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Abstract Fluid limitation in various industries due to their poor thermal conductivity has led to

the improvement of the properties of the base fluid as a new method. With the development of

nanofluid research, nanofluids are produced by adding metal nanoparticles and multi-walled carbon

nanotubes (MWCNT). Due to the inability of theoretical models to predict the viscosity of nano-

lubricants (lnf), mathematical models, especially artificial neural networks (ANNs), investigate the

effect of various parameters on the properties of nanofluids and have replaced most of the usual

statistical methods. This study investigates the effect of temperature, shear rate (SR), and volume

fraction of nanoparticles (u) on lnf of MWCNT –ZnO (10:90)/ SAE 40 nano-lubricant. Also, a non-

linear polynomial with terms up to power 3 is fitted in the experimental data, and its accuracy is

compared to that of ANN in MATLAB. It was proposed that the ANN model has high accuracy

(slightly better concerning nonlinear polynomial) for estimating the present study, the lnf of

MWCNT–ZnO (10:90)/SAE 40 nano-lubricant. This ANN achieves 0.9995 and 0.00048 values

for R2 and MSE, while the nonlinear polynomial showed 0.9983 and 4.0223 values, respectively,
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Nomenclature

T (oC) temperature

R2 Correlation Coefficient
_c (rpm) Shear rate

lnf(cP) Dynamic viscosity of nanofluid

u Volume fraction
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for the same parameters, which shows the good training status of the ANN. According to obtained

results, the temperature and SR significantly influence the output. The experimental results showed

that by increasing the temperature from 25 to 50�C, the lnf of the nano-lubricant decreased from

397.5 to 90.5 cP (atu = 1 % and SR = 400 rpm). So, the results show that with increasing tem-

perature to 50�C, the viscosity of the nano-lubricant decreases by about 77 %. With increasing SR

from 400 to 1000 rpm(at T = 50�C and u = 1 %), the viscosity of the nano-lubricant decreases

from 90.5 to 85.3 cP. On the other hand, u has a direct but negligible effect on lnf. In other words,

the nanoparticle fraction change from 0 to 1 %, changes the lnf from 150 cP to around 200 cP. This

model can be used as a design tool in future research or as an objective function in optimization

problems.

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

It may be safe to say that in the last two decades, significant changes

have been made in many engineering sciences and techniques, and a

major part of these changes is related to nanotechnology and the

research conducted in this field (Sun et al., 2021; Keshtegar et al.,

2020; Safa et al., 2020; Bagheri et al., 2020; Zhang et al., 2015;

Zhang et al., 2018; Cui et al., 2022; Zhang et al., 2016). Scientists

and researchers in the field of nanotechnology conducted their research

on nanofluids, nanopowders, nanosheets, and nanoscales in general,

and found interesting results (A, c., k, s., s, k., 2021; Issa, 2022;

Chen and Marco, 2022; Giahi et al., 2021; Mansouri et al., 2017;

Suhad et al., 2021; Domyati, 2022; Dwijendra et al., 2022). The most

important fields of application of nanotechnology are fluid mechanics

and heat transfer. Fluids have many applications in different fields

such as lubrication, heat transfer, etc. in different devices (Wang

et al., 2022; Wangjian et al., 2021; Narimani, 2022; Yang et al.,

2019; Yang et al., 2017), and their rheological and thermal properties

are very important. Fluid limitation in various industries due to their

poor thermal conductivity has led to the improvement of the properties

of the base fluid as a new method. So that the idea of dispersing solid

particles in base fluids, which started with millimeters and microme-

ters, was completed with the use of nanoparticles, and today nanoflu-

ids as fluids with high heat transfer capacity are a good alternative to

conventional fluids like water, ethylene glycol (EG), and oil (Das et al.,

2007). With the development of nanofluid research today, nanofluids

can be prepared by adding metal nanoparticles and multi-walled car-

bon nanotubes (MWCNT) (Ghalandari et al., 2020). lnfis an impor-

tant parameter in fluid transfer. Determination of nanofluid viscosity

is necessary to accurately calculate the rate of increase in production,

pumping power, convective heat transfer coefficient, etc. Studies show

that the volume fraction of nanoparticles, nanofluid temperature, type

of base fluid, shear rate, etc., affect the viscosity of all nanofluids,

including hybrid nanofluids (Ahammed et al., 2016; Mishra et al.,

2014; Alarifi et al., 2019).

