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Abstract Graviola, soursop, or guanabana (Annona muricata L.), is an ethnomedical fruit con-

sumed to alleviate headache, diarrhea, diabetes, and cancer. Pericarp is the inedible part of graviola

least studied in comparison to seeds and leaves, even thought, it contains the highest concentration

of graviola total polyphenols. Anticancer effect of graviola pericarp has been demonstrated in crude

extracts attributing the effect to acetogenins, however, crude extracts contain several active

molecules. Thus, the present work aimed to fractionate and purify an ethanolic crude extract from

graviola pericarp. Purified graviola pericarp fraction (PGPF) was evaluated on cancerous and non-

cancerous cell lines, and then was identified by NMR, TOF-MS, and HPLC. Finally, an in silico

analysis was performed to predict targets cancer-related of the molecule detected. Our results

revealed IC50 values for cervix adenocarcinoma (HeLa), hepatocellular carcinoma (HepG2),

triple-negative breast cancer (MDA-MB-231), and non-cancerous cell line (HaCaT) of 92.85 ± 1.

23, 81.70 ± 1.09, 84.28 ± 1.08, and 170.2 ± 1.12 mg PGPF/mL, respectively. In vitro therapeutic

indexes estimated as quantitative relationship between safety and efficacy of PGPF were 1.83, 2.08,
edillo),
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and 2.02 for HeLa, HepG2, and MDA-MB-231, respectively. The NMR analysis revealed astra-

galin (kaempferol-3-O-glucoside) in PGPF, a flavonoid not reported in graviola pericarp until

now. Astragalin identity was confirmed by TOF-MS and HPLC. In silico results support previous

reports about astragalin modulating proteins such as Bcl-2, CDK2, CDK4, MAPK and RAF1.

Also, results suggest that astragalin may interact with other cancer-related proteins not associated

previously with astragalin. In conclusion, astragalin may be contributing to the anticancer effect

observed in graviola pericarp extracts.

� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Graviola, soursop, or guanabana (Annona muricata L.), is an eth-

nomedical fruit distributed in the tropical regions of Central and South

America, Western Africa, and Southeast Asia. Traditionally, inhabi-

tants of these regions consume the fruit, leaves, bark, root, and seeds

of graviola to alleviate headache, diarrhea, coughs, diabetes, and can-

cer (Coria-Téllez et al., 2018, Rady et al., 2018). The anticancer activity

of A. muricata is mainly attributed to annonaceous acetogenins (Qazi

et al., 2018, Rady et al., 2018, Yajid et al., 2018, Jacobo-Herrera et al.,

2019, Errayes et al., 2020), even though, graviola contains active mole-

cules such as alkaloids, phenols, and flavonoids (Prasad et al., 2019).

Recently, the pericarp (peel, skin or husk) of fruits such as Punica

granatum L. (Wong et al., 2021), Garcinia mangostana L. (Meylina

et al., 2021), Camellia japonica L. (Cho et al., 2021), and Capsicum

annuum L. (Chilczuk et al., 2020) has been identified as a source of

bioactive molecules with anticancer properties. Analyses of graviola

pericarp demonstrate acetogenins (Aguilar-Hernández et al., 2020)

and the highest concentration of phenols, flavonoids (Adefegha

et al., 2015), and total polyphenols (Aguilar-Hernández et al., 2019)

compared with pulp, columella, and seeds. However, graviola pericarp

is the inedible part least studied in comparison to seeds and leaves.

Although, crude extracts from graviola pericarp exhibit antioxidant

(Adefegha et al., 2015, Lee et al., 2016, Audu et al., 2019, Iyanda-

Joel et al., 2019a, Orak et al., 2019), antiparasitic (Jaramillo et al.,

2000), antibacterial (Karthikeyan et al., 2016, Iyanda-Joel et al.,

2019b), antidiabetic, antihypertensive (Adefegha et al., 2015), and anti-

cancer effects (Deep et al., 2016, Kuete et al., 2016, Robles et al., 2017,

González-Pedroza et al., 2021, Jabir et al., 2021), the reported studies

focus on crude extracts without purification and identification of mole-

cules. Thus, the present work aimed to purify a fraction obtained from

a crude extract of graviola pericarp. Purified graviola pericarp fraction

(PGPF) was evaluated on cancerous and non-cancerous cell lines via-

bility and PGPF identity was elucidated by Nuclear Magnetic Reso-

nance (NMR), Time-of-Flight Mass (TOF-MS), and High-

Performance Liquid Chromatography (HPLC). Finally, an in silico

analysis was performed to predict targets cancer-related of the mole-

cule detected.

