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Abstract Cold-hot nature theory is the core basic theory of the nature of Chinese herbal medicines

(CHMs). It is found that the material basis of cold-hot nature is CHM ingredients. In view of this,

our group proposed a scientific hypothesis that ‘‘CHMs with similar nature should have similar

material basis”. To demonstrate this hypothesis, we developed a novel multi-wavelength high per-

formance liquid chromatography (HPLC) fingerprint similarity metric scheme for cold-hot nature

identification. We explored a multi-wavelength distance metric learning model to compute the sim-

ilarity of CHM ingredients, and developed an improved k-nearest neighbor algorithm based on

multi-wavelength HPLC fusion (KMHF) to predict cold-hot nature of CHMs. Firstly, multi-

wavelength HPLC fingerprints were used to extract the characteristic information of CHM ingre-

dients. Secondly, we defined the similarity of CHM ingredients as semantic relevance and finger-

print similarity. We studied a multi-wavelength distance metric to measure the similarity of

CHM ingredients. The learned distance metric could discover complementary characteristics of dif-

ferent wavelength HPLC through an optimization algorithm. Finally, an improved multi-

wavelength k-nearest neighbor algorithm KMHF was proposed to analyze the relationship between

cold-hot nature and CHM ingredients. Numerous experiments were designed to test the feasibility

of the proposed KMHF algorithm. Experimental results indicate that the performance of our

KMHF algorithm outperforms that of the compared algorithms. Experimental results demonstrate
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that the hypothesis that CHMs with similar cold-hot nature have similar material basis. The

KMHF model is evaluated to be feasible for nature identification.

� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cold-hot nature theory is the core theory of the nature of Chinese her-

bal medicines (CHMs), which has attracted the attention of investiga-

tors for many years (Gao et al., 2007). ‘‘Treating the cold syndrome

with hot nature medicines and treating the hot syndrome with cold nat-

ure medicines” is the theoretical basis of clinical treatment of tradi-

tional Chinese medicine (TCM). This suggests that the concept of

cold-hot nature patterns has been a guiding principle in TCM for

administering CHMs (Ouyang et al., 2006; Wu et al., 2007). Therefore,

correct discrimination of cold-hot nature of CHMs is the key to TCM

research.

Numerous specialists attempted to explain the scientific connota-

tion of cold-hot nature of CHMs from different perspectives. From

one perspective, the material basis of cold-hot nature is confirmed as

CHM ingredients (Fu et al., 2017; Wei et al., 2019b). Scientists devel-

oped numerous scientific hypotheses to demonstrate that the material

basis of cold-hot nature was CHM ingredients, including Zhang’s

hypothesis of ‘‘Three element” (Jin et al., 2014), Wang’s hypothesis

of ‘‘Tri-element of property-effect-material”(Zhang, 2012), and Fu’s

hypothesis of ‘‘Nature-Structure Relationship” (Fu et al., 2017). They

constructed a lot of experiments to prove that the hypothesis was true.

A typical method was to extract the ingredient information with chem-

ical fingerprints, and establish the correlation between cold-hot nature

and CHM ingredients with machine learning algorithms (Wei et al.,

2019b). From another perspective, energy metabolism, such as oxygen

consumption and ATPase activity, was introduced to study cold-hot

nature of CHMs (Huang et al., 2014). CHMs with hot nature may

increase the activity of SDH enzyme and promote the decomposition

of muscle glycogen. These regulated the level of energy metabolism,

so as to produce more ATP. CHMs with cold nature could signifi-

cantly decrease the energy metabolism in normal rats (Wu et al.,

2007). From the third perspective, some research analyzed cold-hot

nature of CHMs with bioinformatics methods. Network pharmacol-

ogy and in silico analysis were introduced to reveal the scientific con-

notation of cold-hot nature (Fu et al., 2017; Liang et al., 2013). Fu

et al. proposed a hypothesis of ‘‘nature-structural relationship”, and

integrated bioinformatics and network pharmacology methods to

explore the scientific connotation of cold-hot nature of CHMs from

molecular level (Shao et al., 2020). They found that CHMs with cold

nature were related with mental and behavioural disorders diseases,

and CHMs with hot nature were associated with endocrine, nutritional

and metabolic diseases. As mentioned above, researches from different

perspectives have made numerous achievements. However, the scien-

tific connotation of cold-hot nature of CHMs needs further study.

Our group attempts to utilize machine learning methods and chemical

fingerprints to build a correlation between cold-hot nature and CHM

ingredients to reveal the scientific connotation of CHM nature.

A number of studies have been performed to analyze the relation-

ship between CHM ingredients and cold-hot nature (Fu et al., 2017;

Wei et al., 2019b; Shao, 2020). It is found that the material basis of

cold-hot nature of CHMs is chemical ingredients. Therefore, research

on the relationship between cold-hot nature and CHM ingredients

mainly includes ingredient information representation and nature clas-

sification. Ingredient information is the general characteristic of the

ingredients contained in CHMs. Ingredient information representation

has always been a research hotspot. Current research focused on chem-

ical fingerprints and molecular descriptors of compounds. Chemical
fingerprints, including infrared spectrum, ultraviolet spectrum, gas

chromatography (GC), high performance liquid chromatography

(HPLC), have been usually applied to study the ingredients of CHMs

(Zhang, 2012). Wang et al. used HPLC fingerprint and gas chromatog-

raphy fingerprint for systematic analysis of chemical compositions in

Curcumae Rhizom and introduced chemometrics including unsuper-

vised principal component analysis, supervised linear discriminant

analysis, k-nearest neighbors (KNN) for the species authentication

and quality control (Wang et al., 2021). CHMs are typically mixtures

of compounds. Since chemical structure is the molecular basis of com-

pound activity, characterization of molecular structure is essential to

further understand CHM nature. Molecular descriptors were widely

applied to extract the feature information of CHM compounds. Fu

et al. computed compound-nature pairs of CHMs to study their

physicochemical domain and introduced in silico target prediction to

study differences related to their modes-of-action against proteins

(Fu et al., 2017).

