Contents lists available at ScienceDirect



# Arabian Journal of Chemistry



journal homepage: www.ksu.edu.sa

# Original article

# Efficient removal of Cr<sup>6+</sup> by magnetically modified biochar from aqueous solution:Removal mechanism investigation



# Chao Lv<sup>a</sup>, Peng Liu<sup>b,\*</sup>

<sup>a</sup> School of Coal Engineering, Shanxi Datong University, Datong, Shanxi 037009, China<sup>b</sup> School of Vanadium and Titanium, Panzhihua University, Panzhihua 617000, China

| ARTICLE INFO                                                                                         | A B S T R A C T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Keywords:<br>Magnetic biochar<br>Cr <sup>6+</sup><br>Adsorption<br>Reduction<br>Economic feasibility | The magnetic biochar is prepared by one-pot method using waste wooden building formwork as feedstock in the existence of the FeCl <sub>3</sub> for $Cr^{6+}$ removal form wastewater. Characterization analysis indicates that magnetic biochar exists Fe <sub>3</sub> O <sub>4</sub> with specific surface area of the 333.89–496.35 m <sup>2</sup> /g, contributing to $Cr^{6+}$ removal. $Cr^{6+}$ removal process can be well analyzed by the Pseudo-second order and Hill models with adsorption capacity of 30.41 mg/g. The adsorption process analysis indicates that $Cr^{6+}$ removal mechanism includes surface complexation, electrostatic attraction, reduction and pore filling. The influence of Fe <sup>2+</sup> on $Cr^{6+}$ removal is analyzed, indicating Fe <sup>2+</sup> participation into $Cr^{6+}$ removal by reduction. The magnetic biochar has excellent reusability after three cycles. The $Cr^{6+}$ removal process is also investigated using column adsorption experiment, indicating the magnetic biochar has column adsorption amount of the 56 64 mg/g. The economic feasibility of |  |

# 1. Introduction

The heavy metals in water bodies have posed serious threat to the human health and environment (Guo et al., 2024).  $Cr^{6+}$  is a common heavy metals in the groundwater, which has highly toxic, soluble and mobile in the environment (Qu et al., 2022). The wastewater containing  $Cr^{6+}$  is mainly produced from the tanneries, metal processing, electroplating and other basic industries (Xiao et al., 2024). The toxicity of the  $Cr^{6+}$  is much higher than the  $Cr^{3+}$ , which can cause the skin cancer and respiratory problems for human beings (Hong et al., 2024). Excess  $Cr^{6+}$  in the ecosystem is not only harmful to the humans but also inhibits the growth and development of other organisms (Mao et al., 2024). The maximum limited  $Cr^{6+}$  concentration is 0.05 mg/L in drinking water (Cai et al., 2023). Therefore, removal  $Cr^{6+}$  from above industries wastewater is necessary.

In order to control the pollution of  $Cr^{6+}$  wastewater, several treatment methods such as electrochemical, membrane filtration and photocatalytic degradation have been used for  $Cr^{6+}$  wastewater treatment (Fu and Wang, 2011). However, compared with these costly and complex methods, adsorption is the common and efficient methods for  $Cr^{6+}$  removal from wastewater. Many adsorbents including activated carbon, clay mineral and biochar are used for  $Cr^{6+}$  removal from wastewater (Fu and Wang, 2011; Zhao et al., 2021; Zou et al., 2021). For sustainably and high efficient removing  $Cr^{6+}$  from wastewater, it can be found that it is essential for development of the low-cost adsorbents.

the magnetic biochar is investigated and calculated with the production cost of 2.48/1kg. The waste wooden building formwork is converted into the efficient magnetic biochar for Cr<sup>6+</sup> removal from wastewater.

Biochar is produced at the temperature of 400–600 °C in the inert atmosphere, which is also the byproducts of biomass pyrolysis. The production cost of biochar is about \$448.78/t (Qin et al., 2023). Biochar can be an alternative for adsorptive elimination of  $Cr^{6+}$  as the result of its abundant functional groups and pore structure. Li et al. (2022) prepared the Landfill leachate sludge-based biochar for  $Cr^{6+}$  removal from wastewater, exhibiting adsorption capacity of 17.46 mg g<sup>-1</sup> (Li et al., 2022). Singh et al. (2022) prepared the biochar derived from Citrobacter freundii bacterial biochar for  $Cr^{6+}$  removal with adsorption capacity of 19.43 mg g<sup>-1</sup> (Singh et al., 2022). Mutabazi et al. 2024 prepared the peanut shell-derived biochar for  $Cr^{6+}$  wastewater purification with adsorption capacity of 16.67 mg g<sup>-1</sup> (Mutabazi et al., 2024). Amin et al. (2019) prepared marine Chlorella sp. Residue-based biochar for  $Cr^{6+}$ removal with adsorption amount of 15.94 mg g<sup>-1</sup> (Amin and Chetpattananondh, 2019). However, the above literatures only investigate the

https://doi.org/10.1016/j.arabjc.2024.105943 Received 8 May 2024; Accepted 26 July 2024

Available online 31 July 2024

1878-5352/© 2024 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of King Saud University.

<sup>\*</sup> Corresponding author.

E-mail address: liupeng22@pzhu.edu.cn (P. Liu).



Fig. 1. XRD pattern of the magnetic biochar.



Fig. 2. N<sub>2</sub>-adsorption/desorption isotherm of magnetic biochar.

