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Abstract The activity of the bioproducts from Aspergillus ficuum and Pseudomonas aeruginosa for

extraction of thorium (Th4+), uranium (UO2
2+) and rare earth elements (REEs) from thorium–

uranium concentrate was studied. P. aeruginosa produce element-specific ligand (siderophore) that

is able to change pH and enhance chelation of Th4+ and UO2
2+. The produced siderophore at pH

5.3 has the ability to bioleach and is complexed with 68.00% of uranium and 65.00% of thorium.

Also, A. ficuum produced different kinds of organic acids which leached 30.00% of uranium and

29.12% of thorium in addition to 20.00% of lanthanum, 33.00% of cerium and 2.51% of yttrium

as rare earth elements at pH 3.0. Oxalic acid was efficient for Th4+, UO2
2+and REEs precipitation.

The binocular stereo-microscope (BSM), environmental scanning electron microscope (ESEM) and

X-ray diffraction (XRD) analyses confirmed the percentages of extracted metals. Exogenous poly-
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saccharides (EPSs) seem to play an important role in bioleaching and removal of these elements. It

was found that EPSs produced by A. ficuum adsorbed Th4+, UO2
2+ and REEs while that produced

by P. aeruginosa adsorbed REEs only.

ª 2011 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Thorium, uranium and rare earth elements were considered
strategic elements. Thorium is used as an alloying element in
magnesium, used in aircraft engines, imparting high strength

and creep resistance at elevated temperatures (Raju et al.,
2007). Uranium used in major application in the military sector
is in high-density penetrators also, in the civilian sector it is to

fuel nuclear power plants (Calsteren and Thomas, 2006). Rare
earth elements and their compounds have wide range of appli-
cations especially in metallurgy, ceramic industry and nuclear

fuel control (Joona et al., 2006). Under iron-deficient condi-
tions, special microorganisms synthesize secondary metabolites
called ‘‘siderophores’’, which strongly scavenge extracellular
Fe3+. There are some species of fungi and bacteria able to pro-

duce siderophores. The most common siderophores-producing
bacteria were Pseudomona aeruginosa, P. fluorescence andPseu-
domonas stutzeri. The most common producing fungi were

Aspergillus flavus, A. niger and Rhizopus sp. in case of fungi
(Kalinowski et al., 2004). Siderophores have different chelation
moieties, including hydroxamic acid, catechol and carboxyl

group in the same molecule (Winkelmann, 1991). Acidolysis
is the principal mechanism in bioleaching of metals by microbes
which produced organic acids such as citric, oxalic, malic and

gluconic acids during bioleaching (Johnson, 2006). The metab-
olites contained organic acids which dissolve metals from min-
erals by displacement of metal ion from the ore or soil matrix
by hydrogen ions, or by the formation of metal complexes

and chelates (Ren et al., 2009). The exogenous polysaccharides
(EPSs) seem to play a vital role in bioleaching for the winning
of precious metals. EPSs consist mainly of neutral sugars and

lipids. The functions of the extracellular polymeric substances
of this leaching bacterium seem: (i) to mediate attachment to
metal sulfide surface, (ii) to concentrate iron (III) ions by com-

plexation through uronic acids or other residues at the mineral
surface and, thus, allowing for an oxidative attack on the sul-
fide. Consequently, dissolution of the metal sulfide is enhanced,
which may result in an acceleration of 20- to 100-fold over

chemical leaching (Kinzler et al., 2003). Thorium, uranium
and REEs precipitated as rare earths oxalate using oxalic acids
of 10% (Soe et al., 2008). Many techniques were used for char-

acterizing the produced metals as BSE, ESEM, and XRD
(Duďa and Rejl, 1986; Vijayaraghavan et al., 2009 and Sar
et al., 1999).

