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A B S T R A C T   

The issue of environmental pollution has received considerable critical attention in recent years. It is necessary to 
develop the green and efficient corrosion inhibitors. In this paper, the inhibition of doxazosin mesylate (DM) and 
terazosin hydrochloride (TH), as green corrosion inhibitors, were explored systematically by electrochemical 
impedance, polarization curves, SEM, AFM and contact angle. The effect of different heterocyclic amounts on the 
corrosion inhibition efficiency for Q235 steel in 1 M HCl was also discussed. It was found that DM showed the 
better performance than TH, with the best corrosion inhibition efficiency of 96.4 % at 1 mg/L. The FTIR and XPS 
analysis of the corroded Q235 steel surface revealed that the two drugs formed adsorption films on the steel 
surface and the types of adsorption were chemical and physical adsorption. Finally, the mechanism of the two 
drugs was analyzed in detail by isothermal adsorption simulations, quantum chemical calculations and molecular 
dynamics simulations.   

1. Introduction 

All the time, Q235 steel is one of the most important metal materials 
in human daily production, playing an irreplaceable role in ship
building, automobile manufacturing, infrastructure construction, 
petrochemical industry and pipeline transportation (Xing et al., 2020, 
Wu et al., 2022, Dong et al., 2023). However, the characteristics of iron 
elements lead to its easy corrosion in service (Zheng et al., 2022, Zhu 
et al., 2022). These seemingly insignificant corrosion often hides a huge 
hidden danger (Li et al., 2021, Liu et al., 2023a, 2023b). The corrosion of 
metal has a serious impact on economy, safety, environment, using of 
new technologies and so on. At present, the main means of inhibiting 
metal corrosion are changing the metal structure, applying anti- 
corrosion coatings and adding corrosion inhibitors to the corrosive 
medium(Liu et al., 2019, Zhang et al., 2021a, 2021b, 2021c, Liu et al., 
2022a, 2022b, 2022c, Wan et al., 2022, Qiang et al., 2023). Because of 
its good effect and low cost, corrosion inhibitor has become one of the 
important corrosion protection methods (Huang et al., 2022, Liu et al., 
2023a, 2023b, Wang et al., 2023a, 2023b). 

Corrosion inhibitors as the most commonly used efficient corrosion 
inhibitor generally contain N, O, P, S and other heteroatomic elements 

containing lone pair of electrons, through the formation of coordination 
bonds with iron adsorbed on the surface of Q235 steel to achieve the 
purpose of inhibiting metal corrosion (Lin and Zuo, 2019, Zhao et al., 
2019, Wu et al., 2021, Huang et al., 2023). However, organic inhibitors 
are volatile, poor water solubility and unfriendly to the environment 
(Dong et al., 2019, Zhang et al., 2020, Xiong et al., 2021, Zhang et al., 
2021a, 2021b, 2021c, Wang et al., 2023a, 2023c). Therefore, it is sig
nificant to develop green and efficient environmental corrosion in
hibitors (Wang et al., 2022). Currently, many medical drugs have a large 
number of heterocyclic structures, unsaturated bonds containing lone 
pairs of electrons. These drugs can be injected and taken into organisms, 
which makes their biological toxicity lower. Thus, these drugs have the 
potential to become green and efficient corrosion inhibitors (Guo et al., 
2020a, 2020b, Zhang et al., 2021a, 2021b, 2021c). In recent years, many 
clinical drugs have been reported as corrosion inhibitors, such as 
phenothiazine, chloramphenicol, gentamicin, etc (Feng et al., 2020a, 
2020b, 2020c, Qiang et al., 2021, Feng et al., 2023a, 2023b, Shetty et al., 
2023). However, the influence of the structure of the drug on the 
corrosion inhibition properties has not been studied in detail due to the 
excessive structural differences between different clinical drugs. 