Experimental results of researchers; like Fedele et al. (Fedele et al.,

2012); Minakov et al. (Minakov et al., 2021), Nguyen et al. (Nguyen

et al., 2007), show that the increase in lnfis better than the increase

in their thermal conductivity, and various factors such as nanoparticle

concentration, temperature, and SR affect the lnf. Afshari et al.

(Afshari et al., 2018) investigated the effect of concentration and tem-
perature on the lnf of MWCNT–alumina/water (80 %)– EG (20 %)

nanofluid. Their results show that lnf has a direct relationship with

the u. Goodarzi et al. (Goodarzi et al., 2019) investigated the effects

of temperature and nanoparticle concentration on the lnf of ZnO-

MWCNT/SAE 10 W40 engine oil hybrid nanofluid. The results show

that the nanofluid has Newtonian behavior at all u and temperatures.

With increasing the u, the lnfincreases. Also, the lnfdecreases with

increasing temperature at a constant u. High costs, time-consuming

laboratory tests, and the need for complex equipment are the most

problems of such tests. Due to the difficulty in laboratory methods,

using mathematical models, especially ANNs, investigated various

parameters’ effects on the charachteristics of different systems consid-

ered by researchers (Zepeng et al., 2021; Yufei et al., 2021; He et al.,

2020). The use of ANNs is a cheaper, more efficient, and highly reliable

alternative for estimating nanofluids’ properties. The advantage of

ANNs compared to conventional traditional methods is high speed

and complex relationship solving. When ANN has been trained, it

can predict the required output parameters using the given input

parameters (Tian et al., 2021). Researchers like Akhgar et al.

(Akhgar and Toghraie, 2018) and Alrashed et al. (Alrashed et al.,

2018) used the ANNs to predict the properties of nanofluids, including

MWCNT nanoparticles. They showed that adding these materials to

the base fluid improves the nanofluid properties.Table 1.

Results from the lnfstudy of MWCNT-carbon/SAE 10 W40-SAE

85 W90, in which the temperature and concentration of nanoparticles

define as the ANN input, shows that the effect of temperature on lnfis

better. According to the recommended value of R2, ANN has a good

performance in predicting the lnf(Maddah et al., 2018). Toghraie et al.

(Toghraie et al., 2020) considered temperature, SR, and concentration

as inputs and effective factors for predicting the lnfof WO3-MWCNTs

/ Engine Oil hybrid nanofluid in the ANN model. The results showed

that the ANN method is suitable for predicting the properties of this

nanofluid so that the proposed model fits the experimental data with

a R2 = 0.99. Hemmat et al. (Esfe and Toghraie, 2021) predicted the

lnfof Al2O3/engine oil using ANN.the results showed that the ANN

estimates laboratory data more accurately.

Parashar et al. (Parashar et al., 2021) investigated the dynamic vis-

cosity of MXene palm oil. Their results show that the lnf decreases

with increasing temperature. The mean square error, mean average

percentage error, and correlation coefficient (R2) were 4.733E-05,

0.507 %, and 0.99975, respectively. Mohammadian et al.

http://creativecommons.org/licenses/by/4.0/


Table 1 Effect of training functions on the ann performance.

Training

function

Training Algorithm Performance

trainbfg BFGS Quasi-Newton 42.523

trainbr Bayesian regularization back

propagation

0.32

traincgb Conjugate Gradient with Powell/Beale

Restarts

22.85

traincgf Fletcher-Powell Conjugate Gradient 20.41

traincgp Polak-Ribiére Conjugate Gradient 30.37

traingda Gradient descent with adaptive

learning rate back propagation

180.83

traingdx Variable Learning Rate Back

propagation

70.04

trainrp Resilient Back propagation 12.99

trainscg Scaled Conjugate Gradient 23.21

trainlm Levenberg-Marquardt 0.63

Table 2 Polynomial coefficients and standard deviation.