Nature classification introduces classical intelligent algorithms or

builds machine learning algorithms to study the relationship between

CHM ingredients and cold-hot nature. Classical intelligent algorithms,

such as support vectormachine, partial least squaremethod and random

forest, were usually introduced to predict cold-hot nature of CHMs.

Xue’s group analyzed the CHMswith efficacy and indications, and con-

structed classical intelligent algorithms for cold-hot nature prediction

(Zhang, 2012). Long et al. andWang et al. calculatedmolecular descrip-

tor of CHM compounds, and applied classical classifiers to discriminate

cold-hot nature (Long et al., 2011;Wang et al., 2016). Nie et al. analyzed

Metabonomics information of CHMs and used a random forest algo-

rithm to identify the cold-hot nature of CHMs (Nie et al., 2015). Our

group had made some explorations in the identification of cold-hot nat-

ure ofCHMs (Wei et al., 2019b, 2021a).We introducedan extreme learn-

ing machine (ELM) algorithm to analyze CHM nature with molecular

descriptors. Inspired by the similarity of CHM ingredients applied to

evaluate the quality of CHMs (Wei et al., 2021a), our group explored

the similarity of CHM ingredients to build machine learning algorithms

for cold-hot nature prediction. For example, we proposed a novel multi-

solvent UV spectrum similarity measure retrieval scheme for discrimi-

nating CHMs cold or hot (Wei et al., 2019b).

As mentioned above, numerous achievements have been made in

the research of cold-hot nature. However, chemical fingerprint technol-

ogy for nature prediction has not been comprehensively studied. Our

group used UV spectrum and GC to analyze CHM ingredients for nat-

ure identification without considering HPLC (Wei et al., 2019b,

2021b). Compared with UV spectrum and GC, HPLC can better sep-

arate the components of CHMs and extract the information of CHM

components (Qi et al., 2011). It is possible to obtain high prediction

accuracy of cold-hot nature by studying the identification method of

CHM nature based on HPLC. Furthermore, there is a hypothesis that

CHMs with similar cold-hot nature have similar material basis.

Designing a special nature identification algorithm according to this

hypothesis and HPLC fingerprints may achieve higher prediction accu-

racy rates. In this work, HPLC fingerprints were applied to extract the

information of CHM ingredients. With the obtained HPLC finger-

prints, the similarity of CHM ingredients was defined as a Maha-

lanobis distance metric. This distance metric was learned by a

constructed distance metric learning model. Finally, an improved

multi-wavelength k-nearest neighbor algorithm was developed for pre-

dicting cold-hot nature of CHMs.

http://creativecommons.org/licenses/by-nc-nd/4.0/


cold-hot nature identification 3
2. Materials and methods

2.1. CHM dataset

In this work, representative CHMs with clear nature were
selected to study the correlation between CHM ingredients

and cold-hot nature (Zhang, 2012). All selected CHMs were
recorded in ‘Shen Nong’s Herbal Classic’ and the classical
‘Chinese Materia Medica’. The screening criteria of representa-

tive CHMs are as follows: (1) Traditional natu-
ral plant medicine only; (2) Clear CHM nature, high clinical
recognition and no academic disputes. Finally, 61 CHMs were
screened for nature identification, in which 30 CHMs are cold,

and others are hot. The 61 CHMs are listed in Table 1.

2.2. Hplc

In this work, we analyzed the ingredient information of CHMs
with HPLC technology. The experimental methods of HPLC,
including preparation of the test solution and chromato-

graphic conditions, were configured in detail in Rf. Zhang,
et al. 2012. We give a brief introduction as follows.

The preparation of the test solution is as follows: Firstly, we

precisely measured about 0.5 g of the test medicinal powder,
and put it in a tapered bottle with a stopper. Secondly, we pre-
cisely poured 50 ml of 50 % methanol into the bottle. We
weighed and put it in 60℃ water bath for ultrasonic extraction

for 30 min. After the extraction was completed, we cooled and
weighed again, and supplemented the lost mass with 50 %
methanol. Finally, we take the continuous filtrate to obtain a

50 % methanol extract. The chromatographic conditions are
as follows: (1) Chromatographic column: Agilent XDB-C18
column (4.6 mm* 250 mm, 5 lm). (2) Mobile phase: acetoni-

trile–water (3:97) ? acetonitrile–water (100:0), linear gradient
elution for 90 min. (3) Flow rate: 1.0 ml/min. (4) Injection vol-
ume: 20 ml. (5) Column temperature: 35℃.

The test solution was obtained based on the given chro-

matographic conditions, and the DAD (diode array detector)
was introduced for full wavelength scanning of 190–400 nm.
Finally, each CHM was collected at 211 wavelengths of 190–

400 nm, and the data were obtained for 6524 retention time
points. Since the data are too large to allow further modeling
and analysis, and the chromatographic data of the same CHM

at adjacent wavelengths are highly correlated, the chromato-
graphic data at representative wavelengths of each CHM were
selected according to the characteristics of UV wavelength. In

this study, the chromatographic data at three representative
wavelengths of 210 nm, 227 nm, 236 nm were analyzed to build
the nature classification model. We processed the representa-
tive fingerprints, and extracted the spectral interval with a pre-

diction accuracy of more than 75 % based on a step length of 5
absorption values and an interval length of 95 absorption val-
ues. Finally, the absorption value of the fingerprint interval

was adjusted in steps of 5.

2.3. HPLC fingerprint similarity

To analyze the relationship between CHM ingredients and
cold-hot nature, our group developed a hypothesis that CHMs
with similar cold-hot nature should have the similar material
basis (Wei et al., 2021b). In our previous work, we had tested
this hypothesis by characterizing the ingredient information
with UV spectrum (Wei et al., 2019b, 2021a). In this work,

our group attempted to reveal the relationship between
CHM ingredients and cold-hot nature by testing this hypothe-
sis with HPLC fingerprints. Therefore, CHMs with similar

cold-hot nature should have similar HPLC fingerprints of
CHMs. It means that if the HPLC fingerprints of two CHMs
are similar, they are considered to be similar cold-hot nature.