2. Material and methods

2.1. Chemicals and cell lines

All reagents and solvents were analytical grade purchased
from Sigma-Aldrich (St. Louis, MO, USA) and Merck KGaA

(Darmstadt, HE, DEU). Cell culture reagents such as Dul-
becco’s modified Eagle´s medium (DMEM), fetal bovine serum
(FBS), and penicillin–streptomycin antibiotics were acquired

from GIBCO (Grand Island, NY, USA), while MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduc-
tion reagent was purchased from Sigma-Aldrich (St. Louis,

MO, USA). Cervix adenocarcinoma (HeLa), hepatocellular
carcinoma (HepG2), and triple-negative breast cancer
(MDA-MB-231) cell lines were obtained from American Type

Culture Collection (ATCC; Manassas, VA, USA), while non-
cancerous immortalized keratinocytes (HaCaT) cell line was
kindly provided by Dr. Mario Eugenio Cancino Dı́az (Labora-

torio de Inmunidad Innata, Departamento de Inmunologı́a,
Escuela Nacional de Ciencias Biológicas del Instituto Politéc-
nico Nacional, México).

2.2. Graviola pericarp crude extract and phytochemical
identification

Graviola fruit collected from Colima Mexico in February 2017

was identified as Annona muricata by the Botany Department
(Escuela Nacional de Ciencias Biológicas del Instituto Politéc-
nico Nacional). First, the fresh fruit was washed and peeled,

and then the pericarp was fragmented and weighed. Pericarp
crude extract was prepared by mixing ethanol (96 %, 3 L)
and graviola pericarp (2.314 kg) for five days at room temper-

ature. Solvent was removed under reduced pressure at 40 �C
and secondary metabolites were identified in the crude extract
by qualitative phytochemical screening tests as Dominguez
described (1973). Coumarins, tannins, and quinones were

detected by Erlich, jelly reagent, and ammonium hydroxide
tests, respectively. Flavonoids were identified by Shinoda
reagent and sodium hydroxide, while alkaloids were recog-

nized by silicotungstic acid, Dragendorff method, and Mayer
test.

2.3. Purified graviola pericarp fraction (PGPF)

Pericarp crude extract (42 g) was separated in a silica gel col-
umn with methanol-acetone (4:1). Fraction 5–8 was purified
by preparative thin layer chromatography in silica gel 60

F254 plates eluting with methanol-acetone (4:1) and visualizing
with UV light. Then, PGPF was evaluated on cancerous and
non-cancerous cell viability, and PGPF identity was elucidated

by NMR, TOF-MS, and HPLC.

2.4. Cell viability

The PGPF effect on cell viability of cancerous (HeLa, HepG2,
and MDA-MB-231) and non-cancerous (HaCaT) cell lines was
determined by MTT assay. Cells were grown and maintained

as monolayer culture in DMEM supplemented with FBS (10
%), penicillin (100 U/mL), and streptomycin (100 mg/mL) at
standard conditions in a humidified incubator (37 �C and 5
% CO2). The PGPF was prepared in serum-free DMEM

(5 mg PGPF/mL) and then sterilized by a syringe driven filter
(0.22 mm pore size). Cells were seeded in 96-well culture plates

http://creativecommons.org/licenses/by/4.0/
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at 6x103 cells/well and incubated 24 h in 0, 5, 50, 100, 150, 200,
250, and 500 mg PGPF/mL in triplicate. The PGPF was
removed, and cells were incubated 3 h in MTT solution

(0.1 mg/mL). Finally, MTT was discarded, and formazan crys-
tals were dissolved with isopropanol (pH = 4). Wells absor-
bances (Abs) were measured at 595 nm in an ELISA ELx808

reader (BioTek, Winooski, VT, USA), and data were used to
calculate cell viability (%) for each cell line by the following
formula:

Cell viability (%) = (Abs595 of PGPF treated cells/Abs595 control cells)100
2.5. Statistical analysis

Cell viabilities from three independent experiments were ana-
lyzed by two-way analysis of variance (ANOVA) followed by
Bonferroni post hoc test. The mean ± standard deviation (SD)

was plotted for each cell line, and p � 0.05 was considered as
statistically significant. Statistical analysis and graphs were
performed in GraphPad Prism 5 (GraphPad Software Inc.).