Nonlinear term coefficient Standard deviation

/3 �103.4333 12.5865

T:/2 �1.8509 0.3987

SR:/2 0.0021 0.0145

/2 245.2420 22.7036

T2:/ 0.0624 0.0158

SR:T:/ �0.0010 0.0007

T:/ �4.1721 1.0974

SR2:/ 0.0000 0.0000

SR:/ 0.0162 0.0240

/ 19.6426 22.2098

T3 �0.0105 0.0007

SR:T2 0.0000 0.0000

T2 1.5357 0.0764

SR2:T 0.0000 0.0000

SR:T 0.0026 0.0021

T �80.7641 2.6758

SR3 0.0000 0.0000

SR2 0.0001 0.0000

SR �0.1330 0.0323

1 1593.4006 31.2158
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(Mohamadian et al., 2018) proposed a model for predicting the lnfof

Ag/water nanofluid using an ANN. Temperature, u and nanoparticle

size was defined as model input variables. The values were obtained for

the R2 are 0.9996, which indicates the complete accuracy of the pro-

posed model. Their results show that the use of ANN leads to better

results. The results of other researchers also confirm these results

(Esfe and Toghraie, 2021; Toghraie et al., 2019; Shahsavar et al.,

2019; Longo et al., 2017).

According to the review of previous articles, the ANN method is

suitable for predicting nanofluid properties. As a result, in this paper,

the effect of temperature, the volume fraction of nanoparticles, and

shear rate on the viscosity of the hybrid lubricant (taken from

Hemmat Esfe et al. 2017), which contains SAE 40 as the base fluid

and a combination of multi-walled carbon nanotubes and zinc oxide

(ZnO) as added nano particles, was investigated using the ANN and

nonlinear fitting polynomial. In this work, a new modeling network

with the highest accuracy is implemented for the prediction of Nano-

fluid dynamic viscosity and compared with the 3-dimensional nonlin-

ear fitting function in MATLAB Measurements were performed in

the temperature range of 25 to 50�C, the volume fraction of nanopar-

ticles in the range of 0 to 1 %, and different shear rates (50 to

1000 rpm). This model can be used as a design tool in future research

or as an objective function in optimization problems.

2. Material and methods

2.1. ANN construction

Artificial intelligence has found great attention due to its

potential and abilities in contrast to statistical methods such
as Taguchi or determinant of optimal design methods (Sadr
et al., 2017). For example, curve fitting of experimental data

for optimization (Babajamali et al., 2022), classification of
raw information, and prediction of signal future using time
series prediction are some of the capabilities of these intelligent

systems. In this manuscript, various topologies for ANN are
investigated to obtain the optimum model for predicting the
lnf of MWCNT –ZnO (10:90)/ SAE 40 nano-lubricant. To this

end, a multi-layer Perceptron (MLP) network is implemented
with different neurons in the hidden layer. To investigate the
performance of ANN, various indexes can be used (Esfe

et al., 2022; Esfe et al., 2022; Xia et al., 2022), and here, Mean
Square Error (MSE) and R2 are used as performance indexes
to assess different network performances and determine the
optimum network for lnf prediction. According to the random

nature of ANNs, the ANN is trained 10 times in each case, and

the best situation is selected for comparison to other construc-
tions. Due to the nonlinear relation of input–output parameters,
the transfer function of hidden layer neurons must be of non-

linear type tangant hyperbolic sigmoid or Logarithm sigmoid
(tansig or logsig) (Esfe et al., 2022; Moshayedi et al., 2022;
Xie et al., 2022). Based on previous experiences of the authors,
the tansig function has better performance (Esfe et al., 2021).

Hence, this function is used for hidden layer neurons, while
this paper uses a linear one for the output layer (Tian et al.,
2021; Esfe and Toghraie, 2021; Azimi et al., 2017). As the

training function, there is a variety of algorithms used. In this
paper, several algorithms were used, and their performance is
compared in Table 2. Among these trainig functions, the

Levenberg-Marquart (LM) shows acceptable results and per-
formance with low computation efforts for small-medium size
ANNs. Also, this algorithm had reasonable performance
among the others. Hence, this algorithm (trainlm) is used to

investigate ANN further. The schematic configuration of this
ANN is presented in Fig. 1.

