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Abstract The corrosion behavior of aluminum and three aluminum–silicon alloys in different con-

centrations of HCl solutions and its inhibition by antihypertensive drugs was studied using poten-

tiostatic polarization measurements. As the acid concentration increases, the rate of corrosion

increases. Aluminum is less susceptible to corrosion than any of Al–Si alloys. The inhibition effi-

ciency of the drug compounds increases with their concentration up to a critical value. At higher

additive concentrations the inhibition efficiency starts to decrease. The inhibitive action of these

compounds is due to their formation of insoluble complex adsorbed on the metal surface. The

adsorption follows Langmuir adsorption isotherms. It was found that the drugs compounds pro-

vide protection to Al and Al–Si alloys against pitting corrosion by shifting the pitting potential

to more positive direction until critical drug concentrations (250 ppm). After this critical concentra-

tion the inhibition against to pitting corrosion starts to decrease.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
245674; fax: +20133222578.
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1. Introduction

Aluminum and its alloys exhibit corrosion resistance in many
environments and for this reason they find many important
industrial applications. The corrosion resistance is due to the

initial formation of a compact and adherent passive oxide film
on the exposed surfaces. However, in the presence of insidious
ions such as chloride ions, the protective oxide film can be
locally destroyed, initiating metal dissolution. Again, the oxide

film is amphoteric and hence dissolves readily in acidic
solutions (Oguzie, 2009).

In an attempt to mitigate electrochemical corrosion of

aluminum and its alloys, the main strategy is to effectively iso-
late the metal from corrosion agents. This can be achieved by
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the use of corrosion inhibitors. The use of inhibitors is one of

the best known methods of corrosion protection. Most of the
efficient acid inhibitors are organic compounds that contain
mainly nitrogen, sulphur or oxygen atoms in their structure.
Organic compounds used as inhibitors act through a process

of surface adsorption, So the efficiency of an inhibitor depends
not only on the characteristics of the environment in which its
acts, the nature of the metal surface and electrochemical poten-

tial at the interface but also on the structure of the inhibitor
itself, which includes the number of adsorption active centers
in the molecule, their charge density, the molecular size, the

mode of adsorption, the formation of metallic complexes
and the projected area of the inhibitor on the metal surface
(Chetouani et al., 2005; Okafor and Zheng, 2009).

Compounds with functional groups containing hetero-
atoms which can donate lone pairs of electrons are found to
be particularly useful as inhibitors for aluminum corrosion
(Khaled and Al-Qahtani, 2009; Obot and Obi-Egbedi, 2008;

Lashkari and Arshadi, 2004; Zheludkevich, 2005; Maayta
and Al-Rawashdeh, 2004; Amin et al., 2005; Obot et al.,
2009). Also, compounds with p-bonds also generally exhibit

good inhibitive properties by providing electrons to interact
with the metal surface (Yildirim and Cetin, 2008; Hasanov
et al., 2007; Umoren and Ebenso, 2008). Both features obvi-

ously can be combined within the same molecule such as drugs.
The use of drugs as corrosion inhibitors for metals in differ-

ent aggressive environments is not widely reported. Few re-
ports exist in the literature to date; these include the use of

sulpha drug (El-Naggar, 2007). Some pharmaceutical com-
Table 1 Composition of pure Al and Al–Si alloys (by weight perce

Sample Alloy Si Fe Cu Mn

Al – – – – –

Alloy I 6063 0.42 0.17 0.001 0.009

Alloy II 20556 7.01 0.110 0.000 0.000

Alloy III AlSi11MgSr 10.85 0.110 0.000 0.001

Table 2 The chemical structure of antihypertensive drugs.

Inhibitor Name Structure formula

Compound I Enalapril maleate

Compound II Atenolol

Compound III Etilefrine hydrochloride
pounds used for inhibition of Al in 0.5 mol L�1 H3PO4 (Fouda

et al., 2009).
In the previous work, rhodanine azo sulpha drugs (Abdal-

lah, 2002) and antibacterial drug (Abdallah, 2004) were used as
corrosion inhibitors for corrosion of 304 SS and aluminum in

hydrochloric solutions. They inhibit the corrosion by parallel
adsorption on the surface of the metal due to the presence of
more than one active center in the inhibitor molecule.