2. Materials and methods

2.1. Microorganisms and growth conditions

The fungal strain A. ficuum was isolated from (Th–U) concen-
trate using Modified Czapek’s–Dox agar (MCDA). The med-
ium composition is as follows: sucrose 30 g/L; NaNO3 3 g/L;
KH2PO4 1 g/L; MgSO4Æ7H2O 0.5 g/L; KCl 0.5 g/L; FeSO4

0.01 g/L; yeast extract 10 and agar-agar 20 g/L (Oujezdsky

et al., 1972). While P. aeruginosa was obtained from previous
work (Holt et al., 1994) was cultured on nutrient agar (NA)
which is composed of: beef extract 3 g/L; bacteriological pep-

tone 5 g/L; yeast extract 1 g/L; sodium chloride 5 g/L and
agar-agar 20 g/L. A. ficuum culture was incubated at 28 �C
for 5–7 days on MCDA and P. aeruginosa cultures were incu-

bated at 35 �C for 1–3 days on NA.

2.2. Bioleaching and complexation of thorium, uranium with
siderophore from (Th–U) concentrate

Production and extraction of siderophore by P. aeruginosa
were carried out as the method previously described by

Hussien (2007). This experiment was carried out to dissolve
and precipitate thorium, uranium by making complexes with
siderophore. Erlenmeyer conical flask (250 mL) containing

100 mL of extracted siderophore pH (5.3) was mixed with
1.2 g of (Th–U) concentrate. The mixture was shaken at room
temperature using rotary shaker at 175 rpm for 24 h (Ren et al.,
2009). Then the mixture was filtered using Whatman filter pa-

per No. 1. The residue will be dried in the oven at 65 �C. On
the other hand, the filtrate contained thorium, uranium
and REEs in supernatant estimated as previously described

by Marczenko (1976) and Busev et al. (1981). Also, these
elements will be precipitated as previously described by
Desouky (1998). The precipitated crystals of thorium oxalate

and ammonium diuranate were characterized using BSM,
ESEM then calcinated at 550 �C to obtain its oxide which
was subjected to XRD analysis for identifying the unknown

crystallized mineral.

2.3. Bioleaching of residual (Th–U) concentrate by the
extracted organic acids produced by A. ficuum

This experiment aimed to bioleach the residual (Th–U) concen-
trate which mainly contained REEs and traces of thorium and

uranium. Erlenmeyer 250 mL conical flask containing 100 mL
ofmetabolite containing organic acidswas producedbyA.ficuum
pH (3.0) mixedwith 0.75 g of residue of (Th–U) concentrate. The

mixture was shaken at room temperature using rotary shaker at
175 rpm for 24 h. Then the mixture was filtered using Whatman
filter paperNo. 1. The releasedREEs, thoriumanduraniumwere
estimated as mentioned in the previous experiment.

2.4. Binocular stereo-microscope (BSM)

Binocular stereo-microscope equipped with digital camera
(Model Meiji EMZ-TR-Japan) was used to examine the crys-
tals structure and photograph it. The apparatus was presented

in (NMA), Cairo, Egypt.
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2.5. Environmental scanning electron microscope (ESEM)

Environmental scanning electron microscope equipped with
electron dispersive X-ray (EDX) was used to determine the

biosorbed REEs on the biomasses. The samples were dried
and examined by ESEM (Philips XL30, Holland). The operat-
ing conditions were vacuum 30 kV and BSE equals 10.0 BSE

(back scattered electron) which is presented in Nuclear Mate-
rials Authority (NMA), Cairo, Egypt.

2.6. X-ray diffractometer (XRD)

X-ray diffraction pattern of dry, powder samples of REEs-free
control and REEs sorbed A. ficuum and P. aeruginosa bio-

masses were recorded using (PHILIPS PW 3710/31 diffractom-
eter with automatic sample changer PW 1775, (21 positions),
Scintillation counter, Cu-target tube and Ni filter at 40 kV

and 30 A. This instrument is connected to a computer system
using X-40 diffraction program and ASTM cards for mineral
identification. The apparatus was presented in NMA, Cairo,

Egypt.

2.7. Removal of thorium, uranium and rare earth elements by
exogenous polysaccharides (EPSs)

Exogenous polysaccharides (EPSs) were extracted from the
culture filtrates of A. ficuum and P. aeruginosa in presence of

1.2 g/100 mL of (Th–U) concentrate as previously mentioned
(Yan et al., 2008). The adsorbed REEs and other elements
by EPSs of A. ficuum and P. aeruginosa were examined by

ESEM. 0.05 N HCl was used for desorption of REEs adsorbed
through EPSs of A. ficuum while 0.05 N H2SO4 was for desorp-
tion of REEs adsorbed by EPSs produced by P. aeruginosa.
The desorbed REEs were precipitated by 10% oxalic acid.
Table 1 Chemical analysis of (Th–U) concentrate.