Therefore, in this study, Doxazosin mesylate (DM) and Terazosin 
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hydrochloride (TH) with similar structure are used to investigate the 
effect of different numbers of heterocycles on their corrosion inhibition 
properties by electrochemical polarization curves (TAFEL), electro
chemical impedance spectroscopy (EIS), scanning electron microscopy 
(SEM), atomic force microscopy (AFM). After that, the mechanism of 
corrosion inhibition was explored by contact angle, FTIR (Fourier 
Transform Infrared Spectroscopy) and XPS (X-ray Photoelectron Spec
troscopy). Finally, the isothermal equations of adsorption, quantum 
chemical calculations and molecular dynamics simulations were further 
used to analyze the corrosion inhibition mechanism of these two drugs 
in depth. It will provide a reference for the future research on these two 
drugs as corrosion inhibitors. 

2. Experimental details 

2.1. Materials 

The clinical drugs used in this experiment were Doxazosin mesylate 
(DM, C23H25N5O5⋅CH4O3S, 99 %) and Terazosin hydrochloride (TH, 
C19H26ClN5O4, 98 %) purchased from Adamas-beta®. Hydrochloric acid 
(36 % ~ 38 %) was acquired from Chengdu Kolon Chemical Reagent 
Factory, and anhydrous ethanol (99.7 %) was bought from Tianjin 
Damao Chemical Reagent Factory. The chemical composition of Q235 
steel sample is C:0.42 % ~ 0.50 %; Cr: ≤ 0.25 %; Mn: 0.50 % ~ 0.80 %; 
Ni: ≤ 0.25 %; P: ≤ 0.035 %; S: ≤ 0.035 %; Si: 0.17 %～0.37 %, the 
balance of Fe. 

2.2. Corrosion electrochemistry measurements 

The electrochemical impedance spectrum and polarization curves of 
the two drug inhibitors were tested using the CHI 710 electrochemical 
workstation from Shanghai C&H. The test system uses a conventional 
three-electrode system, in which the reference electrode is a saturated 
glycerol electrode, the auxiliary electrode is a platinum electrode, and 
the working electrode is a Q235 steel electrode with an exposed surface 
of 1 cm2. The working electrode surface was polished to a mirror surface 
using #400-#3000 water abrasive sandpaper before the test, followed 
by an open circuit potential method, electrochemical impedance spec
trum and polarization curves test at 298 K. The test time of open circuit 
potential Method was 1500 s. In this time range, the change of electrode 
potential did not exceed 3 mV, which indicated that the system reached 
a steady state. Subsequently, electrochemical impedance spectrum was 
performed in the frequency range of 0.01–100000 Hz using a sinusoidal 
voltage of 5 mV. The electrochemical impedance spectrum data were 
fitted using ZsimpWin software. The polarization range of the polari
zation curve was ± 250 mV based on the open circuit potential with a 
scan rate of 1 mV/s. 

2.3. Corrosion surface analysis (SEM, AFM and contact angle) 

The Q235 steel samples were immersed in 1 M hydrochloric acid 
solution without and with 1 mg/L DM and TH respectively at 298 K for 
24 h. The surface morphology, surface roughness and hydrophobicity 
were analyzed detailedly by scanning electron microscopy (SEM), 

atomic force microscopy (AFM) and contact angle to evaluate the 
corrosion inhibition performance of the two drugs. 

2.4. Inhibition mechanism 

2.4.1. Corrosion surface chemical composition analysis 
EDS (Energy Dispersive Spectroscopy), FTIR (Fourier Transform 

Infrared Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy) 
tests were utilized to study the surface elemental composition, valence 
state and the type of functional groups after immersion and analyze the 
corrosion mechanism of the two drugs. 

2.4.2. Thermodynamic adsorption isothermal simulation 
In order to confirm the adsorption type of two drug corrosion in

hibitors on the Q235 steel surface, the Langmuir, Flory-Huggins, Frun
kin and EI-Awady adsorption isotherm models were used to fit EIS and 
Tafel data to reveal their adsorption mechanisms on the steel surface. 