The aim of the present paper is to study the inhibiting ac-
tion of some antihypertensive drugs on the general and pitting
corrosion of Al and three alloys of Al–Si in hydrochloric acid

solution using potentiostatic and potentiodynamic anodic
polarization techniques. The mode of adsorption and the cor-
rosion inhibition mechanism are also discussed.

2. Experimental methods

The chemical composition of the three of Al–Si alloys is pre-
sented in Table 1.

These electrodes in the form of a cylindrical rod were fixed
to pyrex glass tubing by araldite (exposed surface area is

0.79 cm2 for Al pure, 0.64 cm2 for alloy I, 0.77 cm2 for alloy
II and 0.65 cm2 for alloy III). Electrical contacts were made
through thick copper wires soldered to the end of the elec-

trodes not exposed to the solution. The electrodes were succes-
sively abraded with different grades of emery paper, degreased
with acetone and finally washed twice with distilled water;

complete wetting of the surface was taken as an indication of
its cleanliness. All chemicals used were of A.R. quality. The
nt).

Mg Ni Ti Zn Cr Na Sr

– – – – – – –

0.42 0.001 0.010 0.001 0.000 0.0012 0.000

0.318 0.001 0.091 0.001 0.000 0.0012 0.000

0.176 0.001 0.094 0.001 0.000 0.0016 0.061

Molecular formula

C20H28N2O5ÆC4H4O4 M. Wt. = 492.53

C14H22N2O3 M. Wt. = 266.3

C10H15NO2, HCl M. Wt = 217.7
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solutions were prepared using twice distilled water and no trial

was made to deaerate them. The electrochemical cell was all
Pyrex and described elsewhere (El-Etre, 2007). The experi-
ments were carried out at 25 ± 1 �C using air thermostat.

Potentiostatic and potentiodynamic anodic polarization

measurements were carried out using PS remote potentiostat
with PS6 software for calculation of some corrosion parame-
ters e.g., corrosion current density (icorr.) corrosion potential

(Ecorr.) and rate of corrosion (Rcorr.). The corrosion parameters
were calculated from the intercept of the anodic and cathodic
Tafel lines. The potentiostatic and potentiodynamic anodic

polarization measurements were carried out at scan rate of
10 mV s�1and 1 mV s�1, respectively. A three compartment
cell with a saturated calomel reference electrode (SCE) and a

platinum foil auxiliary electrode was used.
The inhibition efficiency (I.E.) and the surface coverage (h)

were calculated using the following equations:

I:E: ¼ 1� Rcorr:add

Rcorr:free

� �
100 ð1Þ

h ¼ 1� Rcorr:add

Rcorr:free

� �
ð2Þ

where, Rcorr.free. and Rcorr.add are the rate of corrosion in the
absence and the presence of inhibitors, respectively.

Conductance measurements were carried out using YSI
model 32 conductance meter of cell constant equal to 1.6.

The inhibitors used in this study were three compounds of

antihypertensive drugs. The chemical structure of three com-
pounds is shown in Table 2.

3. Results and discussion

3.1. Potentiostatic polarization

3.1.1. Effect of acid concentration
Fig. 1 shows the anodic and cathodic polarization curves of Al-
loy III in different concentrations of HCl solutions as an exam-
Figure 1 Anodic and cathodic polarization curves of a
ple. Similar curves were obtained for the other two alloys and