2.6. Half maximal inhibitory concentration (IC50) and in vitro

therapeutic index

The IC50 of PGPF for each cell line was determined in Graph-

Pad Prism 5. Cell viabilities from triplicate measures were nor-
malized, and PGPF concentrations were transformed to
logarithmic scale. Then, non-linear regression was performed

to estimate the IC50 for each cell line. The IC50 ± SD, as well
as the R2 value were reported. On the other hand, the in vitro
therapeutic indexes for cancer cell lines were estimated by the

following formula as González-Pedroza (2021) described.

In vitro therapeutic index = IC50 non-cancerous cell line/IC50 cancerous cell line
2.7. Nuclear magnetic resonance (NMR), time-of-flight mass
spectra (TOF-MS) and high-performance liquid
chromatography (HPLC)

The PGPF was identified by 1H and 13C NMR. Tetradeutero-
methanol (CD3OD) was used as solvent, and trimethylsilane

(TMS) was the internal standard. Spectra were recorded on
Varian Mercury-300 NMR spectrometer (300 MHz and
75.4 MHz) (Varian Inc., Palo Alto, CA, USA), and data were

compared with literature and an astragalin standard. Molecule
identity was confirmed by TOF-MS and purity was evaluated
by HPLC, the experimental conditions are described in the

supplementary section. Molecule structure was drawn in
ACD/ChemSketh (Freeware) version 2019.2.2.

2.8. In silico analyses

2.8.1. Targets prediction and protein–protein interaction (PPI)

network

Astragalin 2D structure in SDF format was downloaded from
PubChem database (https://pubchem.ncbi.nlm.nih.gov/) as
Compound ID: 5282102. Astragalin targets prediction was per-

formed by inverse docking in ACID web server (Auto in silico
Consensus Inverse Docking, http://chemyang.ccnu.edu.cn/ccb/
server/ACID/index.php/home/index), selecting Vina, PSO,
LeDock, and PLANTS as docking software. The consensus
inverse docking program contains 809 approved targets and it
evaluates the binding affinity between astragalin and each target

in database, outputting top potential targets and corresponding
energy terms. ACID results were ordered from lowest to highest
energy bind (DEbind = kcal/mol). Target names and their origin

organism were searched in UniProt data base (https://www.uni-
prot.org). The first 150 targets fromHomo sapiens were uploaded
to STRING (Search Tool for the Retrieval of Interacting Genes/

Proteins, https://string-db.org/) and a protein–protein interaction
(PPI) network was determined. The STRING settings were
selected as default: full STRING network, edges indicate evi-
dence, all active interaction sources, medium confidence (0.4)

for interaction score, non-maximum number of interactions to
show, and interactive svg display mode. The STRING server pre-
sents an enrichment analysis of gene ontologies, pathways and

domains that shows proteins grouped by their functional descrip-
tion. In the enrichment analysis proteins related with ‘‘Cancer”,
‘‘Pathways in cancer”, ‘‘Breast cancer pathway”, and ‘‘Cervical

carcinoma cell” were selected from the DISEASES (DOID:162),
KEGG Pathways (hsa05200), WikiPathways (WP4262), and
TISSUES (BTO:0000180), respectively.

2.8.2. Statistical data

The web server STRING estimated and provided statistical
data of the inferred PPI network. Number of edges expected,

and p-value of PPI enrichment were determined. Also,
functional enrichments presented a false discovery rate by
the p-values corrected from multiple testing within each cate-

gory using the Benjamini-Hochberg procedure.