# Table 1

Pore structure of the magnetic biochar.

| Item          | Surface area (m <sup>2</sup> /g) | Pore volume (cm <sup>3</sup><br>g <sup>-1</sup> ) | Average pore size<br>(nm) |
|---------------|----------------------------------|---------------------------------------------------|---------------------------|
| MB-<br>600 °C | 496.35                           | 0.32                                              | 2.54                      |
| MB-<br>500 °C | 350.73                           | 0.29                                              | 3.36                      |
| MB-<br>400 °C | 333.89                           | 0.26                                              | 3.08                      |

 $Cr^{6+}$  adsorption performance of original biochar with modest adsorption capacity, which limits uptake ability for  $Cr^{6+}$  removal from wastewater.

There are many methods for modification biochar to improve its pore structure, chemical surface functional groups, etc for improvement of adsorption capacity. Combining Fe-based compounds such as  $Fe_3O_4$ ,  $FeC_3$  and zero-valent iron with biochar to prepare the Fe-based biochar is a kind of modification method to improve  $Cr^{6+}$  removal capacity of original biochar (Dong et al., 2021; Sun et al., 2023). The Fe-based compounds can participate in  $Cr^{6+}$  removal by reduction (Zhang et al., 2023; Sahu et al., 2022). Besides, the Fe-based biochar can be quickly recycled from wastewater under extra filed. Yan et al. (2023) modified biochar with chitosan for Cr<sup>6+</sup> removal with adsorption amount of 125.34mg g<sup>-1</sup> (Yan et al., 2023). Chu et al. (2023) modified the Fe@CSBC by loading Fe<sub>3</sub>O<sub>4</sub> on biochar derived from corn straw, which is used for capturing  $\mathrm{Cr}^{6+}$  in wastewater with adsorption amount of 138.8 mg g<sup>-1</sup> (Chu and Nguyen, 2023). Qiu et al. (2020) prepared nano-zero-valent iron/sludge-derived biochar for Cr<sup>6+</sup> adsorption and reduction with 64.13 mg  $g^{-1}$  (Qiu et al., 2020). Wang et al. (2020) used magnetic greigite/biochar composites to remove Cr<sup>6+</sup> with removal of 93 % by adsorption and reduction (Wang et al., 2020). However, the preparation methods of the Fe-based biochar are more or less environmentally unstable and complicated to synthesize, which limits their practical application. It should be developed the simple and low-cost method for preparation of the Fe-based biochar overcome these disadvantages. FeCl<sub>3</sub> is a kind of the chemical activation agent, which can improve the pore structure of biochar (Wang et al., 2020). FeCl<sub>3</sub> can generate the Fe<sub>3</sub>O<sub>4</sub> on biochar after heat.

In this work, magnetic biochar is successfully prepared by pyrolysis of waste wooden building formwork using FeCl<sub>3</sub> as chemical agent for  $Cr^{6+}$  wastewater purification. The magnetic biochar is characterized to analyze its physicochemical properties.  $Cr^{6+}$  removal capacity of magnetic biochar is also investigated. The objectives of this work are: (1) to analyze physicochemical properties of the magnetic biochar, (2) to investigate  $Cr^{6+}$  adsorption performance of magnetic biochar, (3) to explore possible involved  $Cr^{6+}$  removal mechanism, (4) to investigate  $Cr^{6+}$  removal capacity in column adsorption experiment.

# 2. Experimental section

#### 2.1. Material

The waste wooden building formwork is collected from local construction site, which is crushed with the particle size of the 2 mm. The FeCl<sub>3</sub> is obtained from Sinopharm Chemical Reagent Co China. Potassium dichromate ( $K_2Cr_2O_7$ ) is purchased from the Yantai Shuangshuang Chemical Co., Ltd, China.

#### 2.2. Synthesis of the magnetic biochar

Waste wooden building formwork is mixed with 20 g FeCl<sub>3</sub> in the aqueous solution, which is stirred for 24 h. Subsequently, mixture is dried using electric dry oven at the temperature of 80 °C for 24 h. Finally, dried mixture is heated at 400–600 °C for 30 min in the microwave furnace under nitrogen atmosphere with nitrogen flow rate of 200 mL/min. Finally, the residue in the microwave furnace is named as the MB-400 °C, MB-500 °C and MB-600 °C.

# 2.3. Adsorption experiment

The influence of the pH on  $Cr^{6+}$  adsorption is investigated at pH of 2–7. The adsorption isotherm experiments are carried out as follows. 0.1 g magnetic biochar is mixed with 100 mL  $Cr^{6+}$  solution with different concentration, which is stirred using the magnetic stirrer with a shaking speed of 300 r/min (pH=2). The adsorption time is 24 h to reach the adsorption equilibrium. Mixture solution is sampled to detected the residue concentration after adsorption equilibrium. After adsorption, the adsorbent and the adsorbed solution are separated by filtration using a 0.22 µm filter.  $Cr^{6+}$  concentration is obtained using UV–VIS spectroscopy at 540 nm.  $Cr^{6+}$  adsorption amounts (q<sub>e</sub> and q<sub>t</sub>) in the adsorption behavior on MB-600 °C is investigated by Langmuir, Freundlich, and Hill models, which are described in the Table S1.

The experiment method of the adsorption kinetics is similar with the adsorption isotherm. Pseudo-first/second order and Intraparticle diffusion models are used to explain the  $Cr^{6+}$  adsorption kinetics process, which are presented in Table S2.



Fig. 3. The microstructure analysis of the MB-600  $^\circ$ C (a-d) and the hysteresis loop of the MB-600  $^\circ$ C (e).

0

Field (Oe)

-10000

-20000

$$q_t = \frac{V(C_0 - C_t)}{M} \tag{1}$$

$$q_e = \frac{V(C_0 - C_e)}{M} \tag{2}$$

 $q_t,$  adsorption amount of  ${\rm Cr}^{6+}$  adsorbed over time, mg/g.  $q_e,~{\rm Cr}^{6+}$  adsorption amount, mg/g.  $C_0,$  initial  ${\rm Cr}^{6+}$  concentration, mg/L.