Al pure (not shown) (see Table 3).
The effect of acid concentrations on the corrosion parame-

ters such as Ecorr., icorr. and Rcorr. is summarized in Table 1.
Inspection of this table reveals that Ecorr. is dependent of acid

concentration. Ecorr. values shifted more negative potentials.
The values of icorr. of Al and all the alloys increased with in-
crease of acid concentrations and consequently the corrosion

rate Rcorr. increases. At the same acid concentration the value
of icorr. decreases in the following order III > II > I > Al.
This indicates that alloy III has the highest susceptibility to

corrosion and Al is less susceptible to corrosion than any of
these alloys in agreement with previous results (Bohni and
Uhlig, 1969).
3.1.2. Effect of antihypertensive drugs
The effect of addition of increasing concentration of three

compounds of antihypertensive drugs (I–III) on the anodic
and cathodic polarization curves of aluminum electrode and
three of Al–Si alloys in 0.01 M HCl solution was studied. Sim-
ilar curves to Fig. 1 were obtained (not shown). The corrosion

parameters of Al and three Al–Si alloys such as Ecorr., icorr. and
Rcorr. were calculated and listed in Tables 4–6, respectively. By
the inspection of these tables, it is clear that the values of Ecorr.

are changed by increasing the concentration of drugs. It is
clear from Table 4 in presence of compound I. The values of
Ecorr. are shifted to more positive potential. This indicates that

this compound acted as an anodic inhibitor for Al, alloy I, al-
loy II and alloy III. In Table 5 compound II generally acted as
cathodic inhibitors (except Al and alloy II, 1000 ppm com-

pound II) On the other hand in Table 6 compound III gener-
ally acted cathodic inhibitor (except Al 1000 ppm compound
III). When the additive concentrations increase from 50 up
to 250 ppm the values of icorr. and hence Rcorr. decrease. Then

at concentrations more than 250 ppm the values of icorr. and
Rcorr. increase; consequently, the value of inhibition efficiency
(IE) increases at concentrations up to 250 ppm. But at higher
lloy III in different concentrations of HCl solution.



Table 3 Corrosion parameters obtained from anodic and cathodic polarization curves of Al and Al–Si alloys in different

concentrations of HCl solution at 25 �C.

Electrode sample Acid Conc. (M) �Ecorr., mV (SCE) icorr. · 10�6 (A cm�2) Rcorr. · 10�2 (mm/y)

Al 1 · 10�3 588 1.65 15.05

5 · 10�3 636 5.60 22.25

1 · 10�2 736 9.00 29.66

5 · 10�2 587 13.90 45.80

1 · 10�1 677 17.30 48.40

2 · 10�1 681 19.60 52.30

Alloy I 1 · 10�3 568 4.20 7.20

5 · 10�3 540 8.00 12.96

1 · 10�2 555 10.90 17.14

5 · 10�2 545 16.72 22.70

1 · 10�1 617 20.00 31.39

2 · 10�1 591 22.38 37.02

Alloy II 1 · 10�3 577 6.42 10.08

5 · 10�3 652 10.95 14.90

1 · 10�2 593 13.57 18.70

5 · 10�2 620 19.68 27.50

1 · 10�1 608 22.60 31.40

2 · 10�1 591 24.48 34.70

Alloy III 1 · 10�3 431 9.60 15.05

5 · 10�3 598 15.60 22.25

1 · 10�2 589 18.90 29.66

5 · 10�2 554 26.18 45.80

1 · 10�1 557 28.98 48.40

2 · 10�1 535 31.43 52.30

Table 4 Corrosion parameters obtained from anodic and cathodic polarization curves of Al and its alloys in 1 · 10�2 M of HCl

solution containing different concentrations of compound I at 25 �C.

Alloy Inhibitor Conc. (ppm) Ecorr. mV (S.C.E) icorr. · 10�6 (A cm�2) Rcorr. · 10�2 (mm/y) I.E. (%) h

