.1); the fourth and fifth steps are
that the four-membered Si-heterocyclic ring silylene (INT3)

undergoes SiASi and C(3)ASi(2) methyl transfer via the
transition states TS3.2 and TS3.3 with energy barriers of
53.1 and 67.2 kJ/mol, respectively, resulting in the formation

of products (P3.2 and P3.3). The reaction of INT3 fi P3.2 is
prohibited in thermodynamics because the energy of P3.2 is
16.2 kJ/mol higher than that of INT3. The reaction of

INT3 fi P3 is the dominant reaction pathway the reaction
(3) because the energy barrier of TS3 are 3.2 and 59.9 kJ/mol
lower than TS3.1 and TS3.3. According to Figs. 1, 2 and 4

and statistical thermodynamics formula: PTðiÞ ¼ e�DGT ðiÞ=RTP
i
e�DGTðiÞ=RT

and DGTðiÞ ¼ �RT lnKi, it can be seen that INT1 and INT3
are isomerized, R1 + R2 fi INT1 and R1 + R2 fi INT3 are
two parallel reactions, the equilibrium distributions of INT1
and INT3 are PT(INT1) = K(INT1)/[K(INT1) + K(INT3)]

� 0.0, PT(INT3) = K(INT3)/[K(INT1) + K(INT3)] � 1.0,
respectively. So, INT3 is the main distribution.

3.4. Reaction (4): channel of forming a spiro-Si-heterocyclic
ring compound (P4)

In reaction (4), the four-membered Si-heterocyclic ring silylene

(INT3) further reacts with acetaldehyde (R2) to form a spiro-
Si-heterocyclic ring compound (P4). The geometrical parameters



Table 1 Zero point energy (ZPE, a.u), total energies (ET, a.u) and relative energies (ER, kJ/mol) for the species from B3LYP/6-31G*

method.

Reaction Species ZPE B3LYP/6-31G*

aET ER

b Reaction (1) R1 + R2 0.13075 �812.43277 0.0

INT1 0.13293 �812.45857 �67.7
TS1(INT1–P1) 0.13241 �812.44924 �43.2
P1 0.13523 �812.51677 �220.5
TS1.1(P1–P1.1) 0.13250 �812.45919 �69.4
P1.1 0.13454 �812.49563 �165.0
TS1.2(P1–P1.2) 0.12997 �812.47335 �106.5
P1.2 0.13079 �812.49747 �169.9
TS1.3(P1–P1.3) 0.13039 �812.48195 �129.1
P1.3 0.13177 �812.49462 �162.4

c Reaction (2) P1 + R2 0.19105 �966.29107 0.0

INT2 0.19289 �966.30564 �38.3
TS2(INT2–P2) 0.19252 �966.29518 �10.8
P2 0.19510 �966.33974 �127.8

b Reaction (3) R1 + R2 0.13075 �812.43277 0.0

INT3 0.13435 �812.50193 �181.6
TS3(INT3–P3) 0.13424 �812.49915 �174.3
P3 0.13488 �812.50386 �186.6
TS3.1(INT3–P3.1) 0.12962 �812.49792 �171.1
P3.1 0.13073 �812.51803 �223.9
TS3.2(INT3–P3.2) 0.13421 �812.4817 �128.5
P3.2 0.13453 �812.49577 �165.4
TS3.3(INT3–P3.3) 0.13216 �812.47635 �114.4
P3.3 0.13240 �812.51159 �206.9

d Reaction (4) INT3 + R2 0.19017 �966.27623 0.0

INT4 0.19283 �966.30325 �70.9
TS4(INT4–P4) 0.19236 �966.29024 �36.8
P4 0.19459 �966.3375 �160.9

a ET = E(Species) + ZPE.
b ER = ET–E(R1+R2).
c ER = ET–E(P1+R2).
d ER = ET–E(INT3+R2).
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Figure 2 The potential energy profile of the cycloaddition reactions between Me2Si‚Si: and MeHC‚O with B3LYP/6-31G*.

166 X. Lu et al.



Si(1)

Si(1)
Si(1) Si(2)

Si(2)
Si(2)

O(1)O(1)O(1)

O(2)
O(2)

O(2)

C(3)C(3)
C(3)

C(5)

C(5)C(5)

C(6)

C(6)

C(6)

C(1)C(1)
C(1)

C(2)
C(2)

C(2)

C(4)
C(4)

C(4)

HH
H

Si(1)Si(2)O(1)C(3)=0.9
O(2)Si(2)Si(1)C(3)=-101.5
C(5)O(2)Si(2)Si(1)=123.9

Si(1)Si(2)O(1)C(3)=-5.4
O(2)Si(2)Si(1)C(3)=-92.4
C(5)O(2)Si(2)Si(1)=179.9

Si(1)Si(2)O(1)C(3)=-3.1
O(2)Si(2)Si(1)C(3)=-122.9
C(5)O(2)Si(2)Si(1)=-140.3

INT2 TS2 P2

94.2
1.907 133.9

1.255

81.4
2.578 80.8

1.237

134.7
1.674

69.9

1.514

Figure 3 Optimized B3LYP/6-31G* geometrical parameters of INT2, TS2, P2 and the atomic numbering for cycloaddition reaction (2).