3. Results and discussion

3.1. Graviola pericarp crude extract, phytochemical
identification, and fraction purification

In this study, we obtained 52.8 g of brown and viscous ethanolic
crude extract from 2.314 kg of graviola pericarp. Crude extract
evaluation by qualitative phytochemical screening tests revealed

flavonoids, tannins, coumarins, alkaloids, and quinones in agree-
ment with previous reports of ethanolic extracts from graviola
pericarp analyzed by qualitative methods (Iyanda-Joel et al.,

2019a, Iyanda-Joel et al., 2019b). Reports of crude extracts from
graviola pericarp demonstrate anticancer properties attributed
mainly to acetogenins (Deep et al., 2016), albeit crude extracts

contain phytochemicals related to anticancer activity such as fla-
vonoids (Kubczak et al., 2021), tannins (El Omari et al., 2021),
coumarins, alkaloids (Huang et al., 2017), and quinones
(Verrax et al., 2011). Moreover, these studies focus on evaluating

crude extracts without purifying or identifying the molecules
involved. Thus, we procured a PGPF to evaluate its effect on
cancerous and non-cancerous cells. After fractionating and puri-

fying 42 g of ethanolic crude extract we obtained 1.2 g of yellow
PGPF (total yield of 28.57 mg/g extract).

3.2. Effect of PGPF on cancerous and non-cancerous cell

viability

The Fig. 1 shows the viability of cancerous HeLa, HepG2, and

MDA-MB-231 cell lines and non-cancerous HaCaT cells after

https://pubchem.ncbi.nlm.nih.gov/
http://chemyang.ccnu.edu.cn/ccb/server/ACID/index.php/home/index
http://chemyang.ccnu.edu.cn/ccb/server/ACID/index.php/home/index
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Table 1 The IC50 of PGPF and the in vitro therapeutic index.

Cell line IC50 ± SD

(mg PGPF/mL)

R2 In vitro

therapeutic

index

HaCaT 170.2 ± 1.12 0.8748

HeLa 92.85 ± 1.23 0.8888 1.83

HepG2 81.70 ± 1.09 0.9753 2.08

MDA-MB-231 84.28 ± 1.08 0.9759 2.02

IC50, half maximal inhibitory concentration; SD, standard devia-

tion; R2, from non-linear regression.
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24 h incubation with PGPF. The PGPF reduced more than
90% the cell viability in cancerous and non-cancerous cell lines
exposed to the highest concentrations (250 and 500 mg PGPF/

mL). While at 50, 100, 150, and 200 mg PGPF/mL cell viability
was decreased depending on cell lines; cancerous cells were sig-
nificantly more affected than non-cancerous cells. The IC50 of

PGPF was determined (Table 1) and cell lines sensitivity to
PGPF was in the following order: HepG2 > MDA-MB-231
> HeLa > HaCaT. Subsequently, the in vitro therapeutic

index was estimated for each cancerous cell line as a quantita-
tive relationship between PGPF safety (IC50 on HaCaT) and
efficacy (IC50 on HeLa, HepG2, and MDA-MB-231).
Although, there is no universal therapeutic index value consid-

ered sufficient or required for a drug candidate a high thera-
peutic index is preferable, but a lower therapeutic index may
be acceptable for treatment of life-threatening diseases that

have limited treatment options (Muller and Milton 2012) such
as cancer. The in vitro therapeutic indexes obtained were 1.83
(HeLa), 2.08 (HepG2), and 2.02 (MDA-MB-231), that are

10.8, 12.2, and 11.9-fold greater than the value (0.17) reported
by Caba et al. (2011) for 5-fluorouracil estimated in the breast
cancer MCF-7 cell line.

3.3. PGPF identification by NMR, TOF-MS, and HPLC

The identity of PGPF was elucidated by NMR. Table 2 indi-
cates the chemical shift values obtained from 1H and 13C spec-

trum. The NMR results unambiguously coincided with the
spectrum values of kaempferol 3-O-glucoside, known as astra-
galin, previously identifyied in Allium paradoxum by Ghavam-

Haghi and Sadeghi Dinani (2017). The TOF-MS results
confirmed astragalin identity (Fig. S1), and estimations from
HPLC indicated a purity of 97.3 % (Fig. S2). Kaempferol

3-O-glucoside (Fig. 2) is a flavonol common in nature
Fig. 1 Effect of purified graviola pericarp fraction (PGPF) on ca

means ± standard deviation (SD) from three independent experiments

p � 0.01, and p � 0.001, respectively. Viability of cancerous cell lin

cancerous HaCaT viability at the same PGPF concentration.
(Calderon-Montano et al., 2011) identified in leaves from
Annona muricata (Taiwo et al., 2019) and other species of
Annonaceae family such as A. mucosa (Bicalho et al., 2012),