The similarity of HPLC fingerprints had been widely inves-
tigated in studying CHM ingredients for quality evaluation of
CHMs (Mao, 2020). In this work, the similarity of HPLC fin-
gerprints was modeled for cold-hot nature prediction. Analyz-

ing the definition of similarity, our group defined the similarity
of HPLC fingerprints as semantic relevance and fingerprint
similarity. Semantic relevance means the consistency of

CHM cold-hot nature, which represents that if the cold-hot
nature of two CHMs is similar, they are semantic similarity
(Wei et al., 2018). Fingerprint similarity means the similarity

of CHM HPLC fingerprints, which represents that two CHMs
have similar ingredients related to cold-hot nature. We
explored to learn a Mahalanobis distance to measure the sim-

ilarity of HPLC fingerprints, which were both semantic rele-
vance and fingerprint similarity. Smaller distance metric
means more similar fingerprints.

2.3.1. Distance metric learning

Define X ¼ x1; . . . ; xn½ � 2 Rd�n to represent the CHM finger-
print dataset in the input space, in which n being the total num-

ber of CHMs and xi 2 Rd being the ith sample. Denote

superscript T as the transpose of a vector or a matrix, the
Mahalanobis distance between xi and xj can be defined as
(Weinberger et al., 2009):

dMðxi; xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞTMðxi � xj

q
Þ ð1Þ

where M is a positive semi-definite matrix, which can be
decomposed into M = AAT. Therefore, Eq. (1) can be rewrit-
ten as:

dAðxi; xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞTAATðxi � xj

q
Þ ¼ jjATðxi � xjÞjj ð2Þ

Eq. (2) illustrates that calculating Mahalanobis distance
between xi and xj is equivalent to learning a transformation

of Euclidean distance in the input space. In this work, the

transformation matrix A is learned based on the HPLC simi-
larity of CHMs. After learning matrixA, Mahalanobis distance
dðxi; xjÞ between xi and xj in Eq. (2) can be obtained.

2.3.2. Similarity metric

In this work, a Mahalanobis distance was learned to quantify

the similarity of HPLC fingerprints (Liu et al., 2010). How-
ever, previous distance metric learning studies mainly focused
on the analysis of semantic relevance, ignoring the study of fin-

gerprint similarity. We defined the similarity of CHM HPLC
fingerprints as semantic relevance and fingerprint similarity.
Therefore, the transformation matrix A in Eq. (2) contained

two sources: the transformation matrix A1 of semantic rele-
vance and the transformation matrix A2 of fingerprint
similarity.

The conception of semantic relevance describes the separa-

bility of cold and hot categories. This requires that the class



Table 1 The experimental 61 representative CHMs.

Chinese Herbal Medicines Nature Source Sampling area

Curculiginis Rhizoma Hot Hai Yao Ben Cao Yibin, Sichuan

Pinelliae Rhizoma Hot Shen Nong’s Herbal Classic Dazhou, Sichuan

Magnoliae Officinalis Cortex Hot Shen Nong’s Herbal Classic Guangyuan, Sichuan

Euodiae Fructus Hot Shen Nong’s Herbal Classic Tongren, Guizhou

Arisaematis Rhizoma Hot Shen Nong’s Herbal Classic Heze, Shandong

Ephedrae Herba Hot Shen Nong’s Herbal Classic Chifeng, Sichuan

Chuanxiong Rhizoma Hot Shen Nong’s Herbal Classic Pengzhou, Sichuan

Zingiberis Rhizoma Hot Shen Nong’s Herbal Classic Leshan, Sichuan

Corydalis Rhizoma Hot Paozhi Lun Jinhua, Zhejiang

Chaenomelis Fructus Hot Shen Nong’s Herbal Classic Xuancheng, Anhui

Aucklandiae Radix Hot Shen Nong’s Herbal Classic Lijiang, Yunnan

Eucommiae Cortex Hot Shen Nong’s Herbal Classic Mianyang, Sichuan

Santali Albi Lignum Hot Mingyi bielu Guangdong

Epimedii Folium Hot Shen Nong’s Herbal Classic Shanxi

Roasted Corydalis Hot Paozhi Lun Jinhua, Zhejiang

Nardostachyos Radix et Rhizoma Hot Supplement to Materia Medica Aba, Sichuan

Fructus Piperis Alba Hot Tang materia medica Wenchang, Hainan

Mustard Seeds Hot Tang materia medica Anhui

Carthami Flos Hot Tang materia medica Xinxiang, Henan

Asari Radix et Rhizoma Hot Shen Nong’s Herbal Classic Dandong, Liaoning

Notopterygii Rhizoma et Radix Hot Shen Nong’s Herbal Classic Aba, Sichuan

Cinnamomi Cortex Hot Shen Nong’s Herbal Classic Hechi, Guangxi

Atractylodis Rhizome Hot Shen Nong’s Herbal Classic Jiangsu

Alpiniae Katsumadai Semen Hot Paozhi Lun Hainan

Piperis Longi Fructus Hot Tang materia medica Wenchang, Hainan

Ligustici Rhizoma et Radix Hot Shen Nong’s Herbal Classic Aba, Sichuan

Psoraleae Fructus Hot Nature theory Sichuan

Aconiti Lateralis Radix Praeparata Hot Shen Nong’s Herbal Classic Jiangyou,Sichuan Province