Al 0 �736 9.00 12.78 – –

50 �713 3.80 5.400 57.70 0.5770

100 �640 3.10 4.400 65.6 0.6560

150 �570 2.10 3.200 76.83 0.76.83

250 �518 1.70 2.500 80.33 0.8033

500 �494 2.04 2.900 77.00 0.7700

1000 �466 2.40 3.400 73.39 0.7339

Alloy I 0 �555 10.9 17.14 – –

50 �556 3.30 5.100 69.72 0.6972

100 �642 2.40 3.820 77.98 0.7798

150 �602 2.20 3.400 79.75 0.7975

250 �535 1.70 2.700 81.10 0.8110

500 �510 2.20 3.460 79.82 0.7982

1000 �449 2.70 4.250 75.23 0.7523

Alloy II 0 �593 13.5 18.7 – –

50 �632 2.30 3.24 82.96 0.8296

100 �569 1.60 2.23 88.15 0.8815

150 �490 1.48 1.18 89.07 0.8907

250 �440 1.20 1.59 91.11 0.9111

500 �448 2.10 2.90 84.44 0.8444

1000 �432 2.90 4.01 78.52 0.7852

Alloy III 0 �589 18.9 29.66 – –

50 �587 2.00 2.950 89.40 0.8940

100 �474 1.50 2.400 92.06 0.9206

150 �433 1.38 2.100 92.80 0.9280

250 �436 1.20 1.870 93.70 0.9370

500 �476 2.50 4.290 86.77 0.8677

1000 �434 3.50 5.540 81.50 0.8150
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Table 5 Corrosion parameters obtained from anodic and cathodic polarization curves of Al and its alloys in 1 · 10�2 M of HCl

solution containing different concentrations of compound II at 25 �C.

Alloy Inhibitor Conc. (ppm) Ecom mV (S.C.E) icorr. · 10�6 (A cm�2) Rcorr. · 10�2 (mm/y) I.E. (%) h

Al 0 �736 9.00 12.78 – –

50 �682 4.80 6.900 46.34 0.4634

100 �730 4.00 5.900 55.37 0.5537

150 �715 3.37 4.790 62.50 0.6250

250 �725 2.90 4.130 67.69 0.6769

500 �733 3.40 4.770 62.22 0.6222

1000 �731 4.20 5.850 53.33 0.5333

Alloy I 0 �555 10.9 17.14 – –

50 �690 4.90 7.400 55.43 0.5543

100 �702 3.88 6.100 64.39 0.6439

150 �685 3.20 4.990 70.36 0.7085

250 �691 2.89 4.390 74.36 0.7436

500 �674 3.50 5.600 67.90 0.6790

1000 �656 4.30 6.800 60.50 0.6050

Alloy II 0 �593 13.5 18.7 – –

50 �640 6.60 9.16 51.11 0.5111

100 �661 4.60 6.30 65.93 0.6593

150 �630 3.90 5.14 71.25 0.7125

250 �678 3.16 4.90 76.60 0.7660

500 �666 4.75 6.61 64.80 0.6480

1000 �517 6.40 8.90 52.60 0.5260

Alloy III 0 �589 18.9 29.66 – –

50 �623 5.00 7.850 73.50 0.7350

100 �627 4.20 6.550 77.78 0.7778

150 �640 3.90 5.900 78.79 0.7879

250 �676 3.40 5.320 82.00 0.8200

500 �622 4.10 6.480 78.30 0.7830

1000 �622 4.70 7.340 75.13 0.7513
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concentrations more than 250 ppm of drugs, the values of I.E.
decrease. This indicates that the resistance to corrosion starts
to decrease. At one and the same inhibitor concentrations
the values of I.E. decrease according to the following sequence:

Compound I > Compound II > Compound III:
3.1.3. Adsorption isotherm
The adsorption of antihypertensive drugs on the surface of alu-

minum and its alloys can be interpreted by finding a suitable
isotherm which describes the variation of experimentally ob-
tained values of the amount of adsorbed substance by unit area

of the metal surface with its concentration in bulk solution at
constant temperature. The degree of surface coverage (h)
which represents the part of metal surface covered by drug

molecules was calculated using the following Eq. (2).
The values of (h) for different concentrations of the studied

drug compounds have been used to explain the best isotherm

for adsorption of drug compounds on the metal surface. It is
regarded as substitutional adsorption process between the drug
compound in the aqueous phase (drug aq.) and water mole-
cules adsorbed on the metal surface (H2O)ads (Moretti et al.,

1999).