2.4.3. Theoretical calculation 
Quantum chemical calculations were performed using Gaussion 09 

W software. And the B3LYP method of density functional theory (DFT) 
was applied to perform ensemble optimization and frequency calcula
tions for the structures of two drug corrosion inhibitors using the 6311 
+ G (d, p) basis set. The electron cloud distribution of the highest 
occupied molecular orbital (HOMO) and the lowest unoccupied mo
lecular orbital (LUMO), the energy of HOMO (EHOMO), the energy of 
LUMO (ELUMO) and △E-energy gap parameters were obtained. 

The Forcite module of Material 7.0 software was used to investigate 
the molecular dynamics simulations of two drugs. Firstly, the Fe (110) 
crystal plane was chosen as the object of study to establish a 5 × 5 Fe 
cell, and then it was fixed in a box with periodic boundary conditions, 
after which one molecule of drug corrosion inhibitor and 491 molecules 
of H2O, 9 H3O+, and 9Cl- were introduced to simulate experimental 
conditions. The COMPASS stand and NVT system were used to simulate 
the adsorption of corrosion inhibitors on the metal surface with a 
simulation step of 1 fs, a time of 1000 ps and a temperature of 298 K. 
Finally, the kinetic adsorption model and interaction energy (Einteract) 
between drug corrosion inhibitor molecules and steel surface were ob
tained. Fig. 1. 

Fig. 1. The structures of Terazosin hydrochloride (TH, (a)) and Doxazosin mesylate (DM, (b)).  

Fig. 2. The equivalent circuit fitting the electrochemical impedance data.  
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3. Results and discussion 

3.1. Corrosion electrochemistry analysis 

Fig. 2 is the equivalent circuit fitting the electrochemical impedance 
data. The Nyquist, bode plots and potentiodynamic polarization curves 
of drug inhibitors with different concentrations are showed in Fig. 3. The 
relevant parameters are listed in Tables 1 and 2. It can be seen that the 
Nyquist plots of both drug corrosion inhibitors show a semicircular 
shape, and this single capacitive arc of resistance indicates that the 
corrosion of Q235 steel in the corrosive solution is controlled by the 
charge transfer resistance (Feng et al., 2020a, 2020b, 2020c). Along 
with the increase in the concentration of the two drug corrosion in
hibitors, the shape of the impedance arc is not significantly changed, 
which suggests that the change in the concentration of corrosion in
hibitors is not caused by a change in the corrosion mechanism. Its 
capacitive arc of resistance first increases after decreasing, and reaches 
the best inhibition effect at 1 mg/L. This implies that if the concentration 
of DM (corrosion inhibitor) in the corrosive medium exceeds 1 mg/L, it 
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Fig. 3. The Nyquist, Bode and Tafel plots with different types and concentrations of drugs at 298 K; DM ((a), (c), (e)) and TH ((b), (d), (f)).  

Table 1 
The parameters for EIS measurements with different concentrations of drug 
corrosion inhibitors at 298 K.   

C 
(mg/ 
L) 

R 
(Ω 
cm2) 

Y0 × 10- 

5 

(Ω cm2) 

n Cdl 

(μFcm− 2) 
Rct 

(Ω 
cm2) 

ηE 

(%) 

Blank 0  1.036  15.950  0.917  96.46  25.0 – 
DM 10  1.217  4.141  0.893  26.05  479.8 94.7 

1  1.297  7.602  0.877  51.40  689.1 96.4 
0.5  1.260  8.169  0.882  52.44  468.1 94.1 
0.1  1.270  10.800  0.892  67.65  206.8 87.9 