Citri Reticulatae Pericarpium Hot Shen Nong’s Herbal Classic Jiangmen,Guangdong

Alpiniae Officinarum Rhizoma Hot Mingyi bielu Zhanjiang,Guangdong Province

Clematidis Radix et Rhizoma Hot Tang materia medica Jiangsu

Platycladi Cacumen Cold Mingyi bielu Linyi, Shandong

Kochiae Fructus Cold Shen Nong’s Herbal Classic Feicheng, Shandong

Ecliptae Herba Cold Tang materia medica Jinan, Shandong

Isatidis Folium Cold Mingyi bielu Tangshan, Hebei

Rhei Radix et Rhizoma Cold Shen Nong’s Herbal Classic Dingxi, Gansu

Asparagi Radix Cold Shen Nong’s Herbal Classic Huairen, Guizhou

Fritillariae Cirrhosae Bulbus Cold Shen Nong’s Herbal Classic Aba, Sichuan

Bupleuri Radix Cold Shen Nong’s Herbal Classic Nanyang, Henan

Gardeniae Fructus Cold Shen Nong’s Herbal Classic Zhangshu, Jiangxi

Rhizoma Anemarrhenae with Peet Cold Shen Nong’s Herbal Classic Baoding, Hebei

Sargassum Cold Shen Nong’s Herbal Classic Weihai, Shandong

Lophatheri Herba Cold Shen Nong’s Herbal Classic Yuyao, Zhejiang

Trichosanthis Fructus Cold Shen Nong’s Herbal Classic Feicheng, Shandong

Kansui Radix Cold Shen Nong’s Herbal Classic Shanxi

Dried Rehmannia Root Cold Shen Nong’s Herbal Classic Jiaozuo, Henan

Dianthi Herba Cold Shen Nong’s Herbal Classic Laiwu, Shandong

Fraxini Cortex Cold Shen Nong’s Herbal Classic Lingning

Arnebiae Radix Cold Shen Nong’s Herbal Classic Urumqi, Xinjiang

Trachelospermi Caulis et Folium Cold Shen Nong’s Herbal Classic Suzhou, Jiangsu

Aloe Cold Nature theory Yunnan

Puerariae Lobatae Radix Cold Shen Nong’s Herbal Classic Zibo, Shandong

Taraxaci_Herba Cold Tang materia medica Linyi, Shandong

Menthae Haplocalycis Herba Cold Tang materia medica Haimen, Jiangsu

Alizaris Radix Cold Tang materia medica Zhenjiang, Jiangsu

Plantaginis Semen Cold Shen Nong’s Herbal Classic Jiujiang, Jiangxi

Lonicerae Japonicae Flos Cold Tang materia medica Linyi, Shandong

4 G. Wei et al.



Table 1 (continued)

Chinese Herbal Medicines Nature Source Sampling area

市

Stephaniae Tetrandrae Radix Cold Shen Nong’s Herbal Classic Quzhou, Zhejiang

Phellodendri Chinensis Cortex Cold Shen Nong’s Herbal Classic Bazhong, Sichuan

Coptidis Rhizome Cold Shen Nong’s Herbal Classic Shizhu, Chongqing

Gentianae Radix et Rhizoma Cold Shen Nong’s Herbal Classic Fushun, Liaoning
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separability increases when the inter class divergence matrix
increases or the intra class divergence matrix decreases. We

modeled the semantic relevance with differential scatter dis-
criminant criterion (DSDC) algorithm (Wei et al., 2016), the
formula is as follows:

A1 ¼ argmaxðtrðATSBAÞ � ktrðATSWAÞÞ ð3Þ

Our model uses the variation of DSDC:

A1 ¼ argmaxðtrðATSBAÞ � ktrðATSWAÞÞ
¼ argminðtrðATðSW � kSBÞAÞÞ

ð4Þ

In Eq. (4), is the inter class divergence matrix, is the intra
class divergence matrix. is a nonnegative balance parameter,

which tunes the relative merits of maximizing the inter class
divergence to the minimization of the intra class divergence.
The obtained matrix.A1 is the transformation matrix from

semantic relevance.
According to the definition of fingerprint similarity, it

describes the similarity of HPLC fingerprints. This represents
the similarity of CHM ingredients. In previous studies, feature

similarity of pulmonary nodule images had been modeled as
patch alignment frameworks. Inspired by the definition of fea-
ture similarity, we explored the patch alignment framework to

study the similarity of CHM HPLC fingerprints.
Define a HPLC fingerprint dataset in input

space X ¼ x1; . . . ; xn½ �T 2 Rn�d, for eachxi 2 X, its local patch

isXi ¼ ½xi; xi1 ; xi2 ; :::; xik �T 2 Rðkþ1Þ�d. xik is the k� nearest

neighbor of xi based on Euclidean distance. For each patchXi,
there is a transformation modelhi : Xi ! Yi, Yi is the set of

sample maps in feature spaceYi ¼ ½yi; yi1 ; :::; yik �
T 2 Rðkþ1Þ�l.

To solve such transformation modelhi, one solution is to min-

imize the error between the linear mapping of patch Xi and the
feature representationYi, and then align all the patches (Zhang
et al., 2009). We minimized the local patch errors as:

min
Wi ;bi

k XT
i Wi þ 1kþ1b

T
i

� �
- Yi k2 þ lk Wi k2F

�
ð5Þ

In Eq. (3), Wi 2 Rd�l is the local mapping matrix, bi 2 Rl

denotes the bias, 1kþ1 2 Rkþ1 is the vector of all ones,l is a reg-

ularization parameter.
There is an assumption that the fingerprint samples are cen-

tered, i.e.,XT
i 1kþ1 ¼ 0.To calculate the optimal solution of Eq.

(5), we set the derivatives of the objective function in regard to

bi and Wi to zeros. The solution is:

bi ¼ 1
kþ1

YT
i 1kþ1

Wi ¼ XiHkþ1X
T
i þ lId

� ��1
XiHkþ1Yi

(
ð6Þ

where Hkþ1 ¼ Ikþ1 � 1
kþ1

1kþ11
T
kþ1 is the local centering matrix.

By putting Wi and bi into (5) by (6), (6) is then rewritten as:
min
Yi

trðYT
i LiYiÞ ð7Þ

In (7), Li ¼ Hkþ1 � XT
i XiX

T
i þ lId

� ��1
Xi, and then, the glo-

bal alignment is (Zhang et al., 2009):

min
Y

trðYTLYÞ ð8Þ

where the global alignment matrix L is

L ¼ ½S1; :::;Sn�

L1 : : : 0

: : :

: : :

: : :

0 : : : Ln

2
6666664

3
7777775
½S1; :::;Sn�T ð9Þ

In (9), fSigni¼1 is a selection matrix such thatYi ¼ ST
i Y.