- $C_t$ ,  $Cr^{6+}$  concentration over time, mg/L.
- $C_e$ ,  $Cr^{6+}$  equilibrium concentration, mg/L.

M, quality of the magnetic biochar, g.

V, solution volume, L.

10000

20000

# 2.4. Characterization

The specific surface area of magnetic biochar is analyzed using the Brunauer Emmett Teller (BET) method using the Autosorb instrument. The surface properties of magnetic biochar are analyzed by the X-ray photoelectron spectroscopy (XPS). The surface chemical composition is investigated using the X-ray diffractometer (XRD). Scanning electron microscopy (SEM) is used to analyze the surface morphologies of magnetic biochar. The chemical functional groups of samples are analyzed



**Fig. 4.** Influence of the solution of the pH on  $Cr^{6+}$  adsorption.

using the Fourier transform infrared spectroscopy (FTIR). Zeta potential measurements are conducted using a ZetaPALS.

# 3. Results and discussions

# 3.1. Characterization analysis

Fig. 1 shows the XRD analysis of magnetic biochar. The characteristic peaks of the Fe<sub>3</sub>O<sub>4</sub> ( $2\theta = 18.23^{\circ}, 30.01^{\circ}, 35.4^{\circ}, 43.04^{\circ}, 56.89^{\circ}, 51.8^{\circ}$  and 62.51°) are appeared in the magnetic biochar with good crystallinity. This result indicates that FeCl<sub>3</sub> is converted into the Fe<sub>3</sub>O<sub>4</sub> at temperature of the 400–600 °C. It also means that the magnetic biochar has magnetic, which can be quickly recycled from Cr<sup>6+</sup> wastewater due to existence of the Fe<sub>3</sub>O<sub>4</sub>.

Fig. 2 shows the  $N_2$ -adsorption isotherm of the magnetic biochar. The pore structure parameter of the magnetic biochar is presented in Table 1. As Fig. 2 shown,  $N_2$  adsorption amount of the magnetic biochar significantly increases at  $P/P_0 < 0.1$ , and then the curve tends to slowly increase. "Hysteresis loop" appears on magnetic biochar, indicating the mesoporous structure of magnetic biochar. As Table 1 shown, the MB-600  $^\circ C$  has large surface area, which is acted as the candidate of the magnetic biochar for further investigation.

The microstructure analysis of the MB-600 °C is shown in the Fig. 3ad. As Fig. 3a-b shown, MB-600 °C has developed pore structure. Besides, the surface of the MB-600 °C has gray particulate matter. EDS mapping image analysis result indicates that C, O and Fe are found on MB-600 °C (Fig. 3c-d). The gray particulate matter on the MB-600 °C is the Fe<sub>3</sub>O<sub>4</sub> combined with XRD analysis.

Fig. 3e shows the hysteresis loop analysis of the MB-600 °C. As Fig. 3e shown, the saturation magnetization of the MB-600 °C is 7.85 emu/g, indicating that MB-600 °C has certain of the soft magnetic property. The MB-600 °C can be quickly separated and recovered from aqueous solution under the action of applied magnetic field (Fig.S1). As Fig.S1 shown, the MB-600 °C is gathered on the wall of the bottle under the action of applied magnetic field, which is consistent with the hysteresis loop analysis.

# Table 2

The calculated results of adsorption isotherm models.

| Isotherm models | Models Parameter            | Fitting result<br>Cr <sup>6+</sup> |
|-----------------|-----------------------------|------------------------------------|
| Langmuir        | q <sub>m</sub> (mg/g)       | 32.47                              |
|                 | K <sub>L</sub> (L/mg)       | 0.0299                             |
|                 | R <sup>2</sup>              | 0.9927                             |
| Freundlich      | 1/n                         | 0.2453                             |
|                 | $K_F ((mg/g).(L/mg)^{1/n})$ | 7.42                               |
|                 | $R^2$                       | 0.90083                            |
| Hill            | Qm                          | 30.41                              |
|                 | n                           | 1.28                               |
|                 | K                           | 31.49                              |
|                 | R <sup>2</sup>              | 0.9990                             |

#### Table 3

The calculated results of adsorption kinetics models.

| Isotherm models         | Models Parameter                    | Fitting result<br>Cr <sup>6+</sup> |
|-------------------------|-------------------------------------|------------------------------------|
| Pseudo-first order      | q <sub>e.cal</sub> (mg/g)           | 25.21                              |
|                         | K <sub>1</sub> (1/min)              | 0.028                              |
|                         | R <sup>2</sup>                      | 0.9448                             |
| Pseudo-second order     | q <sub>e.cal</sub> (mg/L)           | 29.17                              |
|                         | K <sub>2</sub> (g/mg min)           | 1.077                              |
|                         | R <sup>2</sup>                      | 0.9989                             |
| Intraparticle diffusion | C1                                  | 1.32                               |
|                         | $K_{31}$ (mg/g min <sup>1/2</sup> ) | 2.07                               |
|                         | R <sup>2</sup>                      | 0.9944                             |
|                         | C <sub>2</sub>                      | 19.91                              |
|                         | $K_{32}$ (mg/g min <sup>1/2</sup> ) | 0.35                               |
|                         | R <sup>2</sup>                      | 0.8976                             |



Fig. 5. The  $Cr^{6+}$  adsorption data fitting the adsorption isotherm models (a) and The Cr6 + adsorption data fitting Pseudo-second-order equation (b).



Fig. 6. FT-IR spectra of MB-600 °C before and after Cr<sup>6+</sup> adsorption.