TH 10  1.196  10.280  0.870  63.26  565.2 95.5 
1  1.230  10.840  0.897  70.79  334.0 92.5 
0.5  1.252  11.090  0.900  72.53  166.0 84.9 
0.1  1.287  11.970  0.903  75.37  105.6 80.6  
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can potentially trigger an interaction where the corrosion inhibitor 
molecules competitively adsorb with water. As a consequence, the 
corrosion inhibitor molecules located outside the active zone begin to 
desorb, resulting in a deterioration of the corrosion inhibition 

performance. For TH, the corrosion inhibition effect of gradually en
hances with the increase of concentration, and the radius of capacitive 
arc resistance increases significantly at the concentration up to 10 mg/L 
compared with that at 1 mg/L, which means that the adsorption of TH is 
more suitable at the concentration of 10 mg/L. In addition, the above 
trend can also be seen through the bode plots. From the data in the 
Table 1, the double-layer capacitance (Cdl) of both drug corrosion in
hibitors decreases with increasing concentration, which may be caused 
by the drug corrosion inhibitors occupying the active sites on the surface 
of Q235 steel. 

Fig. 3 shows the potentiodynamic polarization curves for different 
concentrations of the two drug corrosion inhibitors. The inhibition effect 
of the cathodic branch is more obvious than that of the anodic branch at 
low concentrations of the two drug corrosion inhibitors. And the 
enhancement of the inhibition effect of the cathodic branch slows down 
with the gradual increase of the corrosion inhibitor concentration, while 
the improvement of the inhibition effect of the anodic branch becomes 
obvious. At the same time, the corrosion potential shifts negatively when 
the corrosion inhibitor is initially added, and the corrosion potential 
gradually moves positively as the concentration continues to increase. In 
the polarization curve of DM, the corrosion potential moves to the 
positive direction of the blank corrosion potential when the concentra
tion reaches 1 mg/L, while the corrosion potential does not shift 
significantly when the concentration is increased again. It is probable 
that DM molecules will preferentially adsorb at the reactive sites. As the 
concentration of corrosion inhibitor increases, after the active 

Table 2 
The parameters for Tafel measurements with different concentrations of drug 
corrosion inhibitors at 298 K.   

C 
(mM) 

Eocp 

(mV/ 
SCE) 

Ecorr 

(mV/ 
SCE) 

icorr 

(A 
cm− 2) 

βc 

(mV 
dec-1) 

βa 

(mV 
dec-1) 

ηT 

(%) 

Blank –  − 482.9  − 468.8 4.872 ×
10-4  

− 92.4  146.5 – 

DM 10  − 444.9  − 444.1 3.954 ×
10-5  

− 64.7  160.2 91.9 

1  − 452.0  − 447.8 1.823 ×
10-5  

− 92.2  184.4 96.3 

0.5  − 482.0  − 494.1 4.593 ×
10-5  

− 93.9  80.8 90.6 

0.1  − 488.3  − 483.7 5.271 ×
10-5  

− 97.8  178.7 89.2 

TH 10  − 464.0  − 466.8 3.180 ×
10-5  

− 90.7  127.8 93.5 

1  − 475.0  − 475.2 4.766 ×
10-5  

− 95.1  136.2 90.2 

0.5  − 480.2  − 479.4 7.435 ×
10-5  

− 98.9  198.5 84.7 

0.1  − 477.1  − 477.3 9.928 ×
10-5  

− 99.2  191.8 79.6  

Fig. 4. SEM and contact angle pictures of samples; newly polishing (a), Blank (SEM (b) and contact angle (b’)), DM (SEM (c) and contact (c’)) and TH (SEM (d) and 
contact angle (d’)). 
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adsorption centers on the metal surface are occupied, the excess corro
sion inhibitor molecules start to adsorb on the inactive sites and the 
anodic region. From the data in the Table 2, the change of corrosion 
potential does’t exceed 85 mV compared to the blank corrosion poten
tial, which means that both drug corrosion inhibitors are mixed type 
corrosion inhibitors (Chen et al., 2020, Feng et al., 2023a, 2023b). The 
inhibition effect of DM is better than that of TH, which is mainly 
attributed to the fact that the number of heterocycles of DM is higher 
than that of TH, making it easier to adsorb to the Q235 steel surface. 