Define Y 2 Rn�l is a representation of dataset X in feature

space. On the basis of the assumption of linearization

thatY ¼ XTA, the global patches errors is as follows:

A2 ¼ argminðtrðATXLXTAÞÞ ð10Þ
Therefore, semantic relevance produced the transformation

matrix A1 in Eq. (4), and fingerprint similarity learned the
transformation matrix A2 in Eq. (10). By integrating Eq. (4)

and Eq. (10), we obtained a similarity metric model. The model
is as follows:

A ¼ argmin trðATðSW � kSB þ XLXTÞAÞ
¼ argmin trðATQAÞ ð11Þ

where Q ¼ SW � kSB þ XLXT, the optimal transformation
matrix A� learned from Eq.(11) can preserve both semantic
relevance and fingerprint similarity.

2.3.3. Projection learning

To calculate the optimal transformation matrix A� in Eq.(11)
for similarity metric, the low dimensional representation of

HPLC fingerprints should avoid redundancy as much as possi-
ble. To solve this problem, an orthogonal projection learning
method was studied. We learned the transformation matrix

A� as follows:

A� ¼ argmin trðATQAÞ
s:t: ATA ¼ I

ð12Þ

To solve Eq. (12), eigenvalue decomposition on matrix Q

was used to obtain the optimal projections. We built the opti-
mal solution matrix A� with u eigenvectors of Q corresponding
to the u smallest eigenvalues.

2.4. Multi-wavelength HPLC fingerprint fusion

In this study, three wavelength HPLC fingerprints were used to
analyze the ingredient information of CHMs. Different
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wavelength HPLC fingerprints mine different characteristics of
CHM ingredients, which usually have different physical prop-
erties. Therefore, it is perhaps not optimal to concatenate three

wavelength HPLC fingerprints straightforwardly into a long
fingerprint vector (Yu et al., 2012). This would cause curse-
of-dimensionality and over-fitting problems. In particular, it

is difficult to learn a robust distance measure in a high-
dimensional feature space if the number of CHM fingerprints
is not large enough. To solve this problem, multi-wavelength

HPLC fingerprint fusion scheme was explored for nature
identification.

In this section, we extended single wavelength HPLC fin-
gerprint similarity metric to multi-wavelength feature spaces.

We utilized multi-wavelength HPLC fingerprints to learn mul-
tiple transformation matrices to build multi-wavelength dis-
tance metric. We linearly integrated the similarity metrics

learned from multi-wavelength HPLC fingerprints with the
weights bi and added a regularizer to the weights. Thus, the
objective function is as follows:

/ðb;Að1Þ;Að2Þ; :::;AðNWÞÞ ¼
XNW

i¼1

bitrðAðiÞTQiA
ðiÞÞ

þ qjjbjj2s:t:
XNW

i¼1

bi ¼ 1 ð13Þ

where AðiÞ is the kth transformation matrix learning from the i

th wavelength fingerprint set,Q ¼ SW � kSB þ XLXT. NW is

the number of wavelength,b ¼ b1; b2; :::; bNW

� �T
.

Therefore, the objective function (12) was constructed to
learn a distance metric for each wavelength fingerprint data,

while the objective function (13) was built to integrate the
information of the multi-wavelength HPLC fingerprints with
the combination weights. This scheme mitigates the over-

fitting problem and decreases the complexity of the model.
To calculate the solution of objective function (13), firstly,

the optimal transformation matrices AðiÞjNW

i¼1 were learned on

the basis of Eq. (12) corresponding to different wavelengths.
Secondly, the optimum solution was obtained by introducing
the lagrangian multiplier method. Based on a Lagrange multi-
plierg, the objective function is transforms to:

Lðb; gÞ ¼
XNW

i¼1

bitrðAðiÞTQiA
ðiÞÞ þ qjjbjj2 � gð

XNW

i¼1

bi � 1Þ ð14Þ

To solve this problem, we took the partial derivatives of
Lðb; gÞ with regard to b and g to be zeros. We obtained:

@L
@b1

¼ trðAð1ÞTQ1A
ð1ÞÞ þ 2qb1 � g ¼ 0

:::
@L

@bNW

¼ trðAðNWÞTQNW
AðNWÞÞ þ 2qbNW

� g ¼ 0

@L
@g ¼

PNW

i¼1

bi � 1 ¼ 0

8>>>>>><
>>>>>>:

ð15Þ

Integrating the equations in (15), we obtained:

XNW

i¼1

trðAðiÞTQiA
ðiÞÞ þ 2q

XNW

i¼1

bi � gNW ¼ 0 ð16Þ

Since
PNW

i¼1bi ¼ 1, we get the solution of g as follows:

g ¼
PNW

i¼1 trðAðiÞTQiA
ðiÞÞ þ 2q

NW

ð17Þ
Putting the solution of g into (15), we can obtain:

bi ¼
g� trðAðiÞTQiA

ðiÞÞ
2q

¼ 2qþPNW

i¼1 trðAðiÞTQiA
ðiÞÞ �NWtrðAðiÞTQiA

ðiÞÞ
2qNW

ð18Þ

With multi-wavelength HPLC fingerprint fusion, we could

get the Mahalanobis distance dðiÞðxa; xbÞ between xa and xb

and weight value bi corresponding to the i th wavelength

HPLC fingerprints. Finally, we obtained a multi-wavelength
Mahalanobis distance dðxa; xbÞ between fingerprints xa and
xb as follows:

dðxa; xbÞ ¼
XNW

i¼1

bid
ðiÞðxa; xbÞ ð19Þ
2.5. Cold-hot nature identification scheme

As mentioned above, a multi-wavelength Mahalanobis dis-

tance dðxa; xbÞ was learned to measure the similarity of
CHM HPLC fingerprints. With this similarity metric, an
improved k-nearest neighbor algorithm based on multi-
wavelength HPLC fusion (KMHF) was proposed for cold-

hot nature identification. Fig. 1 displays the cold-hot nature
identification based on similarity metric of multi-wavelength
HPLC. For a query CHM with unclear nature, we firstly stud-

ied the ingredient information of this CHM with multi-
wavelength HPLC fingerprints. The multi-wavelength distance
metric was learned to measure the similarity of HPLC finger-

prints. With the learned distance metric, we then computed
the Mahalanobis distances between the query CHM and
CHM dataset. The calculated Mahalanobis distances were

sorted from small to large in monotonically increasing order.
The most similar k CHMs corresponding to the smallest k
Mahalanobis distances were chosen to analyze cold-hot nature
of the query CHM. Finally, we introduced a cold nature prob-

ability (Pq) to evaluate the cold-hot nature of this query CHM

with the most similar k CHMs. The cold nature probabilities
of the query CHMs represented their cold degree, which could
be calculated by the ratio of the weights of cold CHMs to the

total weights of CHMs retrieved. The cold nature probability
was calculated as:

Pq ¼
Pc

i¼1WiPc
i¼1Wi þ

Ph
j¼1Wj

; cþ h ¼ k ð20Þ

where c is the number of cold CHMs, h is the number of hot

medicines, k is the number of most similar CHMs, Wi is the
similar weight of a CHM, which can be calculated
asWi ¼ 1=di, di is the corresponding Mahalanobis distance.