#### 3.2. Influence of pH

Cr<sup>6+</sup> has various of forms at different pH (Asoubar et al., 2023). Fig. 4 presents Cr<sup>6+</sup> adsorption behavior on MB-600 °C at pH of 2–7. Fig. 4 shows that MB-600 °C has large Cr<sup>6+</sup> adsorption amount at pH of 2–4. There exists lots of H<sup>+</sup> in the aqueous solution, which makes MB-600 °C have positive charge. Therefore, MB-600 °C can adsorb Cr<sup>6+</sup> by electrostatic adsorption. The H<sup>+</sup> concentration is general decrease as pH increases. Therefore, Cr<sup>6+</sup> adsorbing amount is generally decrease with increasing in pH. The zeta potential value of the MB-600 °C is about 5.2 (Fig.S2). This result indicates that MB-600 °C has positive potential at pH<5.2, and becomes negative potential at pH>5.2. The MB-600 °C has large Cr<sup>6+</sup> adsorption amount at pH=2. Therefore, the desire pH for MB-600 °C adsorption Cr<sup>6+</sup> is 2.

# 3.3. Adsorption isotherms investigation

The Cr<sup>6+</sup> adsorption behavior on MB-600 °C is investigated by Langmuir, Freundlich, and Hill models. Fig. 5a shows the Cr<sup>6+</sup> adsorption data fitting adsorption isotherm equations, and fitting parameters are listed in Table.2. As Table 2 shown, compared with Freundlich model, the R<sup>2</sup> value of Cr<sup>6+</sup> adsorption data fitting the Langmuir/Hill equation has large R<sup>2</sup>. Cr<sup>6+</sup> adsorption amount obtained from Hill model is 30.41 mg/g. The parameter (K<sub>L</sub>) of Langmuir model is used to calculate the dimensionless factor R<sub>L</sub> that can investigate feasible of Cr<sup>6+</sup> adsorption on MB-600 °C (Cheng et al., 2021). Calculated method is in the following equation.

$$\mathbf{R}_L = \frac{1}{1 + K_L C_0} \tag{3}$$

If the R<sub>L</sub> belongs to 0–1,  $Cr^{6+}$  adsorption process is feasible. R<sub>L</sub> values of  $Cr^{6+}$  adsorption on MB-600 °C is 0.0872–0.4009, indicating that MB-600 °C is feasible for  $Cr^{6+}$  adsorption. Besides, the values of the heterogeneity (1/n) calculated from Freundlich that can represent the bond distribution (Tang et al., 2018). The 1/n value of  $Cr^{6+}$  adsorption on MB-600 °C is 0.2453, which is less than 1. This result confirms that  $Cr^{6+}$ adsorption process is feasible and favorable (Xiang et al., 2019).

The Cr<sup>6+</sup> adsorption amounts of other adsorbents are also compared with MB-600 °C (Table S3). Cr<sup>6+</sup> adsorption amount of MB-600 °C is larger than that reported adsorbents. These results prove that the MB-600 °C is the promising adsorbent for Cr<sup>6+</sup> wastewater purification.

#### 3.4. Adsorption kinetics investigation

The Cr<sup>6+</sup> adsorption data is analyzed by the Pseudo-first/second order and Intraparticle diffusion equations. The calculated results are listed in Table 3. Correlation coefficient (R<sup>2</sup>) value of Cr<sup>6+</sup> adsorption process fitting Pseudo-second order is 0.9989, which is higher than other adsorption kinetics models (Table 3). Thus, Pseudo-second order is better to describe Cr<sup>6+</sup> adsorption kinetic process, indicating that chemical adsorption influences Cr<sup>6+</sup> adsorption (Cheng et al., 2022). Fig. 5b shows Cr<sup>6+</sup> adsorption data fitting Pseudo-second-order equation. The Intraparticle diffusion fitting result has two stages (Fig.S3). The C<sub>1</sub> and C<sub>2</sub> value of Cr<sup>6+</sup> calculated from Intraparticle diffusion model are 1.32 and 19.91, respectively. The calculated C value isn't zero, indicating that Cr<sup>6+</sup> adsorption on MB-600 °C isn't alone controlled by Intraparticle diffusion.

# 3.5. Removal mechanism

The zeta potential of the MB-600 °C is about 5.2. The surface potential of the MB-600 °C is positive charge at pH of 2. Therefore, MB-600 °C can adsorb  $Cr^{6+}$  by electrostatic attraction. As Fig. 6 shown, MB-600 °C has the OH, C=O, C-O and Fe-O group, demonstrating that MB-600 °C has abundant functional group. Besides, the oxygen-containing functional groups can easily obtain the protons at pH of 2 (Liang et al., 2023). The oxygen-containing functional groups can be used as the electron donor, contributing to  $Cr^{6+}$  removal by adsorption/reduction (Singh et al., 2022; Zhao et al., 2024). After  $Cr^{6+}$  adsorption, the peak intensity and peak location of oxygen containing functional groups have changed, indicating that these groups involve in  $Cr^{6+}$  removal. Fe<sup>2+</sup> comes from the dissolution of Fe<sub>3</sub>O<sub>4</sub>, which might be an important reaction pathway for  $Cr^{6+}$  removal by reduction (Zhao et al., 2024).

Fig. 7a-b shows the C 1 s peaks of MB-600 °C before and after  $Cr^{6+}$  adsorption. The peaks at 288.58, 285.21 and 284.60 eV are C=O, C-O and C-C group, respectively (Tang et al., 2021; Wang et al., 2020). For MB-600 °C, upon reaction with  $Cr^{6+}$ , the C-O percentage decreases from 35.29 % to 28.27 %, which indicates that –CHO is an electron donor that is oxidized into –COOH by  $Cr^{6+}$  (Zhang et al., 2020). Generally, the C-O group is the adsorption and reduction site of the MB-600 °C, and adsorption and reduction occur simultaneously (Liu et al., 2023) (Eq.4). However, C=O proportion decreases, which maybe C=O involves in  $Cr^{6+}$  removal(Eq.5) (Mutabazi et al., 2024).