Samples Elements (%)

RE2O3 Fe2O3 MnO2 CaO MgO

(Th–U) concentrate 20.07 4.45 UDL 0.14 0.31

UDL: under detection limit.

Figure 1 The affinity of siderophore produced by P. aeruginosa on b

from (Th–U) concentrate liquor.
2.8. Statistical analysis

All obtained experimental results were subjected to statistical
analysis using statistical software SPSS (Ver. 10) as described

by Steel et al. (1997).

3. Results

3.1. Chemical composition of (Th–U) concentrate

The chemical composition of monazite was illustrated in Table
1. It consists of 20.07% RE2O3, 4.45% Fe2O3, 19.01% ThO2

and 2.44% UO2.

3.2. Bioleaching and complexation of thorium, uranium with

siderophore from (Th–U) concentrate

Fig. 1 indicates that the extracted siderophore bioleached and
complexed with 68.00% of uranium, 65.00% of thorium highly

than 4.3% of lanthanum, 5.4% of cerium and 1.2% of yttrium
as rare earth elements.

3.3. Bioleaching of residual (Th–U) concentrate by the
extracted organic acids produced by A. ficuum

Fig. 2 illustrates that A. ficuum metabolite leached 30.00% of

uranium and 29.12% of thorium in addition to 20.00% of lan-
thanum, 33.00% of cerium and 2.51% of yttrium as rare earth
elements. From the pregnant solutions, at pH 0.9 thorium pre-

cipitated as thorium oxalate using 10% oxalic acid. While, at
pH 5–6 uranium precipitated as ammonium diuranate using
33% ammonium solution. In addition to, at pH 8.0–8.3 REEs

precipitated as rare earth oxalate using 10% oxalic acid. Then
all products were calcinated at 550 �C for XRD analysis.
ThO2 U3O8 Na2O K2O SiO2 Al2O3 P2O5

19.01 2.44 0.50 UDL UDL UDL 0.96

ioleaching and complexation of thorium, uranium and some REEs



Figure 2 The affinity of organic acids produced by P. aeruginosa on bioleaching and complexation of thorium, uranium and some REEs

from (Th-U) concentrate liquor.

Plate 1 Stereo-photographs for the crystals of thorium oxalate complexed with siderophore extracted from P. aeruginosa : (i) long

prismatic crystals of thorium oxalate, X = 20. (ii) Short prismatic crystals of thorium oxalate, X = 20. (iii) Shorter prismatic crystals of

thorium oxalate, X = 20. (iv) Transparent prismatic crystals of thorium oxalate covered by chalky material, X = 20.
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3.4. Characterization the crystals of thorium, rare earth oxalate
and ammonium diuranate using BSM, ESEM and XRD

3.4.1. Stereo-photographs for crystals of thorium oxalate and

ammonium diuranate using (BSM)
Binocular stereo-microscope (BSM) apparatus was used to
illustrate the physical properties of the produced crystals of

thorium oxalate and ammonium diuranate which were ob-
tained from the previous experiments. It was known that any
crystal has three directions, a = the width; b= the height

and c = the length of crystal.
It was found that the crystals of thorium oxalate complexed

with siderophore were transparent and belong to tetragonal

and prismatic system. Plate 1 illustrates stereo-photographs
for the crystals of thorium oxalate complexed with siderophore
extracted from P. aeruginosa. It appeared that there were four

shapes of crystals: (i) long prismatic crystals of thorium oxa-
late where, c = four times a or b; (ii) short prismatic crystals
of thorium oxalate where, c= two times a or b; (iii) shorter

prismatic crystals of thorium oxalate where, c = three times
a or b and (iv) transparent prismatic crystals of thorium oxa-
late were covered by chalky material.