Given a threshold ofPT, ifPq < PT, we infer that the nature

of the query CHM is hot, otherwise, it’s nature is cold. We

consider PT as 0.5 for further study.

2.6. The proposed KMHF scheme for nature identification

An improved k-nearest neighbor algorithm based on multi-
wavelength HPLC fusion (KMHF).



Fig. 1 Cold-hot nature identification based on similarity metric of multi-wavelength HPLC.
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Given a CHM HPLC datasetX ¼ ½X1;X2; :::;XNW
�, Xi is the

ith wavelength HPLC fingerprints,Xi ¼ ½xi1; xi2; � � � ; xin� 2 Rd�n,
and the number of nature classesC ¼ 2.

1. Transformation matrics AðiÞjNW
i¼1 construction. Calculate the

matrixQijNW
i¼1, which is corresponding to the i th wavelength

HPLC fingerprints. Eigenvalue decomposition on matrix Qi

to get the m eigenvalues of Q corresponding to the smallest

m eigenvectors. Construct the transformation matrix AðiÞ

with the smallest m eigenvectors.
2. Mahalanobis distance dðxa; xbÞ learning. Calculate dðxa; xbÞ

between HPLC fingerprints xa and xb with the transforma-

tion matrices AðiÞjNW
i¼1 and the weight value bijNW

i¼1 based on

Eq.(2) and (19).
3. Similarity metric. Retrieve the k most similar CHMs, which

have the smallest k Mahalanobis distances between the

query CHM and the CHM dataset.
4. Cold-hot nature identification. Compute the ratio of the

weights of cold CHMs to the total weights of CHMs

retrieved.

2.7. Performance evaluation

In this subsection, the feasibility and effectiveness of the
KMHF scheme for cold-hot nature identification were evalu-

ated with numerous built experiments. We compared the pre-
diction identification performance of KMHF scheme with
that of some classical algorithms, such as the classical distance
metric learning algorithms (large margin nearest neighbor

(LMNN) (Weinberger et al., 2009), information-theoretic met-
ric learning (ITML)) (Davis et al., 2007), the cold-hot nature
classification schemes (Pearson correlation coefficient (PCC)

(Wei et al., 2021c), retrieval system (RS) (Wei et al., 2019a),
and extreme learning machine (ELM)). All evaluation experi-
ments were performed in the environment of multi-

wavelength HPLC fingerprint dataset. The similar CHMs with
clear nature were calculated to discriminate the cold-hot nat-
ure of CHMs with unclear nature. We firstly used multi-

wavelength HPLC fingerprints to analyze the ingredient infor-
mation of CHMs. Secondly, we developed a KMHF scheme to
discriminate the cold-hot nature of CHMs. Finally, numerous

experiments were built to evaluate the feasibility and effective-
ness of the KMHF scheme.

In our experiments, we introduced stability evaluation to

estimate the identification performance of our KMHF scheme.
Stability evaluation describes the proportion of calculated sim-
ilar CHMs that are semantic relevance with the query CHMs.

Leave-one-CHM-out approach was introduced to assess the
stability evaluation in the whole CHM multi-wavelength
HPLC fingerprints. In each case, one CHM was left as the test
query CHM, and remaining 60 CHMs were selected as the ref-

erence training CHM dataset. Because every CHM should be
selected as a query-one, this process was performed 61 times.
Cold probability of each test CHM was calculated to represent

the extent that the nature of this CHM belongs to cold. In our
scheme, we found k reference CHMs which were most similar
to the query CHM, and calculated the cold probability of the

query CHM. As a result, 61 cold probabilistic values were
obtained. By varying the threshold of the cold probability, a
Receiver Operating Characteristic (ROC) curve was drawn.

The area under the ROC curve (AUC) and identification accu-
racy (ACC) were used to test the performance of our KMHF
scheme. The formula of identification accuracy is defined as:

ACC ¼ Fðqki Þ ¼
Pk

j¼1I½yi ¼ yj�
k

ð20Þ

In (20), Fðqki Þ represents a ratio of the number of accurately

identified CHMs from the i th query CHM to the number of

the most similar CHMsk. Therefore, Fðqki Þ is a function of

numberk, and ACC value changes with the change of num-
berk. Finally, the AUC and ACC values were calculated to
analyze the performance of our KMHF scheme.

3. Results

3.1. Parameter configurations

In this study, several parameters in KMHF scheme should be

optimized for cold-hot nature identification. The balance
parameter k in (4), parameter l in (5), parameter q in (13),
parameter k in (20) need to be studied for the optimal identi-



Fig. 3 The AUC and ACC curves with differentl.

Fig. 4 The AUC and ACC curves with differentq.

8 G. Wei et al.
fication model. All parameters are configured in the environ-
ment of multi-wavelength HPLC fingerprints.