 $R-CH_{2}OH+Cr_{2}O_{7}^{2-}+H^{+}\rightarrow R-COOH+Cr^{3+}+H_{2}O$ (4)

$$R-CHO+Cr_2O_7^{2-} + H^+ \rightarrow 3R-COOH+2Cr^{3+} + H_2O$$
 (5)

As Fig. 7c shown, the two peaks of Cr  $2p_{1/2}$  and Cr  $2p_{3/2}$  correspond to the 587.24 eV and 577.04 eV, respectively. The peaks at 576.89 eV and 586.80 eV indicate the presence of Cr<sup>3+</sup>, suggesting that Cr<sup>6+</sup> is partially reduced into Cr<sup>3+</sup> (Luo et al., 2021). Fig. 7c-d shows the Fe 2p spectra of the MB-600 °C before and after Cr<sup>6+</sup> adsorption, which can be divided in four peaks. The peaks at 710.85 eV and 724.21 eV correspond to Fe<sup>2+</sup>, while Fe<sup>3+</sup> appears at peaks of 712.74 eV and 725.98 eV. Peak area ratio of Fe<sup>2+</sup>/Fe<sup>3+</sup> decreases by 0.37 after Cr<sup>6+</sup> adsorption, implying that the dissolved Fe<sup>2+</sup> involves in Cr<sup>6+</sup> reduction process. The analysis result is consistent with Cr2p spectrum analysis. The Fe<sup>2+</sup> is reducing substances, which can reduce Cr<sub>2</sub>O<sup>2+</sup> into Cr<sup>3+</sup> (Eq.6) (Li et al., 2019).

$$Fe^{2+} + Cr_2O_7^{2-} + H^+ \rightarrow Fe^{3+} + Cr^{3+} + H_2O$$
 (6)

Furthermore, MB-600 °C can also realize  $Cr^{6+}$  removal by the pore filling (Su et al., 2022; Yang et al., 2020). The MB-600 °C shows flourishing pore structure that plays a vital role in  $Cr^{6+}$  removal process. The summary of  $Cr^{6+}$  adsorption mechanism is shown in the Fig. 8.



Fig. 7. The detail survey of the C1s before (a) and after  $Cr^{6+}$  adsorption (b), detail survey of the Cr2p after adsorption  $Cr^{6+}$  (c) and detail survey of the Fe2p after adsorption  $Cr^{6+}$  (d-e).

#### 3.6. Reusability investigation

Fig.S4 shows reusability results of MB-600 °C. As Fig.S4 shown, the Cr<sup>6+</sup> adsorption capability of MB-600 °C decreases as cycle number increases. The Cr<sup>6+</sup> adsorption amount is dropped to 19.84 mg/g after three cycles, which decreases by 28.32 %. The reason is that part of active sites of MB-600 °C loses adsorption capacity after regeneration. MB-600 °C still shows large Cr<sup>6+</sup> adsorption capacity after regeneration, which has practical application potential in Cr<sup>6+</sup> wastewater purification.

# 3.7. Effect of $Fe^{2+}$

The Fe 2p spectra analysis of the MB-600 °C before and after  $Cr^{6+}$  adsorption indicates that  $Fe^{2+}$  involves in  $Cr^{6+}$  removal. Besides, the electron transfer occurs between  $Fe^{2+}$  and  $Cr^{6+}$ . Fe<sub>3</sub>O<sub>4</sub> can dissolve to generate  $Fe^{2+}$  because the pH of  $Cr^{6+}$  adsorption solution is 2. This result indicates that the  $Fe^{2+}$  exists adsorption solution and participates in

 $\rm Cr^{6+}$  reduction.  $\rm Fe^{2+}$  is an important reductant with a low standard electrode potential of 0.77 V/SHE and can transform  $\rm Cr^{6+}$  to  $\rm Cr^{3+}$  (E0 (HCrO<sub>4</sub>/Cr<sup>3+</sup>) = 1.35 V/SHE) (Jiang et al., 2019). Therefore, the influence of Fe<sup>2+</sup> on Cr^{6+} removal is analyzed in existence of 1,10-phenanthroline that make Fe<sup>2+</sup> cannot participate in Cr^{6+} removal (Liu et al., 2019). As Fig. 9a shown, the Cr^{6+} removal is decrease in existence of the 1,10-phenanthroline. The analysis result demonstrates that Fe<sup>2+</sup> participates in Cr<sup>6+</sup> removal.

As Fig. 9b shown, the total Cr and Cr<sup>6+</sup> concentration rapidly decrease with increasing in adsorption time without adding 1,10-phenanthroline. The total Cr concentration is gradual decrease and Cr<sup>3+</sup> concentration exhibits an increasing trend, indicating that Cr<sup>6+</sup> adsorption and reduction simultaneously occur. While, Cr<sup>3+</sup> concentration increases as time continues to increase. However, Cr<sup>3+</sup> concentration gradually decreases as adsorption time continues to increase, indicating that part of Cr<sup>3+</sup> is adsorbed on MB-600 °C. The equation of Fe<sup>2+</sup> involves in Cr<sup>6+</sup> removal is listed in Eq. (6). Cr<sup>6+</sup> removal by MB-600 °C is restrained in existence of 1,10-phenanthroline, demonstrating



**Fig. 8.** The summary of  $Cr^{6+}$  adsorption mechanism.



Fig. 9. The influence of 1,10-phenanthroline on Cr<sup>6+</sup> removal(a), the total Cr, Cr<sup>6+</sup>, and Cr<sup>3+</sup> concentration in the Cr removal process(b).

that  $Fe^{2+}$  plays an important in  $Cr^{6+}$  removal.