3.2. SEM and contact angle test 

Fig. 4 shows scanning electron microscopy (SEM) and contact angle 
pictures of Q235 steel samples after 24 h immersion in corrosion media 
with and without 1 M of two drugs corrosion inhibitors. Compared with 
freshly polished Q235 steel, the corrosion of the sample after immersion 
in hydrochloric acid solution is more serious and the surface is very 
rough. It is evident that the sample containing corrosion inhibitor is 
smoother compared to the blank, and the traces of polished metal 
samples can be seen. Meanwhile, the samples after immersion in the 
corrosive medium containing DM are smoother compared to the samples 

after immersion in the corrosive medium containing TH. From the EDS, 
the Cl elements in the blank are widely distributed on the sample sur
face, and the Fe elements are relatively unevenly distributed, which 
should be due to the severe corrosion of the blank sample and/or a large 
number of corrosion products on the metal surface. While the surface of 
Q235 steel after immersion with corrosion inhibitors, the presence of Cl 
elements in the area is much smaller compared to the blank, and the 
distribution of Fe elements in the area where corrosion has not occurred 
is relatively uniform. Furthermore, the absence of N elements in the 
blank sample indicates that the two drug corrosion inhibitors absorb on 
the surface of the metal to form a protective anti-corrosion film. The 
contact angle figures show that the contact angles of the DM and TH 
samples are about 70◦ and 60◦, respectively, which suggests that the 
hydrophobicity is greatly improved compared to the blank of 30◦. Also, 
the change in contact angle can be confirmed that the drugs corrosion 
inhibitor molecules form a protective film on the metal surface, 
changing its hydrophobic properties. 

3.3. AFM analysis 

Fig. 5 shows the AFM results of Q235 samples immersed in corrosion 
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Fig. 5. AFM surface morphology images of Q235 steel samples with two drug inhibitors; (a), (b) and (c) are 2D, 3D and average roughness maps of blank; (d), (e) and 
(f) are 2D, 3D and average roughness maps of DM; (g), (h) and (i) are 2D, 3D and average roughness maps of TH. 

L. Feng et al.                                                                                                                                                                                                                                     



Arabian Journal of Chemistry 17 (2024) 105535

6

medium with and without two corrosion inhibitors for 24 h. After 
introducing corrosion inhibitors, the results presented in the figure 
clearly demonstrates a substantial reduction in the average surface 
roughness of the samples. For the untreated samples (blanks), the 
average surface roughness (Ra) is 126.0 nm. However, with the addition 
of corrosion inhibitors, the Ra decreases significantly to 5.1 nm for DM- 
treated samples and 29.2 nm for TH-treated samples. This noteworthy 
decrease in surface roughness indicates effective inhibition of corrosion 
for the metal samples in the corrosive medium with drugs. 

Furthermore, the 3D plot accompanying the figures reveals that the 

samples immersed in DM exhibit a smoother surface compared to those 
immersed in TH. This discrepancy suggests that DM has a higher effi
ciency in inhibiting corrosion compared to TH. The visible disparity 
between the surfaces of the DM and TH-treated samples further supports 
the notion that DM offers superior corrosion inhibition capabilities. 
Importantly, these Atomic Force Microscopy (AFM) results corroborate 
the findings of the electrochemical tests and SEM tests. Together, these 
complementary analyses provide comprehensive evidence for the 
effective corrosion inhibition achieved by the addition of corrosion in
hibitors, particularly DM, resulting in a significant reduction in surface 
roughness. 

3.4. Effect of temperature on inhibition 

Fig. 6 depicts the electrochemical tests conducted on the two drug 
corrosion inhibitors under various temperature conditions. The imped
ance data are shown in Table 3. Obviously, the information in the figure 
shows that the corrosion inhibition efficiency of the two drug inhibitors 
tends to increase as the temperature rises. Among them, the corrosion 
inhibition efficiency of TH reaches the best (96.3 %) at 308 K. After that, 
the corrosion inhibition efficiency starts to decrease at higher temper
atures. In Table 3, with the increase of temperature, the charge transfer 
resistances of the blank group and two drug inhibitors gradually 
decrease, but the rate of decrease for the drug corrosion inhibitors is 
significantly smaller than that of the blank control group, which leads to 
the increase of corrosion inhibition efficiency. The Cdl of DM increases 
with temperature, which should probably be attributed to the decrease 
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Fig. 6. Nyquist plots of Q235 steel samples in 1 M hydrochloric acid with 10 mg/L of drug corrosion inhibitors at different temperatures (DM (a), TH (b)).  