Fig. 1, W shows the weighting vector connecting the inputs

to each neuron or the hidden layer neurons’ output to the out-
put layer neuron. The b values represent the bias values. This
figure shows the input parameters with u, T, and ST, repre-

senting the volume fraction of nanoparticles, temperature,
and SR, respectively. The only output of the ANN is the lnf

constructed using a linear activation function. Different values

are considered for input parameters, and after experiments, the
lnfis obtained. This article used the experimental data of refer-

ence (Issa, 2022). The experiments were repeated at volume
fractions of 0.05 %, 0.1 %, 0.2 %, 0.4 %, 0.6 %, and 0.8 %,
with temperature range of 5–55 �C, and shear rates from
666.5 to 13,330 s�1. The viscosity of the hybrid nano lubricant

was measured using the Brookfield digital viscometer
(CAP2000). The u is in the range of 0 to 1 % with 9 levels,
the temperature is chosen between 25 and 50�C with 6 levels,



Fig. 1 Schematic configuration of used ANN for prediction of lnf.

Fig. 3 Effect of temperature on the lnfdeviation.
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and the SR is considered in the range of 50 to 1000 rpm in 10

different levels. After obtaining the samples from experiments,
the first step is to train the ANN. Usually, 70 % of data is used
for training, 15 % for validation, and the rest for testing.

Therefore, 192 samples were used for training and 41 for val-
idation and test. It is worth mentioning that these portions
of data are selected randomly in each training iteration by
the algorithm.

To assess the effect of various training functions on the
ANN performance, 10 different training algorithms were used,
and their performance is compared in Table 1 as follows.

2.2. Nonlinear curve fitting method

This method is developed and programmed based on QR fac-

torization and general least squares by John R. D’Errico
(D’Errico, 2005). Polyfitn is a powerful and simple algorithm
for determining polynomial coefficients using the linear least-

squares technique. Also, the chosen method of solution gives
standard errors of the coefficients. The theory can be found
in Draper and Smith’s research (Draper and Smith, 1998).
Fig. 2 Effect of u on the lnf deviation. Fig. 4 Effect of SR on the lnfdeviation.
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To have a more stable algorithm, the QR factorization with
pivoting is used for solving the system. Because it is much
more stable concerning simple and pivoted QR version. More-

over, automatic variable scaling is used for illconditioning
prevention.
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Fig. 6 ANN train
With the experimental data presented in Table 1, a nonlin-
ear polynomial based on three input parameters is assumed to
predict the dynamic viscosity of Nanofluid as below.
0 2 4 6 8 10 12 14 16 18 20
ANN Hidden Layer Neurons

0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

R
2

0

0.5

1

1.5

2

2.5

3

3.5

4

M
SE

10-3(b) Validation Data Regression

0 2 4 6 8 10 12 14 16 18 20
ANN Hidden Layer Neurons

965

997

975

998

985

999

995

1

005

0

0.5

1

1.5

2

2.5

3

3.5

M
SE

10-3(d) All Data Regression

X 17
Y 0.999513

X 17
Y 0.000486346

ing data, (b)Validation data, (c) Test data, and (d) All data.

ing parameters.



�

400 Validation Data Correlation

6 M. Hemmat Esfe et al.
l SR;T;/ð Þ ¼ a30/
3 þ a31T

3 þ a32SR
3 þ a33SR:T:/þ a34T:/

2

þa35SR:/
2 þ a36T

2:/þ a37SR:T
2 þ a38SR

2:Tþ a39SR
2:/

þa20/
2 þ a21T

2 þ a22SR
2 þ a23T:/þ a24SR:/þ a25SR:T

þa10/þ a11Tþ a12SRþ a00

The coefficients aij must be determined using the least
square method. In the implemented notation, the first indexes
show the variables’ power, and the second defines the term

number in the equation. The next section compares the
obtained fitting equation and its accuracy to the ANNs results.