It was appeared that the crystals of thorium oxalate com-

plexed with organic acids were transparent, monoclinic system
where c # a # b and also crystal have a prismatic forms.

Plate 2 illustrates several forms for the crystals of thorium

oxalate bioleached by metabolite of A. ficuum .These crystals
may be: (i) short prismatic crystals of thorium oxalate; (ii) long
prismatic crystals of thorium oxalate; (iii): twinned prismatic

crystals of thorium oxalate and (iv) aggregate prismatic crys-
tals of thorium oxalate.

Plate 3 illustrates stereo-photographs for the crystals of
ammonium diuranate complexed with siderophore extracted

from P. aeruginosa. It appeared that there were many forms
of ammonium diuranate crystals with siderophore where: (i)
close up view for uranophane associated with cubic form of



Plate 2 Stereo-photographs for the crystals of thorium oxalate bioleached by metabolite of A. ficuum: (i) Short prismatic crystals of

thorium oxalate, X= 20. (ii) Long prismatic crystals of thorium oxalate, X= 20. (iii) Twinned prismatic crystals of thorium oxalate,

X = 20. (iv) Aggregate prismatic crystals of thorium oxalate, X= 20.
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siderophore compound, (ii) anhedral crystals of uranophane

associated with fine cubic crystals of colorless siderophore
compound and (iii) anhedral crystals of uranophane character-
ized by a lemon yellow color with less crystals of transparent
siderophore compound.

Also, some crystals of thorium oxalate and ammonium
diuranate were produced through the bioleaching of A. ficuum
metabolite (including verities of organic acids) and precipi-

tated by oxalic acid (10%) were stereo-photographed using
binocular stereo-microscope (BSM).

Also, Plate 3(iv) illustrates stereo-photograph for ammo-

nium diuranate crystals bioleached by A. ficuum metabolite
may be aggregates of radiated crystals (needles form) of urano-
phane bioleached by metabolite of A. ficuum.

Moreover, it was noticed that, thorium and uranium biole-
ached and complexed with siderophore were highly pure than
that bioleached by A. ficuum metabolite. In addition to, Plate 4
which illustrates stereo-photograph for the crystals of rare

earths oxalate extracted from (Th–U) concentrate: (i) aggre-
gates of colorless prismatic crystals form of rare earths oxalate,
X= 20.

3.4.2. Scanning for the calcinated thorium, rare earths oxalate
and ammonium diuranate using ESEM
Fig. 3 illustrates SEM micrograph and the corresponding
EDX spectrum of thorium oxide. The results indicated that
the percentage of ThO2 was 81.85%. Also, Fig. 4 illustrates

SEMmicrograph and the corresponding EDX spectrum of cal-
cinated ammonium diuranate where the percentage of U3O8

was 64.50%. In addition, Fig. 5 illustrates SEM micrograph

and the corresponding EDX spectrum of rare earths oxide
extracted from (Th–U) concentrate. The results indicated that

REEs were presented in percentages of 20.75% La2O3, 34.71%
of Ce2O3, 6.78% Pr2O3, 14.98% Nd2O3, 2.42% Sm2O3, 2.69%
Gd2O3, 1.11% Tb2O3 and 2.34% Y2O3.

3.5. X-ray diffraction analysis of thorium oxide and calcinated
ammonium diuranate

The obtained X-ray diffraction spectrum showed distinct
peaks indicating the deposition of crystallized Th4+. Diffracto-
gram of the calcinated thorium oxalate displayed maximum

number of peaks to Th4+ between 2h of 27.68�, 2h of 23.04�,
2h of 47.02�, 2h of 45.49� and 2h of 60.35� as illustrated in
Fig. 6. Significantly the D values of most of the peaks corre-

spond to thorium oxide. Also, the obtained X-ray diffraction
spectrum was shown in Fig. 7 which appears as distinct peaks
indicating the deposition of crystallized U6+. Diffractogram of
the calcinated ammonium diuranate displayed maximum num-

ber of peaks to U6+ between 2h of 8.48�, 2h of 11.64�, 2h of
21.04�, 2h of 31.84� and 2h of 45.38�. Significantly the D values
of most of the peaks correspond to ammonium diuranate.