A. macroprophyllata (Brindis et al., 2013), A. cherimola
(Haykal et al., 2021), and U. rufa (Deepralard et al., 2009).
However, there are not previous reports of astragalin in gravi-
ola pericarp. Interestingly, anticancer effect of astragalin on

HeLa (Krauze-Baranowska et al., 2013, Zilla et al., 2014),
HepG2 (Ahmed et al., 2016, Li et al., 2017, Hong et al.,
2021), and MDA-MB-231 (Ahn et al., 2019) cell lines have

been reported in agreement with our results (3.2 section). Also,
protective effect of astragalin on HaCaT UV-irradiated was
observed by Park et al. (2012). Thus, astragalin could be con-

tributing to the anticancer properties reported for crude
extracts of graviola pericarp. The identification of bioactive
molecules in pericarp is relevant because it represents 20 %
of the inedible graviola parts (Aguilar-Hernández et al.,

2019), which are discarded as waste during the preparation
of drinks, juices, jellies, jams, ice-creams, candies, and nectars
in the food industry (Qazi et al., 2018). Therefore, bioactive

molecules, such as astragalin, could be exploited at reduced
ncerous and non-cancerous cell viability. Columns represent the

performed in triplicate. Symbols *, **, and *** indicate p � 0.05,

es HeLa, HepG2, and MDA-MB-231 was compared with non-



Table 2 Identification of PGPF by NMR. 1H (300 MHz) and 13C NMR (75.4 MHz) in CD3OD solvent; spectroscopic data presented

as chemical shifts (ppm), multiplicity, and J (Hz).

PGPF Standard Literature*

Carbon d1H d13 C d1H d13 C d 1H ppm d13C

2 157.3 157.5 162.8

3 134.6 135.2 135.7

4 177.6 177.5 179.5

5 160.6 161.0 161.5

6 6.20 (1H, s) 99.4 6.21 (1H, s) 99.7 6.22 (1H, s) 99.7

7 164.6 164.8 165.9

8 6.40 (1H, s) 94.4 6.42 (1H, s) 94.7 6.41 (1H, s) 94.9

9 157.4 157.2 159.2

10 103.8 104.1 105.7

1΄ 122.2 122.6 122.6

2´, 6´ 6.80 (2H, d, J = 8.6) 131.2 6.81 (2H, d, J = 8.5) 131.6 6.91 (2H, d, J = 8.5) 132.3

3´, 5´ 8.00 (2H, d, J = 8.6) 115.6 8.05 (2H, d, J = 8.5) 116.0 8.07 (2H, d, J = 8.5) 116.1

4´ 160.7 159.9 158.5

1´´ 5.30 (1H, d, J = 7.1) 102.5 5.29 (1H, d, J = 7.2) 102.7 5.26 (1H, d, J = 7.2) 103.9

2´´ 3.90 (1H, dd, J = 10.3, 3.9) 74.5 3.76 (1H, dd, J = 10.3, 3.8) 74.7 3.46 (1H, dd, J = 10.4, 3.6) 75.7

3´´ 4.03 (1H, m) 76.4 4.07 (1H, m) 76.8 3.37 (1H, m) 77.9

4´´ 3.10 (1H, m) 71.5 3.14 (1H, m) 71.4 3.24 (1H, m) 71.3

5´´ 3.30 (1H, m) 77.9 3.51(1H, m) 77.4 3.56 (1H, m) 78.4

6´´ 3.40 (2H, d, J = 11.2) 62.2 3.6 (2H, d, J = 11.3) 62.5 3.70 (2H, d, J = 11.5) 62.6

* NMR of astragalin reported by Ghavam-Haghi and Sadeghi Dinani (2017).

Fig. 2 Astragalin identified in PGPF.
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costs by sustainable utilization of agri-food wastes (Ben-
Othman et al., 2020).