# 3.8. Explore using DFT calculations

Combined with the results of XPS and FTIR, it could be found that the oxygen-containing functional group on the MB-600 °C mainly included hydroxyl, COOH, –OH and Fe-O groups. Thus, the MB-600 °C model with various oxygen-containing functional groups is constructed (Cheng et al., 2021). Binding energies of the COOH, –OH and Fe-O groups interactions with  $Cr^{6+}$  are calculated using DFT. Fig. S5 shows the calculated result. According to the calculation result in the Fig.S5, it exists energy barrier in  $Cr^{6+}$  adsorption process. Compared with the binding energies of  $Cr^{6+}$  interactions with –OH and –COOH group, the –Fe-O group is more negative. The analysis data demonstrates that-Fe-O group plays a critical role in  $Cr^{6+}$  removal by surface complexation.

# 3.9. Column adsorption

Thomas and Yoon-Nelson equation are employed for Cr<sup>6+</sup> adsorption process using fixed-bed adsorption (Table S4). The fitting analysis results are presented in Table S5. As Table S5 shown, Cr<sup>6+</sup> breakthrough

curves can be analyzed using the Thomas and Yoon-Nelson equation with high R<sup>2</sup>. Yoon-Nelson equation is better to describe  $Cr^{6+}$  adsorption process because of large R<sup>2</sup>. According to Thomas equation calculation,  $Cr^{6+}$  adsorption amount of the MB-600 °C is 56.64 mg/g. It demonstrates that MB-600 °C has enormous potential in governing environmental concerns of wastewater. Fig.S6 presents breakthrough curve of  $Cr^{6+}$  adsorption on MB-600 °C.

#### 3.10. Economic feasibility

Preparation cost of the MB-600 °C is very important parameter for actual application on an industrial scale. According to previous literature, the total production cost of MB-600 °C is presented in Table S6 (Jiang et al., 2019). As Table S6 shown, the approximate preparation cost is about \$2.48 for 1 kg MB-600 °C. However, production cost of 100 mesh activated carbon is estimated as \$ 40/1kg. Compared with commercial activated carbon, the production cost of MB-600 °C is cheap.  $Cr^{6+}$  adsorption amount of activated carbon and nZVI/sewage sludge co-pyrolyzed magnetic biochar are 23.35 and 13.27 mg/g, respectively (Mutabazi et al., 2024; Liu et al., 2020). Estimated treatment cost of 1 kg  $Cr^{6+}$  is \$ 81.55 for MB-600 °C. Compared with the above adsorbent, the

estimated treatment cost of the 1 Kg  $Cr^{6+}$  is cheap. Therefore, MB-600  $^\circ C$  can be acted as low-cost adsorbent for  $Cr^{6+}$  removal.

# 4. Conclusions

The magnetic biochar is successfully prepared using the simple onestep pyrolysis method for Cr<sup>6+</sup> removal from wastewater. The Cr<sup>6+</sup> adsorption capacity is 30.41 mg/g at pH=2. The electrostatic attraction, surface complexation, reduction and pore filling are responsible for Cr<sup>6+</sup> removal, based on mechanism analysis. Existence of Fe<sup>2+</sup> contributes to Cr<sup>6+</sup> removal by reduction in aqueous solution. The –Fe-O group is important in Cr<sup>6+</sup> removal process compared to –COOH and –OH groups based on DFT calculation. The magnetic biochar has large column adsorption amount of 56.64 mg/g. The production cost of the magnetic biochar is about \$2.48/1kg, based on preliminary economic analysis.

#### CRediT authorship contribution statement

**Chao Lv:** Resources, Methodology, Investigation, Formal analysis, Conceptualization. **Peng Liu:** Writing – original draft, Supervision, Methodology, Investigation, Funding acquisition.

#### Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

# Acknowledgments

The authors would like to express their gratitude to the Ph.D. Research Start-up Funding Project of Panzhihua University (XJ2022001301), and Panzhihua Directed Science and Technology Planning Projects (2022ZD-G-4) for financial support.

# Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.arabjc.2024.105943.

#### References

- Amin, M., Chetpattananondh, P., 2019. Biochar from extracted marine Chlorella sp. residue for high efficiency adsorption with ultrasonication to remove Cr(VI), Zn(II) and Ni(II). Bioresour. Technol. 289, 121578.
- Asoubar, S., Mehrizad, A., Behnajady, M.A.A., Ramazani, M.E., Gharbani, P., 2023. Hexavalent chromium reduction and Rhodamine B degradation by visible-lightdriven photocatalyst of stannum indium sulfide-samarium vanadate. npj Clean Water 6, 213411.
- Cai, Y., Ran, Z., Cang, Y., Chen, X., Shaaban, M., Peng, Q.A., 2023. Efficient removal of Cr(VI) and As(V) from an aquatic system using iron oxide supported typha biochar. Environ. Res. 225, 115588.
- Cheng, S., Xing, B., Shi, C., Nie, Y., Xia, H., 2021. Efficient and selective removal of Pb(II) from aqueous solution by modification crofton weed: Experiment and density functional theory calculation. J. Clean. Prod. 280.
- Cheng, S., Xing, B., Shi, C., Nie, Y., Xia, H., 2021. Efficient and selective removal of Pb(II) from aqueous solution by modification crofton weed: Experiment and density functional theory calculation. J. Clean. Prod. 280, 124407.
- Cheng, S., Zhao, S., Guo, H., Xing, B., Liu, Y., Zhang, C., Ma, M., 2022. High-efficiency removal of lead/cadmium from wastewater by MgO modified biochar derived from crofton weed. Bioresour. Technol. 343, 126081.
- Chu, T.T.H., Nguyen, M.V., 2023. Improved Cr (VI) adsorption performance in wastewater and groundwater by synthesized magnetic adsorbent derived from  $\rm Fe_3O_4$  loaded corn straw biochar. Environ. Res. 216, 114764.
- Dong, F.X., Yan, L., Zhou, X.H., Huang, S.T., Liang, J.Y., Zhang, W.X., Guo, Z.W., Guo, P. R., Qian, W., Kong, L.J., Chu, W., Diao, Z.H., 2021. Simultaneous adsorption of Cr (VI) and phenol by biochar-based iron oxide composites in water: Performance, kinetics and mechanism. J. Hazard. Mater. 416, 125930.
- Fu, F., Wang, Q., 2011. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 92, 407–418.
  Guo, H., Cheng, S., Xing, B., Meng, M., Feng, L., Nie, Y., Zhang, C., 2024. Preparation of provide the second second
- Guo, H., Cheng, S., Xing, B., Meng, M., Feng, L., Nie, Y., Zhang, C., 2024. Preparation of three kinds of efficient sludge-derived adsorbents for metal ions and organic wastewater purification. Arab. J. Chem. 17, 105671.