Drugðsol:Þ þXðH2OÞads�DrugðadsÞ þXðH2OÞsol ð3Þ

where, X is the size ratio, that is, the number of water mole-
cules replaced by one drug molecule. Attempts are made to
fit (h) values to various isotherms including, Frumkin, Temkin,

Freundlich, Langmuir, Flory Huggins and Bockris-Swinkel
isotherm. By far the results were best fitted by Langmuir
adsorption isotherm according to the following equation:

C

h
¼ 1

K
þ C ð4Þ

where K and C are the equilibrium constants of adsorption
process and additive concentration, respectively. Plotting C/h
against C (Fig. 2) gave a straight line with unit slope value with

correlation coefficient of 0.999, 0.996 and 0.998 for com-
pounds I, II and III, respectively, indicating that the adsorp-
tion of antihypertensive drug on the surface of Al and Al–Si

alloys follows Langmuir adsorption isotherm. From these re-
sults one can postulate that there is no interaction between
the adsorbed species.

3.2. Potentiodynamic anodic polarization

3.2.1. Susceptibility of Al and its Alloys to pitting corrosion by
chloride ions
Fig. 3 represents the potentiodynamic anodic polarization

curves of Al electrode in different concentrations of NaCl solu-
tion at scan rate of 1 mV s�1. Similar curves (not shown) were
obtained for other three alloys.

Inspection of the curves of this figure reveals that:

(i) There is no any active dissolution oxidation peak
was observed during the anodic scan. This reflects the

stability of the air-formed oxide film on surface of alu-
minum or its alloys.



Table 6 Corrosion parameters obtained from anodic and cathodic polarization curves of Al and its alloys in 1 · 10�2 M of HCl

solution containing different concentrations of compound III at 25 �C.

Alloy Inhibitor Conc. (ppm) Ecorr. mV (S.C.E) icorr. · 10�6 (A cm�2) Rcorr. · 10�2 (mm/y) I.E. (%) h

Al 0 �736 9.00 12.78 – –

50 �750 5.40 7.690 39.80 0.3980

100 �788 4.40 6.260 51.00 0.5100

150 �790 3.90 5.530 56.75 0.5675

250 �752 3.60 5.160 59.64 0.5964

500 �836 4.40 6.170 51.11 0.5110

1000 �609 5.40 7.570 40.00 0.4000

Alloy I 0 �555 10.9 17.14 – –

50 �716 5.70 8.980 47.61 0.4761

100 �702 4.30 6.750 60.60 0.6060

150 �710 3.90 6.080 64.53 0.6453

250 �737 3.60 5.700 66.97 0.6697

500 �675 4.10 6.500 62.38 0.6238

1000 �658 5.20 8.210 52.23 0.5223

Alloy II 0 �593 13.5 18.7 – –

50 �654 7.00 9.70 48.15 0.4815

100 �710 5.00 7.12 62.96 0.6296

150 �745 4.85 6.70 64.04 0.6404

250 �768 4.34 6.50 67.86 0.6786

500 �662 5.70 7.95 57.78 0.5778

1000 �656 7.00 9.70 84.15 0.8415

Alloy III 0 �589 18.9 29.66 – –

50 �695 6.80 10.80 64.00 0.6400

100 �658 5.30 8.350 71.96 0.7196

150 �668 4.50 6.700 74.30 0.7430

250 �697 3.75 5.900 80.16 0.8016

500 �756 4.70 7.340 75.13 0.7513

1000 �604 5.50 8.600 70.90 0.7090
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Figure 2 Langmuir adsorption isotherm for alloy III.
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(ii) Increasing the sodium chloride concentrations causes
the current flowing along the passive region to increase
suddenly and markedly at some definite potential denot-

ing the destruction of the passivating oxide film and the
initiation of visible pits. The effect of increasing the
chloride ions concentrations is the shift of the pitting

potential into the active (negative) direction.