Besides, sulfate displayed maximum number of peaks to
ammonium sulfate between 2h of 16.97�, 2h of 26.73�, 2h of
33.45� and also, sodium chloride displayed maximum number

of peaks between 2h of 48.97� and 2h of 54.49�. In addition,
the obtained X-ray diffraction spectrum showed distinct peaks
indicating the deposition of crystallized REEs. Diffractogram

of the calcinated rare earths oxalate displayed maximum
number of peaks to La3+ and Ce3+ between 2h of 16.91�, 2h
of 22.70� and 2h of 45.85�. Also, for La3+ between 2h of
31.33� and 2h of 57.52� as illustrated in Fig. 8. Significantly



Plate 4 Stereo-photograph for the crystals of rare earths oxalate

extracted from (Th–U) concentrate: (i) Aggregates of colorless

prismatic crystals form of rare earths oxalate, X = 20.

Plate 3 Stereo-photographs for the crystals of ammonium diuranate cake complexed with siderophore extracted from P. aeruginosa: (i):

Close up view for uranophane and associated with cubic form of siderophore compound, X= 20. (ii) Anhedral crystals of uranophane

associated with fine cubic crystals of colorless siderophore compound, X = 20. (iii) Anhedral crystals of uranophane characterized by a

lemon yellow color with less crystals of transparent siderophore compound, X = 20. (iv) Aggregates of radiated crystals (needles form) of

uranophane bioleached by A. ficuum metabolite, X = 20.
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the D values of most of the peaks correspond to lanthanum
and cerium oxide.

3.6. Removal of thorium, uranium and rare earth elements by

exogenous polysaccharides

Fig. 9A illustrates SEM micrograph and the corresponding
EDX of spectrum of EPSs produced by A. ficuum. It appeared
that EPSs adsorbed Na, Mg, Si, P, Th and U with low per-

centages. While, light REEs were adsorbed on EPSs by higher
percentages such as 14.91% of La2O3, 27.48% of Ce2O3 and
23.59% of Nd2O3. The extracted EPSs were desorbed by
0.05 N HCl. Fig. 9B illustrates SEM micrograph and the cor-
responding EDX spectrum of A. ficuum EPSs after the desorp-

tion. It appeared that using 0.05 N HCl desorbed REEs with
high percent where the remained REEs presented in percent-
ages 0.39%, 1.65% and 0.66% for La2O3, Ce2O3 and

Nd2O3, respectively.
On the other hand, Fig. 10A illustrates SEM micrograph

and the corresponding EDX spectrum of P. aeruginosa EPSs.

It appeared that the bacterial EPSs were more selective to ad-
sorb La2O3 33.82% than other REEs. The extracted EPS were
desorbed by 0.05 N H2SO4. Fig. 10B illustrates SEM micro-
graph and the corresponding EDX spectrum for P. aeruginosa

EPSs after the desorption. It was appeared that 0.05 N H2SO4

desorbed REEs with high percent where the remained
REEs presented in percentages 8.50%, 1.42%, 1.89%,

1.56%, 0.99% and 1.23% for La2O3, Ce2O3, Nd2O3 Pr2O3,
Sm2O3 and Dy2O3, respectively.

In addition, the desorbed REEs were precipitated as rare

earths oxalate using oxalic acid 10% for two eluting solutions
as had appeared in Fig. 11.

4. Discussion

Concerning the extraction of Th4+, U6+ and REEs using bio-

products, some species of fungi as Fusarium sp. and bacteria



Figure 3 SEM micrograph and the corresponding EDX spectrum of thorium oxide.

Figure 4 SEM micrograph and the corresponding EDX spectrum of calcinated ammonium diuranate cake.