Table 3 
The parameters for EIS with 10 mg/L drug corrosion inhibitors at different 
temperature.   

T 
(K) 

R 
(Ω cm2) 

Y0 × 10-5 

(Ω cm2) 
n Cdl 

(μFcm− 2) 
Rct 

(Ω cm2) 
η (%) 

Blank 298  1.266  15.28  0.904  85.41  25.9 – 
303  1.147  18.98  0.907  104.47  14.8 – 
308  1.015  22.52  0.917  127.77  8.5 – 
313  1.002  23.49  0.939  151.33  4.97 – 

DM 298  1.258  2.91  0.981  27.90  385.7 93.3 
303  1.097  3.47  0.997  34.29  307.9 95.1 
308  1.128  3.68  0.952  29.89  259.9 96.6 
313  1.089  3.74  0.964  31.78  217.4 97.7 

TH 298  1.216  8.16  0.879  49.44  382.2 93.2 
303  1.106  5.60  0.919  40.04  367.2 95.9 
308  1.159  4.45  0.949  35.68  234.9 96.3 
313  1.134  3.84  0.972  33.47  132.1 96.2  
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in the ability of DM molecules to occupy active sites on the surface of 
Q235 steel. For TH, the Cdl shows a decreasing trend with increasing 
temperature, which means that the increase of temperature makes the 
TH molecules occupy more active sites on the surface of Q235 steel. The 
upsurge in corrosion inhibition efficiency with the rise in temperature 

can likely be attributed to the increased mobility of the corrosion in
hibitor molecules in solution. The accelerated movement of these drug 
corrosion inhibitors facilitates the formation of a protective film on the 
surface of Q235 steel. Consequently, the higher temperature promotes 
the efficacy of the corrosion inhibition process by facilitating the for
mation of a more effective protective film on the Q235 steel surface. 

3.5. FT-IR analysis 

Fig. 7 shows the FT-IR of the Q235 sample after 12 h immersion in 
the corrosion medium containing the corrosion inhibitors. As shown in 
the figure, the Q235 steel surface treated with DM produces peaks at 
3226.87 cm− 1 for ––C–H stretching vibration, 1628.41 cm− 1 for C––N 
stretching vibration, 1589.08 cm− 1 for benzene ring skeleton vibration, 
1374.58 cm− 1 for in-plane bending vibration characteristic of –CH3, 
and 1016.63 cm− 1 for C–N stretching vibration (Chen et al., 2019, 
Zheng et al., 2023). The metal surface treated with TH has characteristic 
peaks at 3332.13 cm− 1 for N–H stretching vibration, 2896.52 cm− 1 for 
C–H stretching vibration, 1652.28 cm− 1 for C––O stretching vibration, 
1428.21 cm− 1 for skeletal vibration of the benzene ring, 1314.39 cm− 1 

for a characteristic peak of tetrahydrofuran and 1203.36 cm− 1 repre
sents the absorption peak of aromatic ether C–O–C (Feng et al., 2018). 
These characteristic peaks correspond to the FTIR characteristic peaks of 
TH. The FTIR findings indicate that the application of two corrosion 
inhibitors, acting as drugs, resulted in the formation of a protective film 
on the surface of Q235 steel. This film altered the chemical character
istics of the Q235 steel surface, thereby effectively preventing direct 
contact between the corrosive medium and the Q235 steel substrate. 
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Fig. 8. The XPS survey of Q235 steel treated with DM and TH.  
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3.6. XPS analysis 

Fig. 8 displays the XPS survey spectra of Q235 samples that are 
immersed in a corrosive medium containing two corrosion inhibitors 
drugs. On the surface of the Q235 steel treated with these inhibitors, the 
presence of N element is detected. Additionally, there is an observable 
decrease in the content of O and Fe elements compared to the blank 
sample. This observation suggests that the organic molecules form a 
protective film on the surface of the Q235 steel, resulting in lower 
exposed Fe elements and hindering their oxidation process. 