The dependence of Epitt. with the concentration of Cl� ion
is shown in Fig. 4. The relation presents sigmoid S-shaped

curve that indicates a higher Epitt. value at the lower chloride
ion concentrations. In this case, the rate of passive film forma-
tion prevails over that the film breakdown, which is clear from

the small change of Epitt. into the negative direction of poten-
tial. Thus, the metal surface may undergo a repassivation
(Abdallah, 2004; Abd El-Haleem, 1979). However, at relatively

higher Cl� ion concentrations, Epitt varies with Cl� ion con-
centration according to a straight-line relationship in the fol-
lowing forms (Abdallah and Al-Karanee, 2009):

Epitt: ¼ a1 � b1 logC
�
Cl ð5Þ

where a1 and b1 are constants depending on both the nature
and type of the aggressive anion and of the electrode. This is

due to the destruction of the passive film formed on the metal
surface and the pits propagate without allowing to undergo the
repassivation. At higher Cl� ion concentrations, Epitt shifted

rapidly to more negative potential; it can be expected that



Figure 3 Potentiodynamic anodic polarization curves of pure Al in different concentrations of NaCl solutions.
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Figure 4 The relationship between pitting potential and logarithm of the concentrations of NaCl solution.
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the film breakdown exceeds the film formation and the pit is

continuously propagated.
Further inspection of the curves of Fig. 4 reveals that at one

and the same Cl� ion concentration the shift of pitting poten-

tial (Epitt) to active (negative) values decreases in the following
order:

Al > Alloy I > Alloy II > Alloy III
This sequence differs from that sequence obtained by

general corrosion of Al and its alloys, where Al is more resis-
tant to corrosion in HCl solution than Al–Si alloys. In general
corrosion the oxide film formed by Al is thick, adherent and

non porous. The addition of Si as an alloying element increases
the rate of corrosion. Since Al is trivalent and Si is tetravalent,
the excess of electron d delocalized throughout the lattice
producing point defect. The point defect increases with
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increasing Si content. This led to the decrease of the resistance

of Al.
In the localized attack (pitting) by chloride ions, the pres-

ence of Si as an alloying element increases the pitting corrosion
resistance of Al (Abd El-Rehim et al., 2004). This can be

attributed to the incorporation of Si atoms in the passive film
(Mzhar et al., 2001). This incorporation repairs the film defect
and renders it more stable (Strehblow and Doherty, 1978). The

above sequence may be attributed to that the chloride ions at-
tack the passive film which contains mainly Al2O3 and SiO2.
The increase of Si content in the alloy led to form solid solu-

tions consequently increases the resistance to pitting attack.
This sequence shows that pure Al has the highest suscepti-

bility to pitting corrosion and alloy III is the less susceptible to

pitting corrosion than any of other two alloys.

3.2.2. Inhibition of pitting corrosion
The effect of increasing addition of the studied drug com-
pounds on the potentiodynamic anodic polarization curves
of Al and its alloys in 1 · 10�2 M NaCl solution was studied.
Similar curves (not shown) to those of Fig. 3 were obtained

in the presence of these compounds. In their presence, the pit-
ting potential was shifted toward a more positive direction un-
til concentration of drug was up to 250 ppm. This indicates

that inhibitive effect of these compounds for pitting corrosion.
At higher concentrations (more than 250 ppm) of drugs, there
is a shift of Epitt., into the active (negative) direction. This shift

indicates that the resistance to pitting corrosion is decreased.
Fig. 5 represents the relationship between Epitt and log Cinh.

From the curves of this figure, it is clear that the increase of the

concentration of the antihypertensive drugs until a critical con-
centration (250 ppm) causes a shift of pitting corrosion poten-
tial into the noble (positive) direction, in accordance with the
following equation:
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Figure 5 The relationship between pitting potential and loga-

rithm of the concentrations of inhibitor compounds in 1 · 102 M

NaCl solution for alloy III.
Epitt: ¼ a2 þ b2 logCinh: ð6Þ

where a2 and b2 are constants depending on the type of inhib-

itors and aggressive anions as well as the metal or alloys under
test. This denotes that at this critical concentration these com-
pounds start to lose their inhibiting effect.

Some authors (Shams El-Din et al., 1977; Abd El Haleem
et al., 1995) attributed the above observation to the hydrolysis
of inhibitor to produce corrosion promoting species. However,

one may attribute the lose of inhibiting effect toward pitting
aluminum and its alloys in presence of high concentrations
of antihypertensive sites drugs (more than 250 ppm) due to

the competition for adsorption sites on the metal surface.
The accumulation of the inhibitors molecules on the metal sur-
face which creates a steric hindrance effect (Schweinsberg
et al., 1988). Such effect leads to loosely attack the layer which

stimulates corrosion rather than inhibition.