3.4. In silico analyses

3.4.1. Astragalin targets prediction and interaction network

Astragalin exhibits various pharmacological properties,

including anti-inflammatory, antioxidant, neurological, car-
dioprotective, antidiabetic, and anticancer effects (Peng
et al., 2020). However, investigations are still mandatory to

fully understand the mechanisms of action by which astragalin
acts (Riaz et al., 2018). The anticancer effect of astragalin has
been related with apoptosis induction. Hong et al. (2021),

Wang et al. (2021), Xu et al. (2021), Yang et al. (2021), and
You et al. (2017) suggest that astragalin induces apoptosis
by modulation of Bcl-2 and Bax in liver, gastric, lung, colon,
and melanoma cancers, respectively. Interestingly, apoptosis

regulator Bcl-2 protein (Uniprot ID P10415, PDB 4LXD)
ranks fourteenth (DEbind = –32.99 kcal/mol) in the results
of targets prediction from ACID web server (Table S1). Thus,
our results confirm the possible interaction of astragalin with
Bcl-2, that is supported by Pirvu et al. (2018) in a molecular

docking study. On the other hand, Yang et al. (2021) observed
that astragalin induces cell arrest by modulation of CDK2 and
CDK4 in cancerous colon cells. Both, cyclin-dependent kinase

2 (CDK2, Uniprot ID P4941, PDB 4EK4) and cyclin-
dependent kinase 4 (CDK4, Uniprot ID P11802, PDB code
2W96) were identified as astragalin targets in our results with

DEbind values �30.76 and �28.02 kcal/mol, respectively.
The 150 targets of astragalin obtained by inverse docking in
ACID web server are described in Table S1. After uploading
the astragalin targets to STRING web server, the PPI network

showed in Fig. 3 was obtained. Nodes represent the proteins
(150) and edges indicate the interactions between proteins
(698), network stats estimated a p-value < 1.0e�16 since 337

edges were expected. Consequently, predicted targets present
more interactions among themselves than a random set of
150 proteins from the genome. From all the targets evaluated

in STRING, 32 % present functional enrichments related with
cancer. The p-values of functional enrichments were <0.001
(Table S2). Proteins related with cancer, pathways in cancer,
breast cancer pathway, and cervical carcinoma cell were col-

ored yellow, purple, red, and green in the PPI network, respec-
tively (Fig. 3). A Venn diagram in Fig. 4 shows the relation
among proteins grouped by description enrichments,

MAP2K1 and RAF1 coincide with the four enrichments
selected in STRING. Particularly, these proteins are compo-
nents of the pathway RAS-MAPK considered a potential ther-

apeutic target for cancer treatment (Santarpia et al., 2012).
Cho et al. (2014) reported that astragalin ameliorated oxida-
tive stress by modulating MAPK signaling in an asthma

model, while Asaad et al. (2021) demonstrated the inhibition
of Raf/MAPK pathway by astragalin in mice treated with
paracetamol. Therefore, interactions of astragalin with the tar-
gets predicted in ACID web server have been suggested in pre-

vious reports, however, targets such as ALDH2, CYP19A1,



Fig. 3 Protein-protein interaction (PPI) network of astragalin predicted targets. Nodes represent proteins obtained from astragalin

targets prediction, while edges indicate interactions between proteins. Nodes related with cancer, pathways in cancer, breast cancer

pathway, and cervical carcinoma cell were colored yellow, purple, red, and green, respectively.
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HCK, LCK, MME, MTAP, NTRK2, PRKAA1, MET, ALK,

FGFR3, FGFR4, JAK2, NTRK1, RARA, RARB, PRKCA,
PARP1, BRAF, KIT, APEX1, HSPA5, PKM, TOP2A,
CHUK, CYCS, EDNRB, F2, F2R, NFKBIA, PPARD,

RXRA, and SMO, remains unexplored in relation with astra-
galin. In conclusion, anticancer activity of astragalin has been
widely studied but its interactions with cancer related proteins

are poorly understood. Our in silico results suggest astragalin
interactions with proteins previously not reported and results
propose that astragalin contributes to the anticancer effect
observed in crude extracts from graviola pericarp. Neverthe-

less, detailed experiments of the interactions are required.