Fig. 9 shows the N1s high-resolution XPS spectra of DM-treated 
sample, revealing three distinctive peaks at 398.30 eV, 399.60 eV, and 
401.35 eV. These peaks correspond to N–C, N–Fe, and N+H, respec
tively (Guo et al., 2020a, 2020b, Liao et al., 2023). The presence of 
N–Fe bonds suggests that the drug corrosion inhibitor chemically ad
sorbs on the Q235 steel surface. The presence of N+H indicates physical 
adsorption of the drug corrosion inhibitor with the surface of Q235 steel. 
These results suggest that the corrosion inhibitor forms a protective film 
on the Q235 steel surface through both chemical adsorption and phys
ical adsorption, effectively slowing down metal corrosion. In contrast, 
the surface of TH-treated sample exhibits a single characteristic peak at 
399.6 eV for the N-Fe, indicating that the N in drug TH can adsorb 
chemically on the Q235 steel surface by Fe and N elements (Shao et al., 
2022). 

In addition, the high-resolution XPS spectra of C1s show that both 
DM and TH produce three characteristic peaks at 288.5 eV, 286.5 eV and 
284.8 eV, corresponding to C––O, C–O and C–C, respectively, which 
may be caused by the adsorption of the drug corrosion inhibitors on the 
Q235 steel surface (Feng et al., 2019a, 2019b). The detection of these 
bonds also indicates the formation of adsorption films on the surface of 
the Q235 steel by the two drug corrosion inhibitors, thus changing its 

chemical properties. 

3.7. Isothermal adsorption simulation 

To further investigate the adsorption behavior of two drug inhibitors 
on the surface of Q235 steel, Langmuir, Flory-Huggins, Frunkin, and EI- 
Awady models are utilized. The simulation results indicate that the 
Langmuir adsorption model best approximates the adsorption behavior 
of the two inhibitors. It can be observed from Fig. 10 that the R2 values 
obtained by fitting the Langmuir model are closest to 1, suggesting that 
the two inhibitors can only adsorb in a monolayer on the surface of Q235 
steel. The relevant Langmuir adsorption isotherm parameters of DM and 
TH on the Q235 steel surface in 1 M HCl solution at 298 K are presented 
in Table 4. According to data from Kads, the molar adsorption constant 
(DM: 10.61 × 103 L mol− 1) is greater than that of TH (10.13 × 103 L 
mol− 1). This indicates that DM exhibits higher affinity for adsorption 
onto the surface of Q235 steel compared to TH. For DM, the value of 
ΔGads is − 38.98 kJ/mol. Its absolute value falls between 20 kJ/mol and 
40 kJ/mol, suggesting that the adsorption of DM involves a combination 
of chemisorption and physical adsorption processes (Wang et al., 2021a, 
2021b). On the other hand, TH has a ΔGads value of 43.85 kJ/mol, with 
an absolute value greater than 40 kJ/mol. This indicates that the 
adsorption of TH on Q235 steel is mainly driven by chemical adsorption. 
Moreover, it is noteworthy that both DM and TH display negative values 
of ΔHads, indicating that the adsorption of these two drugs onto the 
surface of Q235 steel releases heat. This observation indicates that the 
adsorption process is exothermic in nature. 

3.8. Quantum chemistry calculation 

Fig. 11 shows the geometrically optimized structures and molecular 
orbital diagrams of the two drug inhibitors to investigate the corrosion 
inhibition mechanism, and the relevant quantum chemical parameters 
can be obtained. It can be seen from the figure that the active site is 
mainly concentrated on the benzene ring, which presents that the active 
center of adsorption is on the benzene ring. By analyzing the EHOMO 
values, DM (− 5.14 eV) is higher than TH (− 5.73 eV), which suggests 
that the DM molecule has a stronger electron-donating ability, making it 
easier to adsorb to the surface of Q235 steel compared to terazosin hy
drochloride (Fu et al., 2019, Liu et al., 2022a, 2022b, 2022c). 