Our experiments introduced stability evaluation to study

the parameters for the optimal KMHF scheme. AUC and
ACC were used as the evaluating indicators to evaluate the
performance of our KMHF scheme with varying the values

of parameters (k,l,q and k). As a result, AUC and ACC values
were studied as functions of the tuning parameters (k,l,q and
k) to describe more comprehensive curves for the optimal

KMHF scheme. We tuned the parameter k in (4) in the range
of [10-8, 10-6, 10-4, 10-2, 1, 102, 104, 106, 108]. Fig. 2 displays the
AUC and ACC curves for nature identification of CHM
HPLC fingerprints when the tuning parameter k varies from

10-8 to 108. From Fig. 2, our KMHF scheme is not suitable

for a larger parameterk. Ifk > 102, the identification perfor-

mance of KMHF scheme is poor. Ifk 6 102, the identification
performance is relatively stable. By studying AUC and ACC

curves, our KMHF scheme reaches optimal when defining
the parameterk ¼ 1. In the experiments, parameter l in (5) is
set as 103, parameter q in (13) is set as 10, the number of

retrieved CHMs k in (20) is set as 7.
In this work, we evaluated the performance of cold-hot nat-

ure identification with different parameter l in Eq.(5). We

tuned the parameter l in (5) in the range of [10-3, 10-2, 10-1,
1, 101, 102, 103, 104, 105]. Fig. 3 displays the AUC and ACC
value curves for nature identification with differentl. From
Fig. 3, our KMHF scheme is sensitive to parameterl. By

studying AUC and ACC curves, our KMHF scheme reaches

optimal when defining the parameterl ¼ 103. In this experi-
ment, the parameter k is set as 1, parameter q in (13) is set

as 10, the number of retrieved CHMs k in (20) is set as 7.
In this study, we analyzed the impact of different parameter

q on our scheme for cold-hot nature identification. We tuned
the parameter q in (13) in the range of [10-3, 10-2, 10-1, 1,

101, 102, 103]. Fig. 4 displays the AUC and ACC value curves
for nature identification with differentq. From Fig. 4, our
KMHF scheme is more suitable for a large parameterq. The
AUC and ACC curves both have a peak whenq ¼ 10. Com-
prehensively analyzing the AUC and ACC curves, we define
q as 10. whenq ¼ 10, our scheme is optimal. In this experi-

ment, the parameter k is set as 1, parameter l in (5) is set as
103, the number of retrieved CHMs k in (20) is set as 7.
Fig. 2 The curves of AUC and ACC values with differentk.
Furthermore, we configured the number of retrieved CHMs
k in (20) for evaluating the identification performance of our

scheme. We tuned the parameter k in (20) in the range of [1,
3, 5, 7, 10, 12, 15, 20]. Fig. 5 shows the AUC and ACC curves
with different parameter k. According to this figure, AUC and

ACC curves have fluctuations when parameter k takes differ-
ent values, which indicates that the performance of our
KMHF scheme fluctuates slightly with the increase of k. Com-
prehensively analyzing the AUC and ACC curves, our KMHF

scheme reaches optimal performance when k = 7. In this
experiment, the tradeoff parameter k is set as 1, the parameter

l is set as103, parameter q in (13) is set as 10.

3.2. Performance evaluation

Performance evaluation was performed to verify the feasibility
of our KMHF scheme with the stability evaluation. Leave-

one-CHM-our method was constructed to perform the stabil-
ity evaluation. Several classical identification schemes were
introduced to compare the cold-hot nature classification per-



Fig. 5 The AUC and ACC curves with different k.

Table 2 Comparison of stability evaluation.

Classifiers AUC ACC

ITML 0.739 0.672

LMNN 0.766 0.681

ELM 0.625 0.592

RS 0.789 0.650

PCC 0.604 0.581

LFV 0.808 0.734

KMHF 0.819 0.771
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formance with our KMHF scheme, including our nature iden-
tification schemes (RS, PCC and ELM) and distance metric

learning models (i.e., LMNN, ITML). RS and PCC schemes
have been used for nature classification of CHMs with UV fin-
gerprints. ELM has been utilized to analyze the nature of

CHM compounds. A long fingerprint vector from straightfor-
wardly concatenating three wavelength HPLC fingerprints was
included as a comparative reference. The similarity metric

from optimal solution matrix A� in Eq. (12) was used to tackle
this long fingerprint vector. We marked this scheme as LFV.
Table 2 displays the performance comparison of our KMHF
scheme and several classical identification schemes. From the

comparison results in Table 2, we obtained the following con-
clusions. Firstly, our KMHF scheme outperforms the compar-
ative LFV in nature identification. This demonstrates our
Table 3 The nature identification instances. Nature labels are mark

Identification Instances CHMs with cold nature

Query CHMs Lophatheri Herba (cold)

The similar reference CHMs Anemarrhena Asphodeloides

Rhei Radix et Rhizoma (cold

Dianthi Herba (cold)

Notopterygii rhizoma et radix

Gardeniae Fructus (cold)

Stephaniae Tetrandrae Radix

Puerariae Lobatae Radix (col
inference that it is not optimal for straightforwardly concate-
nating three wavelength HPLC fingerprints as a long vector.
Secondly, the classification performance of our KMHF

scheme is better than that of the comparison classification
schemes. This indicates that our scheme comprehensively ana-
lyzes the semantic relevance and fingerprint similarity of CHMs,

and has better identification performance of cold-hot nature.
Especially, different wavelength HPLC fingerprints can better
mine the ingredient information of CHMs for cold-hot nature

identification. Thirdly, the identification performance of our
KMHF scheme outperforms that of RS. Compared with our
scheme, RS does not consider the fingerprint similarity. There-
fore, fingerprint similarity is an effective complement to seman-

tic relevance. Fourth, the similarity metric methods (including
ITML, LMNN and RS) have better classification performance
than PCC and ELM. This shows that similarity metric methods

are more effective for nature classification of CHMs. Further-
more, the similarity metric experiments confirm the proposed
theoretical hypothesis that CHMs with similar cold-hot nature

have similarmaterial basis. Fifth, the performance ofELMalgo-
rithm is poor for cold-hot nature prediction. Finally, in sum-
mary, the constructed experiments verify the feasibility of our

KMHF scheme.