Figure 5 SEM micrograph and the corresponding EDX spectrum of rare earths oxide extracted from (Th–U) concentrate.
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P. aeruginosa were able to produce element-specific ligands
(siderophores) that are able to change pH and enhance the che-
lation of some elements as uranium (U6+), thorium (Th4+) as
mentioned by Bouby et al. (1998b). The obtained results ap-

peared that the extracted siderophore produced by P. aerugin-
osa bioleached and complexed with 68.00% of uranium,
65.00% of thorium and some REEs as lanthanum 4.3%, cer-

ium 5.4% and yttrium 1.2% from (Th–U) concentrate.
Thorium precipitated at pH 0.9 as thorium oxalate crystals
using 10% oxalic acid while uranium precipitated at pH 5–6

as ammonium diuranate crystals using 33% ammonium
hydroxide. These obtained results were in agreement with that
obtained by Kalinowski et al. (2004). They observed the
release of U from the batch culture of P. fluorescence from
shale mine tailing at Ranstad as metal–pyoverdine complexes.
Also, hydroxamate siderophores chelate other ions besides
Fe(III), such as aluminum (Al(III)), ytterbium (Yb(III)) and

dysprosium (Dy(III)), but with low affinity. Bouby et al.
(1998a,b) found that 100% of the U6+ in their solutions was
complexed by pyoverdine A ligand at pH > 4. Pyoverdine is

able to effectively chelate Th(IV), U(VI).
The residual of (Th–U) concentrate after bioleaching and

complexation of most uranium and thorium with siderophores

mixed with 100 mL of A. ficuum metabolite leached 30.00% of
uranium, 29.12% of thorium and some REEs as lanthanum
20.00%, cerium 33.00% and yttrium (2.51%). At pH 0.9 the



Figure 6 X-ray diffraction spectrum of thorium oxide (ThO2).

Figure 7 X-ray diffraction spectrum of calcinated uranium diuranate cake. U: ammonium diuranate, A: ammonium sulfate.

Figure 8 X-ray diffraction spectrum of rare earths oxide (RE2O3).
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residual thorium precipitated as thorium oxalate using oxalic
acid 10%, while at pH 5–6 uranium precipitated as ammonium
diuranate using ammonium hydroxide 33%. Also, at pH 8–8.3
through using 20% sodium hydroxide REEs were precipitated

as rare earths oxalate by oxalic acid 10%. These obtained results
were in agreement with that previously obtained by Goyne et al.
(2010). They mentioned that this greater recovery of REEs was

due to the formation ofREEs citrate complex in the solution un-
der test and thus enhance the solubilization of the metal ions.
The physical properties of the produced thorium oxalate,
ammonium diuranate and rare earths oxalate crystals were
studied using BSM. It was found that the stereo-photographs
of thorium oxalate crystals complexed with siderophore of

P. aeruginosa were long prismatic, short prismatic, shorter pris-
matic and transparent prismatic covered by chalky material at
X= 20. Also, stereo-photographs for thorium oxalate crystals

bioleached by metabolite of A. ficuum were short prismatic,
long prismatic, twinned prismatic and aggregate prismatic at



Figure 9 SEM micrograph and the corresponding EDX spectrum of EPSs produced by A. ficuum (A) and P. aeruginosa (B).

Figure 10 SEM micrograph and the corresponding EDX spectrum of A. ficuum (A) and P. aeruginosa EPSs (B) after the elution.
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X= 20. On the other hand, in stereo-photographs for the crys-
tals of ammonium diuranate with siderophore of P. aeruginosa,
it appeared that, the crystals of uranophane were anhedral

characterized by a lemon yellow color with less crystals of
transparent siderophore at X= 20. While, these crystals which
bioleached by A. ficuum metabolite appeared as aggregates of
radiated crystals (needles form) of uranophane at X= 20.

In addition to rare earths oxalate crystals were aggregates of
colorless prismatic form. These obtained results were similar
to that obtained by Duďa and Rejl (1986).

The EDX analysis for crystals of thorium oxalate indicated

that the percentage of ThO2 was 81.85% and U3O8 was
64.50%. In addition, the EDX analysis of rare earth oxalate
indicated that the percentage of RE2O3 was 85.78%. These re-
sults were similar to that obtained by Vijayaraghavan et al.

(2009).