4. Mechanism of inhibition

The inhibition of the general and the pitting corrosion of pure
aluminum and aluminum silicon alloys in hydrochloric acid

solutions by some antihypertensive drugs as measured by
potentiostatic polarization and potentiodynamic anodic polar-
ization were found to depend on both the concentration and

the nature of the inhibitors. As the concentration of the inhib-
itors increases the observed corrosion parameters led to:

(i) Decrease of corrosion density.

(ii) Increase of inhibition efficiency.
(iii) Increase of surface coverage.
(iv) Shift of pitting potential to positive direction.

The inhibition efficiency of antihypertensive drugs against
the corrosion of Al and Al–Si alloys in 1 · 10�2 M HCl was

explained on the basis of the adsorption of the inhibitors at
the electrode-solution interface (Mohmoud et al., 1996). Since
the drug compounds contain more than one active center in

their chemical structures, they will improve the adsorption
process, and consequently inhibit the metals against corro-
sion. However, the inhibition efficiency of the studied com-
pounds depends on many factors, which include the

number of adsorption active centers in the molecule, charge
density, molecular size, structure and mode of interaction
with metal surface and ability to form complexes (Fouda

et al., 1986).
To illustrate the mechanism of interaction of antihyperten-

sive drugs with metal ions, the stoichiometry of the expected

Al-drugs complexes was estimated by conductance measure-
ments. Conductometric titration curves were obtained by titrat-
ing 50 ml of 1 · 10�3 M Al3+ with a solution of 1 · 10�4 M
drugs compound as a titrant. The conductance ml-added curves

(Fig. 6) are characterized by breaks at molar ratio of 1.0 metal
cation: 1.0 drugs additives for compounds I, II and III (cation-
ligand).

It is known that (Amin, 1995) the shape of the conducto-
metric curve depends on the concentrations of all the species
present during the titration process as well as on some other

factors such as viscosity, dielectric constant, solvation, com-
plexation and proton transfer.

The inhibition process of antihypertensive drugs can be

attributed to the formation of insoluble complexes. The three
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Figure 6 Conductometric titration of 50 ml of 1 · 10�4 M anti-

hypertensive drugs (R) against 1 · 10�3 M AlCl3 (M).
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compounds of antihypertensive drugs can react with Al3+ ion
according to the following reaction:

Compound I (high molecular weight) which gives the high-

est inhibition efficiency, can react with Al3+ ion via one of
three routes to give structures I, II or III.
Structure (I)

Structure (II)

Structure (III)

Structure I contains one covalent bond (O–Al) and one
coordination bond (O fi Al). Structure II contains two coordi-
nation bonds (O fi Al). On the other hand, structure III con-

tains two covalent bonds. Since the covalent bond (O-Al) is
stronger than the coordination bond (O fi Al), thus, structure
III is the most expected complex to be formed.

Compound II interacts with the metal ion to give the fol-

lowing structure.

As seen, this structure contains two bonds; one of them is
coordination (N fi Al) and the other is covalent bond (O–Al).

Compound III reacts with the metal ions and the following

structure may be obtained.

The last structure contains two bonds; one of them is coor-
dination bond (N fi Al), while the other bond (O–Al) is
covalent.

In view of the above observations, one can conclude that

the inhibition efficiencies (I.Es) of antihypertensive drugs (I–
III) decrease in the order:

Compound I > Compound II > Compound III:

This sequence is in a good agreement with the results ob-

tained experimentally from the two techniques.
5. Conclusion

(1) Antihypertensive drugs act as inhibitors for general and
pitting corrosion of Al and Al–Si alloys.

(2) The inhibition efficiency increases with increasing drug
concentrations up to a critical value and starts to
decrease in presence of higher additives’ concentrations

due to steric hindrance effect.
(3) The drug compound acts as corrosion inhibitor due to

the formation of insoluble complex adsorbed on the

metal surface.
(4) The adsorption process follows Langmuir adsorption

isotherm.
(5) Al–Si alloys are more resistant to pitting corrosion than

Al in chloride-containing solution.
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