3.3. Nature identification examples

Leave-one-CHM-out method was introduced to give the

examples of nature identification. Two representative CHMs,
including Lophatheri Herba (cold) and Rhizoma Arisaematis
(hot), were selected as query instances to illustrate nature iden-

tification. Table 3 reports two query CHM examples obtained
from our KMHF scheme, in which query CHMs are listed in
the second row and top k = 7 similar CHMs are showed in

other rows. The top k = 7 similar CHMs are arranged in
monotonically increasing order of Mahalanobis distance.
Lophatheri Herba is chosen as a typical cold medicine to

explain nature identification. The calculated similar CHMs
include six cold reference CHMs and one hot reference
CHM. Its cold nature probability we obtained is 92.5 %,
which indicates that Lophatheri Herba is probably cold. Rhi-

zoma Arisaematis is chosen as a typical hot medicine to ana-
lyze the nature identification. The calculated similar CHMs
include five hot reference CHMs and two cold reference

CHMs. Its cold nature probability we obtained is 3.1 %, which
indicates that Rhizoma Arisaematis is probably hot. The nat-
ure identification instances demonstrate the relationship

between CHM ingredients and cold-hot nature.
ed in brackets.

CHMs with hot nature

Rhizoma Arisaematis (hot)

Bunge (cold) Clematidis Radix et Rhizoma (hot)

) Mustard Seeds (hot)

Corydalis Rhizoma (hot)

(hot) Ligustici Rhizoma et Radix (hot)

Aconiti Lateralis Radix Praeparata (hot)

(cold) Ecliptae Herba (cold)

d) Trachelospermi Caulis et Folium (cold)



Table 4 Confusion matrix of 61 CHMs.

Ground Truth Identification

Cold Hot

Cold 27 3

Hot 11 20

Table 5 The recall, precision and F-score of 61 CHMs.

Cold Hot

Recall 90.0 % 64.5 %

Precision 71.1 % 87.0 %

F-score 79.4 % 74.1 %
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3.4. Overall identification performance

In this work, the overall identification performance of our
KMHF scheme was analyzed with four evaluation indices,
including confusion matrix, F-score, precision, and recall. All

evaluation indices were obtained from leave-one-CHM-out
method. Table 4 displays the confusion matrix from nature
identification of 61 CHMs. The identification accuracy rate

of hot CHMs is 64.5 % (20/31), while the prediction accuracy
rate of cold CHMs is 90.0 % (27/30). Therefore, the total pre-
diction accuracy rate of 61 CHMs is 77.0 % (49/61). According

to Table 4, our scheme has higher identification accuracy for
cold CHMs, but poor identification accuracy for hot CHMs.
Table 5 shows the precision, recall, and F-score of nature iden-

tification of 61 CHMs. By summarizing Table 4 and Table 5,
we conclude that our scheme is effective in nature identifica-
tion of 61 CHMs with HPLC fingerprints. The ingredient
information can be used to analyze cold-hot nature of CHMs.

4. Discussion

HPLC has been widely used in the analysis of CHM ingredi-

ents, including nature identification and quality evaluation.
Its advantage is that it can quantitatively and qualitatively test
CHM ingredients. Our group has done a lot of work in the

nature identification, but mainly focused on the UV spectrum.
Therefore, this study explores to introduce HPLC to analyze
the CHM ingredients, and build a classification model for nat-

ure evaluation. Multi-wavelength HPLC fingerprints are used
to extract different characteristics of CHM ingredients. The
experimental results find that HPLC can extract more feature

information of CHM ingredients related to CHM nature.
Multi-wavelength HPLC fingerprints challenge the classical

classifiers. These algorithms may not be able to mine the fea-
ture information of CHM components, resulting in low accu-

racy of cold-hot nature identification. Especially, different
wavelength HPLC fingerprints represent different physical
properties of CHM ingredients. The classical classifiers cannot

adapt to this data feature. It perhaps leads to low identification
accuracy by straightforwardly concatenating three wavelength
HPLC fingerprints into a long vector. In this study, our

scheme introduced a multi-wavelength distance metric learning
algorithm for cold-hot nature identification. The experimental
results demonstrate that our scheme can better mine character-
istic information of CHM ingredients related to CHM nature.

The theoretical basis of this study comes from a hypothesis
that CHMs with similar cold-hot nature have the same or sim-
ilar material basis. This study introduced a multi-wavelength

distance metric learning algorithm to measure the similarity
of CHM ingredients and proposed an improved KNN scheme
for cold-hot nature evaluation. Experimental results indicate

that there is a close relationship between CHM nature and
its ingredients. From the perspective of HPLC, our experi-
ments find that CHMs with similar ingredients related to
cold-hot nature have similar cold-hot nature. Our experimen-

tal results support the hypothesis.
Distance metric learning algorithms, such as LMNN,

ITML and RS, mainly focus on semantic relevance of CHMs

without considering fingerprint similarity of CHM HPLC.
However, semantic relevance of CHMs cannot reflect the
whole concept of similarity measure. Our group defines the

similarity metric as semantic relevance and fingerprint similar-
ity. Experiments indicate that fingerprint similarity is an
important complement to similarity measurement, which can

improve the identification accuracy of cold-hot nature.
However, there are some problems to be solved in the

future. Firstly, multi-wavelength HPLC fingerprints are used
to analyze CHM ingredients. Gas chromatography and spec-

troscopy are not taken into account. Multi-fingerprints tech-
nology can extract different characteristic information of
CHM ingredients, and perhaps improve the accuracy of nature

identification. As a result, nature identification scheme based
on multi-fingerprints fusion is the focus of future research. Sec-
ondly, the dataset in this study is a small sample and high-

dimensional dataset. This poses a challenge to most classifiers.
It is the direction of future research by designing special clas-
sifiers according to the characteristics of data. Thirdly, in this

study, a HPLC data of 61 CHMs was used to test the proposed
KMHF scheme. However, this is a primary assessment, which
needs more CHM HPLC fingerprints to verify. Consequently,
an extended dataset and an independent testing dataset are

needed in the future studies.

5. Conclusions

In this study, a KMHF scheme was developed to fuse multi-wavelength

HPLC fingerprints for cold-hot nature identification. Multi-wavelength

HPLC fingerprints of CHMs were used to analyze the characteristic

information of CHM ingredients. An improved KNN scheme was pro-

posed for nature identification.Numerous experimentsdemonstrate that

cold-hot nature of CHMs is closely related to CHM ingredients. Com-

parative experiments indicate that the nature identification performance

of our scheme is the best. Therefore, our scheme can better mine the

ingredient information related to cold-hot nature. Furthermore, our

experiments support the scientific hypothesis that CHMs with the same

cold-hot nature have similar material basis.
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