Figure 11 SEM micrograph with the corresponding EDX spectrum for the crystals of rare earth oxalate eluted from exogenous

polysaccharides (EPSs).
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Moreover, X-ray diffraction analysis illustrated that diffrac-

togram of the calcinated thorium oxalate displayed maximum
number of peaks to Th4+ between 2h of 27.6�, 2h of 23.04�,
2h of 47.02�, 2h of 45.49� and 2h of 60.35�; however, diffracto-
gram of the calcinated ammonium diuranate displayed maxi-
mum number of peaks to U6+ between 2h of 8.48�, 2h of
11.64�, 2h of 21.04�, 2h of 31.84� and 2h of 45.38�. Also, diffrac-
togram of the calcinated rare earths oxalate displayed maxi-

mum number of peaks to Ce3+ between 2h of 16.91�, 2h of
22.70� and 2h of 45.85�. Also, for La3+ between 2h of 31.33�
and 2h of 57.52�. These results were similar to that obtained

by Kazy et al. (2009).
Exogenous polysaccharides (EPSs) produced by several

kinds of bacteria and fungi have a direct attention in last years

because their importance in metal chelation. The biosorption
of metal ions by EPSs is non-metabolic, energy independent
and can be caused by interaction betweenmetal cations and neg-
ative charge of acidic functional groups of EPSs (Lyer et al.,

2004). Exogenous polysaccharides (EPSs) produced by A. ficu-
um and P. aeruginosa in presence of monazite during the biole-
aching process were extracted and subjected to elemental

analysis by (ESEM). The obtained results showed that, the
EDX analysis of EPSs produced by A. ficuum biosorbed
65.98%of light REEs such as La3+,Ce3+ andNd3+ in addition

to, some heavymetals as (Th4+) and (U6+). Also, SEManalysis
of P. aeruginosa EPSs appeared that, it biosorbed 45.72% of
light REEs where the higher percentage of it was for La2O3

33.82%. Moreover, the results indicated that, the desorption
percentages of biosorbedREEs by EPSs of tested fungi and bac-
teria using 0.05 N HCl and 0.05 N H2SO4 were 63.28% and
31.00%. These obtained results were in agreement with (Salehi-

zadeh and Shojaosadati, 2003) who reported that the biosorp-
tion of Pb2+, Cu2+, Zn2+ has been observed by a novel acidic
polysaccharide produced from Bacillus firmus. The exogenous

polysaccharides are a complexmixture ofmacromolecular poly-
electrolytes including polysaccharides, proteins, nucleic acids,
lipids or humic substances (Comte et al., 2006). The functional

groups as carboxylic, phosphate and sulfate groups present in
EPSs works as a non-specific ion exchange material which
may render chelating properties (Lyer et al., 2004).

The desorbed REEs precipitated as oxalate were scanned.
In the EDX analysis it appeared that the percentages of REEs
were La2O3, Ce2O3, Pr2O3, Nd2O3 and Sm2O3 were 28.53%,
2.11%, 1.87%, 2.90% and 1.50%, respectively.
5. Conclusions

The present investigation has demonstrated the use of bioprod-

ucts in extraction of some strategic elements from (Th–U) con-
centrate. Siderophore produced by P. aeruginosa bioleached
and complexed with 68.00% of uranium, 65.00% of thorium

highly than REEs While A. ficuum metabolite leached
30.00% of uranium, 29.12% of thorium beside 20.00% of lan-
thanum, 33.00% of cerium and 2.51% of yttrium REEs. The
BSM and ESEM analyses were used for characterization the

produced crystals where EDX analysis of thorium oxalate crys-
tals indicates that the percentage of ThO2 was 81.85% and
U3O8 was 64.50% in ammonium diuranate. In addition the

EDX analysis of RE2O3 indicated that the percentage of REEs
was 85.78%. The X-ray diffraction analysis showed thorium
oxide and ammonium diuranate.. The EDX analysis of EPSs

produced by A. ficuum biosorbed light REEs as La3+, Ce3+,
Nd3+ in addition to, Th4+ and U6+. Also, in the analysis of
P. aeruginosa EPSs appeared the percentage of biosorbed light
REEs. These results are considered promising aspects for

extraction of Th4+, U6+ and REEs using bioproducts ofA. fic-
uum and P. aeruginosa biomasses as a potential ligands as alter-
native process which more technical and economic compared to

the conventional process.
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