3. Results

To have better insight into the raw data, the deviation of lnf is
plotted against three input parameters in Figs. 2-4. Fig. 2
Fig. 7 Performance of ANN with 17 neurons in the hidden

layer.
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Fig. 8 Correlation plot of training data for the optimum ANN.
shows that this nano lubricant’s viscosity does not change
much (increases slightly) with increasing volume fraction.
The results of Fig. 3 show that the viscosity of the present nano

lubricant decreases with increasing temperature from 25 to 50
C (Chu et al., 2021). This is due to the weakening of molecular
attractions between lubricant molecules and hybrid nanoparti-

cles. The results obtained from Fig. 4 show that the viscosity of
the nano-lubricant generally decreases significantly with
increasing shear rate (Li et al., 2020). Increasing the shear rate

reduces the interaction of molecules and nanoparticles. And
the free space between most molecules and the particle also
increases; Finally, the viscosity of this nano-lubricant
decreases.
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Fig. 9 Correlation plot of validation data for the optimum

ANN.
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3.1. ANN results

Using 274 samples, different ANNs with various neurons from
1 to 20 in the hidden layer were trained. The results are pre-
sented in Fig. 5 for training, validation, and test data with dif-

ferent colors. The x-axis shows the number of neurons in the
hidden layer in each figure. The y-axis presents two parame-
ters, R2 and MSE, in the left and right hand of the graph,
respectively. To determine the best ANN topology, the MSE

and R2 of each network are computed for each portion of data.
These indexes are computed as follows:

MSE ¼ 1

N

XN

i¼1

lExp � loutput

� �2 ð1Þ
100 150 200 250 300 350 400
Dynamic Viscosity (cP)

100

150

200

250

300

350

400

Ta
rg

et
s(

Ex
pe

rim
en

ta
l D

at
a)

All Data Correlation

Fig. 11 Correlation plot of all data for the optimum ANN.

Fig. 12 Comparison of experimental data and the real output of

the ANN.
R2 ¼ 1�
PN

i¼1 lExp � loutput

� �2
PN

i¼1 lExp � l
�� �2 ð2Þ

The training parameters are shown in Fig. 6.
ANNs training starts from the random condition, hence

increasing the network complexity will not necessarily increase
its performance. According to these figures, increasing the
number of hidden layer neurons will generally increase net-

work performance alongside decreasing the MSE value.
Among the investigated topologies, the network with 17 neu-
rons in a hidden layer showed the highest R2 value as 0.9995
and the lowest MSE equal to 0.0005. Therefore, this network

is considered for modeling the input–output relationship of
lnffor this nano-lubricant. In Fig. 7, the performance of this

ANN is depicted for three different data portions. The training
data are plotted in blue, validation data in green, and the test
data in red. The best condition of the network is determined in
this graph with a green circle on the 17th epoch. This point is
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determined according to the number of validation fails consid-
ered here equal to 6 times. In other words, when the ANN is
getting to overlearn data, its number of validation fails

increases, showing the network is not learning the overall data
trend but only maintaining the MSE value as low as possible.
Therefore, the best condition of ANN would be the epoch hav-

ing the lowest validation error.
It is clear from Fig. 7 that the ANN performance is low at

the initial iterations. Still, after several iterations, the MSE

value decreases exponentially, showing the training condition
of the network. To be sure about the training condition of
the ANN, the correlation plot of training, validation, test,
and all data are presented in Figs. 8-11, respectively. In these

figures, different data are specified with different colors.
Targets and output values are shown on the vertical and

horizontal axes. In a well-trained ANN, the output and target

values should be coincident. In this situation, the line slope
would be 1 with 0 bias. Based upon these figures, all data
are almost located on the bisector of the plane. Hence there
Table 3 Accuracy of nonlinear curve fitting.

R2 Adj-R2 MSE

0.9983 0.9981 4.0223
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Fig. 15 Comparison of ANN error (Left)

Fig. 16 Comparison of ANN prediction (Left)
is a very good correlation between the real output of the
ANN and target values (Experimental data) that proves the
goodness of the trained ANN for predicting lnf versus three

input parameters. In Fig. 12, the real output of the ANN is
compared to the experimental data for various temperatures

with different colors. Again, there is a good match between
these data in this figure.

For another checkpoint, the error histogram is shown in
Fig. 13. This graph shows that most samples have errors close

to zero (orange line), and the normal distribution of errors
proves a good experimental data set and a well-trained ANN.