4. Conclusion

Astragalin (kaempferol 3-O-glucoside) previously unidentified in gravi-

ola pericarp, was recognized in a PGPF obtained from a crude extract

of graviola pericarp. The PGPF presented effect on cell viabilities of

cancerous cell lines (HepG2, MDA-MB-231, and HeLa) at in vitro

therapeutic indexes greater than 1.5. In silico targets prediction and



Fig. 4 Venn diagram from PPI network. Gene names of proteins grouped by the enrichment functions selected in STRING. Proteins are

possible targets of astragalin elucidated by inverse docking in ACID web server.
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analysis of PPI network suggest that astragalin interacts with proteins

involved in cancer disease. Thus, astragalin may contribute to the anti-

cancer effect observed in crude extracts from graviola pericarp.
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Consejo Nacional de Ciencia y Tecnologı́a for the support and
scholarships awarded. Also, authors thank Dr. Mario Eugenio

Cancino Dı́az for donating HaCaT cell line.

Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.arabjc.2022.103720.

References

Adefegha, S.A., Oyeleye, S.I., Oboh, G., 2015. Distribution of

phenolic contents, antidiabetic potentials, antihypertensive prop-

erties, and antioxidative effects of soursop (Annona muricata L.)

fruit parts in vitro. Biochem. Res. Int. 2015. https://doi.org/

10.1155/2015/347673.

Aguilar-Hernández, G., Garcı́a-Magaña, M.L., Vivar-Vera, M., et al,

2019. Optimization of ultrasound-assisted extraction of phenolic

compounds from Annona muricata by-products and pulp. Mole-

cules 24. https://doi.org/10.3390/molecules24050904.

Aguilar-Hernández, G., Vivar-Vera, M.d.L.Á., Garcı́a-Magaña, M.d.
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2013. Aqueous extract of Annona macroprophyllata: a potential a-
glucosidase inhibitor 591313-591313 Biomed. Res. Int. 2013.

https://doi.org/10.1155/2013/591313.

Caba, O., Dı́az-Gavilán, M., Rodrı́guez-Serrano, F., et al, 2011.

Anticancer activity and cDNA microarray studies of a (RS)-

1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl]-6-chloro-9H-purine,

and an acyclic (RS)-O, N-acetalic 6-chloro-7H-purine. Eur. J. Med.

Chem. 46, 3802–3809. https://doi.org/10.1016/j.

ejmech.2011.05.047.

Calderon-Montano, J.M., Burgos-Moron, E., Lopez-Lazaro, C.P.-G.

a.M., 2011. A review on the dietary flavonoid kaempferol. Mini

Rev. Med. Chem. 11, 298–344. https://doi.org/10.2174/

138955711795305335.

Coria-Téllez, A.V., Montalvo-Gónzalez, E., Yahia, E.M., et al, 2018.

Annona muricata: a comprehensive review on its traditional

medicinal uses, phytochemicals, pharmacological activities, mech-

anisms of action and toxicity. Arab. J. Chem. 11, 662–691. https://

doi.org/10.1016/j.arabjc.2016.01.004.

Chilczuk, B., Marciniak, B., Stochmal, A., et al, 2020. Anticancer

potential and capsianosides identification in lipophilic fraction of

sweet pepper (Capsicum annuum L.). Molecules 25. https://doi.org/

10.3390/molecules25133097.

Cho, E., Kim, J., Jeong, D.H., et al, 2021. Anticancer properties of

dried-pericarp water extracts of Camellia japonica L. fermented

with Aspergillus oryzae through regulation of IGFBP-2/mTOR

pathway. Sci. 11, 21527. https://doi.org/10.1038/s41598-021-01127-

3.

Cho, I.-H., Gong, J.-H., Kang, M.-K., et al, 2014. Astragalin inhibits

airway eotaxin-1 induction and epithelial apoptosis through

modulating oxidative stress-responsive MAPK signaling 122-122

BMC Pulm. Med. 14. https://doi.org/10.1186/1471-2466-14-122.

Deep, G., Kumar, R., Jain, A.K., et al, 2016. Graviola inhibits

hypoxia-induced NADPH oxidase activity in prostate cancer cells

reducing their proliferation and clonogenicity. Sci. 6, 23135.

https://doi.org/10.1038/srep23135.

Deepralard, K., Kawanishi, K., Moriyasu, M., et al, 2009. Flavonoid

glycosides from the leaves of Uvaria rufa with advanced glycation

end-products inhibitory activity. Thai. J. Pharm. Sci. 33, 84–90.

Domı́nguez, X.A., 1973. Métodos de investigación fitoquı́mica.
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