Table 4 
The relevant Langmuir adsorption isotherm parameters of DM and TH on Q235 
steel surface in 1 M HCl solution at 298 K.   

Kads 

(L/mol) 
ΔGads 

(kJ mol− 1) 
ΔHads 

(kJ mol− 1) 
ΔSads 

(J K− 1 mol− 1) 

DM 10.61 × 103  − 38.98  − 7.63  14.56 
TH 10.13 × 103  − 43.85  − 8.85  14.93  

DM

Structure LUMO

TH

HOMO

Fig. 11. Molecular frontier orbital diagram of DM and TH molecular.  
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Additionally, molecules with lower energy gap values (ΔE) exhibit 
higher reactivity and are more prone to adsorption on the metal surface. 
In this regard, DM (ΔE = 2.86 eV) has a smaller energy gap compared to 
TH (ΔE = 4.62 eV) (Feng et al., 2020a, 2020b, 2020c). Furthermore, the 
dipole moment (μ) confirms that DM (μ = 1.03 eV) possesses a higher 
corrosion inhibition ability than TH (μ = 0.09 eV) (Wang et al., 2021a, 
2021b, Liu et al., 2022a, 2022b, 2022c). In summary, DM, with a greater 
number of heterocycles, demonstrates superior corrosion inhibition 
effectiveness. This conclusion aligns with above findings on corrosion 
inhibition efficiency. 

3.9. Molecular dynamics simulation 

The top and side views of the adsorption simulations of the two drug 
corrosion inhibitors are represented in Fig. 12. The entire benzene ring 
region is observed to be adsorbed onto the Q235 steel surface, con
firming the findings from the quantum chemical calculations. In addi
tion, the calculated binding energies (Ebinding, Ebinding is numerically 
equal to the absolute value of Einteract) of the two drug inhibitors are 
320.798 kJ mol− 1 for DM and 231.283 kJ mol− 1 for TH, respectively, 
where the higher binding energy indicates that the target molecules 
have a stronger tendency to adsorb onto the Q235 steel surface, per
forming better inhibition efficiency (Feng et al., 2019a, 2019b). 
Therefore, the molecular dynamics results also support the higher 
corrosion inhibition properties of DM compared to TH, which is 
consistent with previous experimental findings. 

4. Conclusion 

In this study, two drugs (doxazosin mesylate (DM) and terazosin 
hydrochloride (TH)) with different numbers of heterocycles were sys
tematically investigated as corrosion inhibitors for Q235 steel. Guidance 
is provided for the disposal of drugs as corrosion inhibitors. The 
following conclusions were drawn from the analytical arguments.  

(1) The electrochemistry, SEM, and AFM tests showed that both 
drugs exhibited high inhibition effects as corrosion inhibitors. 
And the more the number of heterocycles in the drug molecules, 
the better the corrosion inhibition efficiency.  

(2) The corrosion inhibition efficiency of two drugs increased when 
the temperature increased, and they could effectively protect 
Q235 steel from corrosion in corrosive media at temperatures of 
298 K-313 K.  

(3) By FTIR and XPS, two inhibitors can adsorb onto the Q235 steel 
surface, and the adsorption modes were chemical and physical 
adsorption.  

(4) The isothermal adsorption simulations showed that both drug 
corrosion inhibitors conformed to the Langmuir adsorption 
isotherm model. It indicates that the two drug corrosion in
hibitors are single molecular layer adsorption. 

(5) Quantum chemical calculations and molecular dynamics simu
lations showed that DM molecules with a high number of het
erocycles have lower energy gap values and higher binding 
energies, which make them easier to adsorb on metal surfaces 
compared to TH molecules with a lower number of heterocycles. 
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