Fig. 14 shows the error percentage of all samples for differ-

ent temperatures.
This figure shows that most errors are in the �1% margin,

which is quite acceptable. Another important point is that the

deviation of error is decreased with increasing temperature. In
other words, the highest deviation is observed T ¼ 25oC
around �3% while the lowest variation arises in T ¼ 50oC
lower than�0:5%. The reason for decreasing error deviation

is that by increasing temperature, the viscosity value would
decrease drastically and its error would also lower. According
to Figs. 2-4, the significant temperature highly influences the

viscosity. On the other hand, the nanoparticle volume fraction
in the experimented range has the least effect on the output.
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and nonlinear polynomial error (Right).

and nonlinear polynomial prediction (Right).
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Fig. 17 Comparison of ANN output and targets (Left) and nonlinear polynomial output and targets (Right).
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3.2. Nonlinear curve fitting results

Using the least square method, a nonlinear polynomial with
the highest degree of 3 can predict the nonlinear relation of
three inputs and the dynamic viscosity as the sole output.

The obtained equation can be used for design and modeling
systems using MWCNT –ZnO (10:90)/ SAE 40 nano-
lubricant, likewise the optimized ANN. Also, this equation
can be used for optimization as an objective.

The obtained equation is presented as follows:

l SR;T;/ð Þ ¼ �103:43/3 � 0:0105T3 þ 1:5108e� 08SR3

�0:0010SR:T:/� 1:8508T:/2 þ 0:0021SR:/2 þ 0:0624T2:/

þ5:6836e� 06SR:T2 � 1:7457e� 06SR2:Tþ 1:8868e� 05SR2:

þ245:2420/2 þ 1:5357T2 þ 5:5572e� 05SR2

�4:1721T:/þ 0:0162SR:/þ 0:0026SR:T

þ19:6426/� 80:7640T� 0:1330SRþ 1593:4005

To assess the presented models’ accuracy, R2, Adj-R2, and

RMSE are computed as listed in Table 3:
To better compare ANN and nonlinear polynomials, the

error of individual samples is depicted in Fig. 15 for both

methods. ANN has slightly lower errors.
In Fig. 16, the 3D plot of dynamic viscosity versus temper-

ature and nanoparticle volume fraction is presented.

According to this figure, both methods can accurately
model the output, i.e., dynamic viscosity. As the last assess-
ment, in Fig. 17, the predicted and target values for all samples
are compared for both methods.

In Fig. 17, the real output of the two methods is depicted in
red circles, and the experimental data points are shown in blue
dots. Therefore, a higher coincidence of red circles and blue

dots represent a lower error. Although both methods have
acceptable predictions from the above figure, ANN generally
has better predictions due to the better coincidence of dots

and circles.

4. Conclusion

In this manuscript, three input parameters’ influence is investigated on

the lnf of MWCNT –ZnO (10:90)/ SAE 40 nano-lubricant. For this

reason, two methods, including ANN and nonlinear polynomials,
are used. Input parameters are considered to be u, temperature, and

SR. The following conclusions can be summarized based on the

obtained results.

� The optimum topology for ANN has 17 neurons in the hidden layer

with a tansig transfer function and 1 linear neuron in the output

layer.

� This network achieved 0.9995 and 0.00048 values for R2 and MSE,

respectively, showing the network’s good training status.

� Various indexes such as Error Histograms, correlation, and Error

percentage plots proved the well-trained network’s capability to

predict the lnf .

� The temperature and shear rate significantly influence the output

among the three input parameters. Moreover, their effect is inverse

because increasing these parameters will lower the lnfof MWCNT

–ZnO (10:90)/ SAE 40 nano-lubricant.

� On the other hand, the u has a direct but negligible effect on lnf .

� To be more precise, increasing temperature from T = 25 to 50�C
changes the lnf from 350 cP to around 100 cP.

� Nonlinear polynomial coefficients with 20 terms of powers up to 3

were determined using the least square method. The R2 and MSE

values are equal to 0.9983 and 4.0223, respectively.

� Although both methods showed high prediction potential, ANN

methods have slightly better accuracy.

By obtaining ANN or nonlinear polynomials, one can design sys-

tems based on nano lubricants or optimize the system as an objective

function. Also, the attained results in this manuscript can be used by

academics and industrial counterparts.
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