Bond lengths and bond angles are in angstrom and degree, respectively.
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Figure 4 Optimized B3LYP/6-31G* geometrical parameters of INT3, TS3, P3, TS3.1, P3.1, TS3.2, P3.2, TS3.3, P3.3 and the atomic

numbering for cycloaddition reaction (3). Bond lengths and bond angles are in angstrom and degree, respectively.
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Figure 5 Optimized B3LYP/6-31G* geometrical parameters of INT4, TS4, P4 and the atomic numbering for cycloaddition reaction (5).

Bond lengths and bond angles are in angstrom and degree, respectively.
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of intermediate (INT5), transition state (TS4) and product (P4)

appearing in reaction (4) are given in Fig. 5. The energies are list-

ed in Table 1, and the potential energy profile for the cycloaddi-

tion reaction is shown in Fig. 2. According to Fig. 2, it can be

seen that the process of the reaction (4) is as follows: on the basis

of INT3 formed in the reaction (3), the INT3 further reacts with

acetaldehyde (R2) to form an intermediate (INT4), which is also

a barrier-free exothermic reaction of 70.9 kJ/mol; and then the

intermediate (INT4) isomerizes to a spiro-Si-heterocyclic ring

compound (P4) via the transition state (TS4) with an energy bar-

rier of 34.1 kJ/mol. Compared reaction (4) with reaction (3), it is

realizing that the two reactions compete mutually due to scram-

bling for INT3 together. In reaction (3), the energy barrier of

INT3 fi P3 is 7.3 kJ/mol. However, in reaction (4),

INT3 + R2 fi P4 can directly reduce the system energy of

70.9 kJ/mol. Therefore, reaction (4) should be the dominant

reaction channel.

3.5. Theoretical analysis and explanation of the dominant
reaction channel

According to the above analysis, reaction (4) should be the
dominant reaction channel of the cycloaddition reaction

between singlet Me2Si‚Si: and acetaldehyde. Namely:
HOMO of R2 HOMO of 

π

sp

Figure 6 The frontier molecul
R1þR2�!INT3�!
þR2

INT4�!
TS4

P4 Reaction ð5Þ

In the reaction, the frontier molecular orbitals of R2 and

INT3 are shown in Fig. 6. According Fig. 6, the frontier mole-
cular orbitals of R2 and INT3 can be expressed in schematic
diagram 7. The mechanism of the reaction could be explained

with the molecular orbital diagram (Fig. 7) and Figs. 1, 4 and
5. According to Figs. 1 and 4, as Me2Si‚Si: initially interacts
with acetaldehyde, the [2 + 2] cycloaddition of the bonding p-
orbitals firstly results in a four-membered Si-heterocyclic ring
silylene (INT3). Because INT3 is an active intermediate, so
INT3 may further react with acetaldehyde (R2) to form a
spiro-Si-heterocyclic ring compound (P4). The mechanism of

the reaction can be explained with Figs. 5 and 7, when the
INT3 interacts with acetaldehyde (R2), the 3p unoccupied
orbital of the Si(2) atom in INT3 will insert the p orbital of

acetaldehyde from the oxygen side, then the shift of p-electrons
to the p unoccupied orbital forms a p fi p donor–acceptor
bond, leading to the formation of intermediate (INT4). As

the reaction goes on, the \C(5)O(2)Si(2)(INT2: 136.9�, TS4:
98.5�, P4: 70.6�) decreases gradually, and the C(5)AO(2)
bond(INT4: 1.253 Å, TS4: 1.273 Å, P4: 1.487 Å) gradually
elongate, Finally, the Si(2) atom in INT4 hybridizes to an

sp3 hybrid orbital after the transition state TS4, forming the
stabler spiro-Si-heterocyclic ring compound (P4).
INT3 LUMO of INT3

3p

ar orbitals of R2 and INT3.
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Figure 7 A schematic interaction diagram for the frontier

orbitals of INT3 and MeHC‚O(R2).
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4. Conclusion

On the basis of the potential energy profile the cycloaddition

reaction between singlet Me2Si‚Si: and acetaldehyde
obtained with the B3LYP/6-31G* method can be predicted.
This reaction has one dominant channel. It consists of three

steps: the first step is that the two reactants (R1, R2) form a
four-membered Si-heterocyclic ring silylene (INT3), which is
a barrier-free exothermic reaction of 181.6 kJ/mol; the second
step is that INT3 further reacts with acetaldehyde (R2) to form

an intermediate (INT4), which is also a barrier-free exothermic
reaction of 70.9 kJ/mol; the third step is that intermediate
(INT4) isomerizes to a spiro-Si-heterocyclic ring compound

(P4) via a transition state (TS4) with an energy barrier of
34.1 kJ/mol.

The p orbital of X2Si‚Si: (X = H, Me, F, Cl, Br, Ph,

Ar. . .) and the 3p unoccupied orbital of Si: in X2Si‚Si:
(X = H, Me, F, Cl, Br, Ph, Ar. . .) are the object in cycloaddi-
tion reaction of X2Si‚Si: (X = H, Me, F, Cl, Br, Ph, Ar. . .)
and the asymmetric p-bonded compounds. The [2 + 2]

cycloaddition reaction between the p orbital of X2Si‚Si:
(X = H, Me, F, Cl, Br, Ph, Ar. . .) and the bonding p orbital
of the asymmetric p-bonded compounds leads to the forma-

tion of the four-membered Si-heterocyclic ring silylene. The
3p unoccupied orbital of Si: atom in the four-membered
Si-heterocyclic ring silylene further reacts with the bonding p
orbital of the asymmetric p-bonded compounds to form a
spiro-Si-heterocyclic ring compound.
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