- Hong, X., Ding, C., Shi, M., Ding, Z., Du, P., Xia, M., Wang, F., 2024. Easy separation dual-function Cu<sub>2</sub>O@LDH@Fe<sub>3</sub>O<sub>4</sub> adsorbent for the removal of Cr(VI) under dark conditions: Experimental and mechanistic study. Sep. Purif. Technol. 332, 125734.
- Jiang, B., Gong, Y., Gao, J., Sun, T., Liu, Y., Oturan, N., Oturan, M.A., 2019. The reduction of Cr(VI) to Cr(III) mediated by environmentally relevant carboxylic acids: State-of-the-art and perspectives. J. Hazard. Mater. 365, 205–226.
- Li, Y., Chen, X., Liu, L., Liu, P., Zhou, Z., Huhetaoli, Y., Wu, T.L., 2022. Characteristics and adsorption of Cr(VI) of biochar pyrolyzed from landfill leachate sludge. J. Anal. Appl. Pyrol. 162, 105449.
- Li, J., Lan, H., Liu, H., Zhang, G., An, X., Liu, R., Qu, J., 2019. Intercalation of nanosized Fe<sub>3</sub>C in iron/carbon to construct multifunctional interface with reduction, catalysis, corrosion resistance, and immobilization capabilities. ACS Appl. Mater. Interfaces 11, 15709–15717.
- Liang, J.Y., Zhang, W.X., Yao, X.W., Chen, M.L., Chen, X., Kong, L.J., Diao, Z.H., 2023. New insights into co-adsorption of Cr<sup>6+</sup> and chlortetracycline by a new fruit peel based biochar composite from water: Behavior and mechanism. Colloids Surf. A Physicochem. Eng. Asp. 672, 131764.
- Liu, L., Liu, X., Wang, D., Lin, H., Huang, L., 2020. Removal and reduction of Cr(VI) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zerovalent iron and sewage sludge. J. Clean. Prod. 257, 120562.
- Liu, P., Wang, X., Ma, J., Liu, H., Ning, P., 2019. Highly efficient immobilization of NZVI onto bio-inspired reagents functionalized polyacrylonitrile membrane for Cr(VI) reduction. Chemosphere 220, 1003–1013.
- Liu, K., Zhao, D., Hu, Z., Xiao, Y., He, C., Jiang, F., Zhao, N., Zhao, C., Zhang, W., Qiu, R., 2023. The adsorption and reduction of anionic Cr(VI) in groundwater by novel iron carbide loaded on N-doped carbon nanotubes: Effects of Fe-confinement. Chem. Eng. J. 452, 139357.
- Luo, Q., Huang, X., Luo, Y., Yuan, H., Ren, T., Li, X., Xu, D., Guo, X., Wu, Y., 2021. Fluorescent chitosan-based hydrogel incorporating titanate and cellulose nanofibers modified with carbon dots for adsorption and detection of Cr(VI). Chem. Eng. J. 407, 127050.
- Mao, P., Yang, X., Wang, Z., Ping, X., Tian, Y., Chen, Y., Chen, Z., Zhang, J., Shen, J., Sun, A., 2024. Interfacial engineering of 0D/2D Cd<sub>0.5</sub>Zn<sub>0.5</sub>S/Ti<sub>3</sub>C<sub>2</sub> for efficient photocatalytic synergistic removal of antibiotics and Cr(VI). J. Environ. Chem. Eng. 12, 111649.
- Mutabazi, E., Qiu, X., Song, Y., Li, C., Jia, X., Hakizimana, I., Niu, J., Nuramkhaan, M., Zhao, Y., 2024. Cr(VI) adsorption on activated carbon, sludge derived biochar, and peanut shells derived biochar: Performance, mechanisms during the reuse process and site energy distribution analysis. J. Water Process Eng. 57, 104679.
- Qin, X., Cheng, S., Xing, B., Qu, X., Shi, C., Meng, W., Zhang, C., Xia, H., 2023. Preparation of pyrolysis products by catalytic pyrolysis of poplar: Application of biochar in antibiotic wastewater treatment. Chemosphere 338, 139519.
- Qiu, Y., Zhang, Q., Gao, B., Li, M., Fan, Z., Sang, W., Hao, H., Wei, X., 2020. Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: Synergy of adsorption, reduction and transformation. Environ. Pollut. 265, 115018.
- Qu, J., Zhang, W., Bi, F., Yan, S., Miao, X., Zhang, B., Wang, Y., Ge, C., Zhang, Y., 2022. Two-step ball milling-assisted synthesis of N-doped biochar loaded with ferrous sulfide for enhanced adsorptive removal of Cr(VI) and tetracycline from water. Environ. Pollut. 306, 119398.
- Sahu, U.K., Ji, W., Liang, Y., Ma, H., Pu, S., 2022. Mechanism enhanced active biochar support magnetic nano zero-valent iron for efficient removal of Cr(VI) from simulated polluted water. J. Environ. Chem. Eng. 10, 107077.
- S. Singh, A.G. Anil, T.S.S.K. Naik, B. U, S. Khasnabis, B. Nath, V. Kumar, S. Subramanian, J. Singh, P.C. Ramamurthy, Mechanism and kinetics of Cr(VI) adsorption on biochar derived from Citrobacter freundii under different pyrolysis temperatures, Journal of Water Process Engineering, 47 (2022) 102723.
- Su, Y., Shi, Y., Jiang, M., Chen, S., 2022. One-step synthesis of nitrogen-doped porous biochar based on N-doping Co-activation method and its application in water pollutants control. Int. J. Mol. Sci. 23.
- Sun, Y., Lyu, H., Gai, L., Sun, P., Shen, B., Tang, J., 2023. Biochar-anchored low-cost natural iron-based composites for durable hexavalent chromium removal. Chem. Eng. J. 476, 146604.
- Tang, L., Yu, J., Pang, Y., Zeng, G., Deng, Y., Wang, J., Ren, X., Ye, S., Peng, B., Feng, H., 2018. Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chem. Eng. J. 336, 160–169.
- Tang, J., Zhao, B., Lyu, H., Li, D., 2021. Development of a novel pyrite/biochar composite (BM-FeS<sub>2</sub>@BC) by ball milling for aqueous Cr(VI) removal and its mechanisms. J. Hazard. Mater. 413, 125415.
- Wang, X., Xie, Y., Chen, X., Zhou, X., Hu, W., Li, P., Li, Y., Zhang, Y., Wang, Y., 2020. A novel  $g-C_3N_4$  modified biosynthetic Fe(III)-hydroxysulfate for efficient photoreduction of Cr(VI) in wastewater treatment under visible light irradiation. Chem. Eng. J. 398, 125632.
- Wang, X., Xu, J., Liu, J., Liu, J., Xia, F., Wang, C., Dahlgren, R.A., Liu, W., 2020. Mechanism of Cr(VI) removal by magnetic greigite/biochar composites. Sci. Total Environ. 700, 134414.
- Wang, Y., Yang, Q., Chen, J., Yang, J., Zhang, Y., Chen, Y., Li, X., Du, W., Liang, A., Ho, S.-H., 2020. Adsorption behavior of Cr (VI) by magnetically modified Enteromorpha prolifera based biochar and the toxicity analysis. J. Hazard. Mater. 395, 122658.
- Xiang, Y., Xu, Z., Zhou, Y., Wei, Y., Long, X., He, Y., Zhi, D., Yang, J., Luo, L., 2019. A sustainable ferromanganese biochar adsorbent for effective levofloxacin removal from aqueous medium. Chemosphere 237, 124464.
- Xiao, H., Liang, L., Peng, H., Fang, D., Wu, G., Wang, Y., Zhu, Y., Zeng, Z., 2024. Can Cr (VI) and tetracycline be simultaneously removed by stabilized FeS nanoparticles via aeration at circumneutral conditions? J. Water Process Eng. 60, 105146.

#### C. Lv and P. Liu

- Yan, L., Guo, W., Huang, B., Chen, Y., Ren, X., Shen, Y., Zhou, Y., Cheng, R., Zhang, J., Qiu, M., Hu, B., 2023. Efficient removal of Cr(VI) by the modified biochar with chitosan schiff base and MnFe<sub>2</sub>O<sub>4</sub> nanoparticles: Adsorption and mechanism analysis. J. Environ. Chem. Eng. 11, 109432.
  Yang, Q., Wu, P., Liu, J., Rehman, S., Ahmed, Z., Ruan, B., Zhu, N., 2020. Batch
- Yang, Q., Wu, P., Liu, J., Rehman, S., Ahmed, Z., Ruan, B., Zhu, N., 2020. Batch interaction of emerging tetracycline contaminant with novel phosphoric acid activated corn straw porous carbon: Adsorption rate and nature of mechanism. Environ. Res. 181, 108899.
- Zhang, T., Bai, W., Dong, Q., Chu, D., Wang, L., He, Y., 2023. Hydrodynamic analysis of carbon nanotube clusters in distributor-less conical fluidized beds with step-by-step scaling. Chin. J. Chem. Eng.
- Zhang, Y., Liu, N., Yang, Y., Li, J., Wang, S., Lv, J., Tang, R., 2020. Novel carbothermal synthesis of Fe, N co-doped oak wood biochar (Fe/N-OB) for fast and effective Cr(VI) removal. Colloids Surf. A Physicochem. Eng. Asp. 600, 124926.
- Zhao, X., Liu, M., Feng, H., Luo, X., Yang, Y., Hu, J., Hu, Y., 2024. Effects and mechanisms on Cr(VI) and methylene blue adsorption by acid (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub> modified sludge biochar. Sep. Purif. Technol. 345, 127100.
- Zhao, N., Zhao, C., Tsang, D.C.W., Liu, K., Zhu, L., Zhang, W., Zhang, J., Tang, Y., Qiu, R., 2021. Microscopic mechanism about the selective adsorption of Cr(VI) from salt solution on O-rich and N-rich biochars. J. Hazard. Mater. 404, 124162.
- Zou, H., Zhao, J., He, F., Zhong, Z., Huang, J., Zheng, Y., Zhang, Y., Yang, Y., Yu, F., Bashir, M.A., Gao, B., 2021. Ball milling biochar iron oxide composites for the removal of chromium (Cr(VI)) from water: Performance and mechanisms. J. Hazard. Mater. 413, 125252.